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Abstract

This paper presents a novel multi-level generative

chaotic Recurrent Neural Network (RNN) for image

inpainting. This technique utilizes a general framework

with multiple chaotic RNN that makes learning the image

prior from a single corrupted image more robust and

efficient. The proposed network utilizes a randomly-

initialized process for parameterization, along with a

unique quad-directional encoder structure, chaotic state

transition, and adaptive importance for multi-level RNN

updating. The efficacy of the approach has been validated

through multiple experiments. In spite of a much lower

computational load, quantitative comparisons reveal that

the proposed approach exceeds the performance of several

image-restoration benchmarks.

1. Introduction

A growing number of applications require the acqui-

sition of high-quality images under noisy conditions or in

situations where portions of an image are missing. For

such applications, image restoration techniques such as

inpainting are essential.

Historically, the image restoration problem has been

addressed by modeling the natural image, and the image

degradation process has been modeled by edge statistics [8,

31] and noise mask construction [1, 42]. Recent image

restoration methods have utilized deep learning methods.

Utilizing tools such as convolutional neural networks

(CNN) [20, 22, 36] and generative adversarial networks

(GAN) [10, 21], restoration methods have been developed

that yield better results than previous hand-crafted methods

(e.g., [41, 44, 43]). However, problems with deep learning

methods include the need for significant tuning of hyper-

parameters, often with requirements for large training

sets. Furthermore, some image detail information may be

lost with some CNN-based methods because convolutional

layers consider local image regions only, failing to learn

contextual dependencies, so that the image becomes blurry

during the restoration process [35, 37].

(a) Original image (b) Corrupted image

(c) Deep prior [36] (d) Proposed method

Figure 1: Sample results of the proposed technique. The

original image is shown in (a), and a corrupted version is

shown in (b). A baseline result from [36] is shown in (c),

and some blurring is evident. The result in (d) is from the

novel generative chaotic RNN procedure that is presented

in this paper. For this case, inpainting is performed using a

generative recurrent image prior.

In contrast to state-of-the-art methods that utilize

learning to construct an image prior, this paper presents an

untrained multi-level chaotic generative Recurrent Neural

Network (RNN) for image restoration that can capture

significant image statistics independent of learning. An

example of our approach is shown in Fig. 1. The memory

mechanism of RNN is capable of contextual correlation

analysis, and here we utilized a Chaotic Recurrent Network

(CRN) [2, 27]. The CRN concept is well known in dynamic
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system modeling. The input layer and transition matrix

are randomly and sparsely initialized using normal distribu-

tions, and then fixed. During learning, only the output layer

is updated. The chaotic state transition structure in a CRN

enables learning of context while resisting different types of

noise. We have found that the approach yields good perfor-

mance for the image inpainting task when data is missing

randomly. For data encoding, the proposed technique first

utilizes a max-pooling layer on the image prior to the RNN.

Then the encoder scans the down-sampled image from four

directions as four global image region sequences. After this

iterative process, a fully connected layer is utilized as the

decoder to produce the restored image from the four gener-

ative RNN outputs.

To reinforce the robust performance of the proposed

chaotic RNN, selection of the optimal state transition matrix

for the corrupted image is essential. However, a single

transition matrix may have limited inference capability due

to its fixed sparsity and chaos level in the latent space.

To overcome this problem, we developed a multi-level

structure with multiple chaotic state transition matrices for

each direction. These transition matrices are combined

in an intermediate layer. The use of multiple transition

matrices allows recovery of missing points for an image,

using combined knowledge that is obtained from limited

training. Since training is applied only to the output layer,

the computational burden remains light.

To our knowledge, this paper is the first to investigate a

multi-level chaotic RNN for the image inpainting problem

from a single noisy image. A strength of the approach is

that the core formulation and training process are straight-

forward. In spite of the relative simplicity, its perfor-

mance in the extraction and restoration of hidden image

information is comparable to deep neural network image

inpainting methods.

The main contributions of this paper are as follows:

• A robust and efficient generative chaotic RNN with

a quad-directional encoder has been introduced for

image restoration from a single corrupted image

without any pre-training or modeling of the image.

• Compared to existing deep CNN image restoration

methods, the structure of the proposed network archi-

tecture is compact, which leads to a significant

reduction in computational demands without sacri-

ficing restoration quality.

• The proposed network has a fast convergence rate

because only the output layer needs to be trained. The

computed loss is low from the beginning of training.

• The chaotic recurrent state transition framework,

with multi-level adaptive state importance levels,

has resulted in good generalization performance for

various noise types.

Experimental results have demonstrated that the proposed

method produces outcomes that are comparable to learning-

based methods.

2. Related Work

Deep CNNs are powerful models for image restoration

problems with state-of-the-art performance. These

learning-based methods have shown success in the inverse

image reconstruction problem, and the model is parame-

terized well by sufficient pre-training from the data set.

Initially, CNN-based image completion techniques were

applied only to compensate for a small, thin noise mask

[19, 32, 39]. Later, these techniques were applied to other

image restoration problems such as single image super-

resolution [7, 23, 15, 49, 50, 51], image inpainting with

small missing regions [17, 26, 30, 43], and more recently

image inpainting with large regions of missing data [46, 33,

11, 13, 40]. Yang et al. also proposed a technique that

combines the CNNs with certain optimization techniques

in image restoration [41]. However, these methods also

invariably need to be trained from a large image data set

to estimate the image prior. Furthermore, it is unclear

whether learning-based network parameterization increases

the quality of image prior learning [36, 48]. There are some

RNN-based methods that currently cannot perform image

inpainting and require pre-training [14, 25], motivating our

future work.

Another type of technique to tackle the image inpainting

problem is generative adversarial networks (GAN) [10],

which are an extension of CNN techniques with two

networks trained simultaneously. A generator performs

image restoration, and the discriminator tries to distin-

guish the original images from recovered images. Many

researchers have applied GANs to the image restoration

problem, including compression artifact removal, and

JPEG-related loss during image transmission [12, 9].

Shaham et al. used a single image for pyramid GAN

training for image synthesis [34]. Iizuka et al. [17]

introduced GANs in image inpainting with good results.

However, the training process for GAN is unstable, and a

large training set is always required by GAN.

There is also a trend of techniques that are designed

to restore images without pre-training using large image

datasets. Some methods utilize dictionary-based fitting for

corrupted image patches [28, 47], and some use convolu-

tional model fitting such as sparse coding [47, 45]. Also,

some restoration techniques have utilized statistical models

that are similar to the shallow layer CNN [29, 5] for

inference of missing image parts. All these methods are

more efficient in parameterization, but the results are not as

good. The method that is proposed in this paper displays

results that are comparable with trained neural network

methods but without the disadvantage of requiring pre-
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Figure 2: The overall multi-level generative quad-directional chaotic recurrent network. The input image is scanned over

four directions prior to being fed into four directional RNNs. Max-pooling layers are added for subsampling the input image.

Four rows in the chaotic intermediate layer are corresponded to four directional RNNs. In each row, multiple chaotic state

transition matrices are composed of the following directional state transition matrix, weighted by adaptive importance kkk. In

the second level, four directional state transition matrices are composed together of SSS, based on their corresponding weights

ooo. The output layer weights and all importances are jointly optimized by the loss between output image and visible ground

truth image.

training from a large data set.

3. Method

Given an observed image z, the task of image restoration

can be generally formulated as

x∗ = argmin
x
(E(x;z)+ p(x)), (1)

where x represents a possible restored image, and E is the

fitness between x and the noisy observed image z. The

image generator can be selected using a neural network,

denoted as x= gθ (z;w), where θ is the set of neural network

parameters and w is a random code noisy vector. Here p is

the image prior, which is used as a regularizer to help the

restored image become more realistic. We choose p(x) as a

implicit prior θ ∗ that is learned from a neural network.

θ ∗ = argmin
θ

E(gθ (z;w);z) (2)

Both θ and w are randomly initialized. Therefore, the

selection of the generative neural network gθ (z;w) and the

optimal θ are the key for successful image restoration.

3.1. Inpainting

Now we consider the objective of inpainting an image.

We define

E(x;z) = ‖x⊙Ω− z‖2 (3)

= ‖gθ (z;w)⊙Ω− z‖2, (4)

where Ω represents the binary mask with 1 for the observed

pixels, and 0 otherwise. The symbol ⊙ is the Hadamard

product. The image’s missing parts due to the mask will be

inferred by the proposed network after training.

3.2. Quaddirectional Generative Chaotic RNN.

In this paper, we consider using the chaotic RNN [2, 27]

as the image generative network gθ (z;w). Our proposed

RNN-based generative neural network is plotted in Fig. 2.

It is composed of four decoupled RNNs which respectively

scan the image in four directions: left to right, right to left,

top to bottom and bottom to top as Fig. 3. The scanned

images are fed into the RNNs to generate intermediate states

along with the random noise input according to

sssn(p) = σ(WWW innnn(p)+WWW f eedzzz(p)+WWW recsssn(p−1)) (5)

where sssn(p) represents the RNN state belonging to the

nth RNN at the pth row/column of the image. The term

zzz(p) refers to max-pooling results, operating on the sliding

window which samples the image centered at the pth

column/row of the corrupted image. The length of the

window is set uniformly and denoted as w. Random noise

input of the RNN is indicated by nnn(p). The inference is

based on teacher forcing [38], which is common for training

RNN: ground truth samples are fed back into the network

as a condition to keep the prediction close to the ground

truth sequence. Here we consider the corrupted image as the

ground truth in inference. The input layer is random noise,

WWW in; the recurrent layer WWW rec contains the RNN state from
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Figure 3: The quad-directional generative RNN framework. The proposed network is composed of four independent gener-

ative RNNs. The solid lines represent the forward path of the proposed network and the dashed lines separate the four

independent generative RNNs Inside each RNN, the sequential feature is generated by the noise input along with the teacher-

forced feedback. Sequential features are stacked and up-sampled to represent intermediate state at pixel level. The joint

output layer is a fully connected layer that takes the concatenation of the outputs from four generative RNNs to be the

restored image.

the previous step; and WWW f eed is the feedback layer from

the sequence data in the corrupted image as condition for

prediction. The activation function is σ . All the weights of

these layers are randomly initialized, and then fixed. Only

the output layer is updated during the learning process.

Through the random sparsity of the chaotic RNN, the

image is encoded as a high-dimensional sequence (Fig. 3).

The output layer weights can be learned by fitting the output

to the observation. After the output weights have been

learned, the missing part of this image is reproduced by the

underlying neural network. Here, we only adjust the output

layers of the neural network according to the gradients.

The intermediate states from the quad-directional RNNs

are concatenated as follows,

SSS = [SSSlr; SSSrl ; SSStb; SSSbt ] (6)

where SSSlr = [sss1(1),sss1(2), ·,sss1(N)], and sss1 is from the

definition in (5) with N representing the number of columns

of the image. The intermediate states SSSrl , SSStb and SSSbt are

defined similarly. The generated output is constructed using

output layer weights WWW out :

XXX = SSSTWWW out . (7)

Therefore, the output weights of the RNN are learned by

solving

min
WWW out

‖ZZZ −Ω⊙ (SSSTWWW out)‖2. (8)

here ZZZ is the corrupted observed image. The above problem

can be solved by a standard gradient descent as follows:

WWW (k) =WWW (k−1)+µ(k)∇
WWW (k)E, (9)

where E is the objective in (3). The gradient of WWW out is

calculated by

∇WWW out
E =−2SSS(ZZZ −Ω⊙ (SSSTWWW out)). (10)

Moreover, to enhance the convergence, we chose the

step-size update rule from [3], which is given by

µ(k) =
Tr(|(WWW (k)−WWW (k−1))T (∇

WWW (k)E −∇
WWW (k−1)E)|)

‖∇
WWW (k)E −∇

WWW (k−1)‖2
2

.

(11)

3.3. Multilevel Generative RNN with Adaptive
State Importance.

Recall that we intend to use chaotic RNN for image

generation. Ulyanov et al. [36] observed that different

CNN networks in the generative framework are optimal for

one type of image and noise type. Based on this obser-

vation, and the fact that a chaotic network can provide

various transition states with different sparsity and chaos

levels, we designed an unified framework with multiple

transition states S inside the intermediate layer. The index

for each direction is i. Inside each direction, we introduced

adaptive importance vector kkki for Si, importance kkki is a n-

dimensional vector for n number of S
(n)
i . The entries of the

importance vector represent the degree of importance of the

corresponding S
(n)
i . With that composition, each directional

state transition Si can be represented as:

Si =
N

∑
n=1

S
(n)
i ⊙ kkki (12)

The second level importance oooi for four directional state

transition Si combine into a single state transition. The
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(a) Original image (b) Corrupted image (c) [36] (d) [6] (e) Proposed method

(f) Original image (g) Corrupted image (h) [36] (i) [6] (j) Proposed method

Figure 4: Image inpainting comparison with different approaches.

Table 1: PSNR of image inpainting by different methods.

Barbara Boat House Lena Peppers C-man Couple Finger Hill Man Montage

Deep prior 23.70 27.49 27.18 23.92 32.24 27.01 29.07 28.43 28.87 24.59 34.54

Bayesian 23.26 26.91 30.47 28.75 28.27 26.17 26.70 25.06 27.20 27.18 34.65

RNN 28.30 28.30 31.70 32.30 38.52 35.58 28.41 28.65 29.57 30.24 36.13

dimensionality of ooo is a 4-component vector. The resulting

transition state matrix is

S =
4

∑
n=1

Si ×oi. (13)

Only the output layer and importance are updated, based on

maximizing the likelihood of inference output and given a

single corrupted image.

4. Experimental Results

4.1. Image Restoration Comparison with Stateof
theart Methods

Fig. 4 illustrates the pictures with a random noise

mask according to the binary Bernoulli distribution. The

task of image restoration is to recover the underlying

image according to the intrinsic features of the image

object. In our qualitative experiments, we use the standard

image inpainting dataset [16] consisting of eleven grayscale

images with 40% of the pixels randomly dropped.The

proposed method’s outcome is compared with the results

from [36], which are based on deep image priors, and

from [6], which improved [36] by using stochastic gradient

Langevin.

We evaluated the performance of different methods in

both effectiveness and efficiency. For a fair comparison,

all of the experiments were conducted with 3000 iterations

for the same data set, as was performed in [16]. As shown

in Table 1, our method has outperformed these benchmark

methods [6, 36], without any pre-training. In addition, we

present two restored results for qualitative comparison in

Fig. 4. These results show that, although the proposed

method only learned from a single corrupted image without

any prior, it can recover many details even with a severe

rate of data removal. Contrary to the current GAN methods

which are unstable and hard to train in many situations, the

performance of proposed generative method is very robust

and its loss is low even from the beginning of training.

Though the proposed generative RNN has only a shallow

structure, it has outperformed deep CNN-based approaches

in both efficiency and effectiveness.

We have also investigated the typical inpainting problem

in which large blocks of data are missing, as seen in

Fig. 5. Our method performs surprisingly well and arguably

surpasses all of the other methods except for [36]. In

other examples, Fig. 6, the images are corrupted by center

crop, and by severe random crop with 80 percent missing

data. The restoration result of the proposed method is more

realistic than the deep neural network methods [36] and

other GAN-based methods, as it provided more semanti-

cally plausible while other methods have noticeable incon-
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(a) Ground Truth (b) Input (black=masked) (c) ResNet, depth=8

(d) U-Net, depth=5 (e) Deep image prior (f) Proposed method

Figure 5: Inpainting comparison between the proposed method with other deep learning methods with different depths and

architectures. The figure shows that the proposed method has better inpainting results.

(a) Ground truth (b) Corrupted image (c) Single-code GAN (d) Optimal feature map (e) Deep image prior (f) Ours

Figure 6: Image region inpainting using different network and settings. (c) GAN inversion through single latent code [24],

(d) GAN inversion through optimizing feature maps [4], (e) DIP [36], (f) ours.

sistencies. Table 2 shows quantitative results for these

inpainting cases. It indicates good performance of the

proposed technique in image context correlation extraction,

and unknown area inferencing, with results comparable to

the tranditional self-similarity based methods.

4.2. Ablation Study

An experiment was conducted to investigate the

selection of convergence rate and number of neurons. We

can evaluate the neuron-number effect qualitatively. In

Fig. 7, we see that from left to right, as the neuron number

increases, the resulting image contains more details as well

Table 2: PSNR quantitative comparison of different image

inpainting methods in cases with large missing regions.

Central cropping removed 64 x 64 box and ramdom

cropping removed 80 percent pixels.

Method Center Crop Random Crop

(a) Single-code GAN [24] 10.37 12.79

(b) Optimized feature map[4] 14.75 18.72

(c) Deep image prior[36] 17.92 18.02

(d) Ours 20.91 21.52

as fewer artifacts. As shown in Fig. 8, the quad-directional

encoder can provide much more detail and higher PSNR
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(a) Number of neurons: 100 (b) Number of neurons: 500 (c) Number of neurons: 1000 (d) Number of neurons: 4000 (e) Ground truth

Figure 7: Image inpainting with different neuron counts.

(a) One-RNN: 25.4 (b) Bi-RNN (horizontal): 28.9 (c) Bi-RNN (vertical): 29.8 (d) Quad-RNN: 32.0 (e) Ground truth

Figure 8: Inpainting with different directional RNNs and corresponding PSNR. (a) Single-directional RNN, scanning from

left to right. (b) Bi-directional RNNs with horizontal scans. (c) Bi-directional RNNs with vertical scans. (d) Quad-directional

RNNs with horizontal and vertical scans.

Figure 9: Convergence of the proposed algorithm with

different numbers of neurons.

than other encoding configurations. A typical learning

curve of our proposed RNN-based completion is given in

Fig. 9. The vertical axis of the plot indicates reconstruction

error. Meanwhile, the step size of the gradient descent is

initialized as a fixed value, 10−4. The curve shows a quick

descent at the beginning, followed by a slow convergence

at the end. The results plotted in Fig. 9 suggest that the

number of neurons can determine the lower bound that the

objective can achieve.

In addition, we investigate the effectiveness of the

Figure 10: Convergence of the proposed algorithm with

different configurations of directional RNNs.

different configurations of the directional data encoder for

RNNs quantitatively. In Fig. 10, we see that the fully

quad-directional encoder has the fastest convergence rate

compared to single or bi-directional RNNs. The result

corroborates our intuition that the quad-directional RNN

can capture spatial correlations within the image. We chose

2x2 max-pooling for feature downsampling, and obtained

improved performance by 10% compared to using the

original image, while a bigger stride lost more details. After

using a multi-level structure with adaptive importance, as
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(a) Ground truth (b) Corrupted image (c) DIP [36]: 100 (d) DIP [36]: 300 (e) DIP [36]: 500 (f) DIP [36]: 1000 (g) DIP [36]: 1500

(h) Ground truth (i) Corrupted image (j) Ours: 100 (k) Ours: 300 (l) Ours: 500 (m) Ours: 1000 (n) Ours: 1500

Figure 11: Image inpainting with different iteration amounts. The first row contains results from deep image prior [36]: the

PSNR value after 1500 iterations is 26.63. The second row is the results from our method: the PSNR value reached 30.66

after 1000 iterations, and 31.01 after 1500 iterations.

shown in the first level of Fig. 2, the inpainting performance

of our method improved by 5%.

4.3. Model Efficiency

As shown in Table 3, the proposed framework has a more

compact network structure regarding to number of coeffi-

cients. Our run time including training for each picture

is less than a minute, whereas CNN methods such as [36]

require more than 14 minutes on the same GPU to reach

32 PSNR (10 times faster). A more detailed comparison

with [36] is provided in Table 4 and Fig. 11. Because most

GAN methods require pretraining, that comparison is not

discussed here.

Table 3: Model size of different methods.

Network ResNet U-Net DIP Ours

Model size 0.15M 1.6M 3.0M 0.38M

Table 4: Number of iterations required to reach particular

PSNR values in image inpainting.

PSNR 28.5 30 30.5 31 32

DIP [36] 8900 8950 9000 9050 9150

Ours 400 500 1000 1500 2000

4.4. Discussion

A successful image inpainting algorithm should handle

random noise in the data with good stability. To accom-

modate this need, the proposed network exhibits chaotic

RNN state activity prior to training. The chaotic activity

of the network enables a strong generalization performance

for various types of noise and image content, and it handles

the chaotic attributes of the data. The network maintains a

low loss from the beginning. Because training is performed

for the output layer only [18], the result is computational

efficiency and smaller network size compared to CNN

methods.

The essential element for the training procedure is the

feedback loop that transmits the output back to the network.

This loop enables the network’s learning capability without

a large training set. The procedure has demonstrated

rapid weight modification at the beginning of the training

process. Overall, our network training procedure has

exhibited more stability than backpropagation training of

similar-sized convolutional networks.

5. Conclusion

This paper has presented a quad-directional multi-level

generative chaotic RNN-based image inpainting method

that produces experimental results that are competitive with

recent deep methods. The proposed network can effectively

learn the image prior by first utilizing a quad-directional

encoder to generate mid-level features of the image as four

global image region sequences. A multi-level generative

chaotic RNN for each direction can then make a robust

inference regardless of the random noise. The proposed

method does not require any pre-training or modeling of

image degradation processes. In particular, the proposed

method produces results when inpainting large parts of an

image that are comparable with deep methods. Restored

images generated by the proposed technique contain proper

levels of detail, whereas recent benchmark methods tend

to introduce blur into the image. The proposed network

structure is computationally efficient and does not require

large training sets, allowing the proposed RNN structure

to be implemented in hardware-limited systems, such as

portable devices.
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[27] Mantas Lukoševičius and Herbert Jaeger. Reservoir

computing approaches to recurrent neural network training.

Computer Science Review, 3(3):127–149, 2009.

[28] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo

Sapiro. Online learning for matrix factorization and sparse

coding. Journal of Machine Learning Research, 11(Jan):19–

60, 2010.

3634



[29] Vardan Papyan, Yaniv Romano, Jeremias Sulam, and

Michael Elad. Convolutional dictionary learning via local

processing. In Proceedings of the IEEE International

Conference on Computer Vision, pages 5296–5304, 2017.

[30] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor

Darrell, and Alexei A Efros. Context encoders: Feature

learning by inpainting. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pages 2536–2544, 2016.

[31] Daniele Perrone and Paolo Favaro. Total variation blind

deconvolution: The devil is in the details. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2909–2916, 2014.

[32] Jimmy SJ Ren, Li Xu, Qiong Yan, and Wenxiu Sun. Shepard

convolutional neural networks. In Advances in Neural Infor-

mation Processing Systems, pages 901–909, 2015.

[33] Min-cheol Sagong, Yong-goo Shin, Seung-wook Kim,

Seung Park, and Sung-jea Ko. Pepsi: Fast image inpainting

with parallel decoding network. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 11360–11368, 2019.

[34] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli.

Singan: Learning a generative model from a single natural

image. In Proceedings of the IEEE International Conference

on Computer Vision, pages 4570–4580, 2019.

[35] Pavel Svoboda, Michal Hradis, David Barina, and Pavel

Zemcik. Compression artifacts removal using convolutional

neural networks. arXiv preprint arXiv:1605.00366, 2016.

[36] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 9446–

9454, 2018.

[37] Zhangyang Wang, Ding Liu, Shiyu Chang, Qing Ling,

Yingzhen Yang, and Thomas S Huang. D3: Deep dual-

domain based fast restoration of jpeg-compressed images.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2764–2772, 2016.

[38] Ronald J Williams and David Zipser. A learning algorithm

for continually running fully recurrent neural networks.

Neural computation, 1(2):270–280, 1989.

[39] Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising

and inpainting with deep neural networks. In Advances

in neural information processing systems, pages 341–349,

2012.

[40] Wei Xiong, Jiahui Yu, Zhe Lin, Jimei Yang, Xin Lu,

Connelly Barnes, and Jiebo Luo. Foreground-aware image

inpainting. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 5840–

5848, 2019.

[41] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang,

and Hao Li. High-resolution image inpainting using multi-

scale neural patch synthesis. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 6721–6729, 2017.

[42] Jianchao Yang, John Wright, Thomas S Huang, and Yi

Ma. Image super-resolution via sparse representation. IEEE

transactions on image processing, 19(11):2861–2873, 2010.

[43] Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexander G

Schwing, Mark Hasegawa-Johnson, and Minh N Do.

Semantic image inpainting with deep generative models. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5485–5493, 2017.

[44] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu,

and Thomas S Huang. Generative image inpainting with

contextual attention. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5505–

5514, 2018.

[45] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor,

and Rob Fergus. Deconvolutional networks. In 2010

IEEE Computer Society Conference on computer vision and

pattern recognition, pages 2528–2535. IEEE, 2010.

[46] Yanhong Zeng, Jianlong Fu, Hongyang Chao, and Baining

Guo. Learning pyramid-context encoder network for high-

quality image inpainting. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1486–1494, 2019.

[47] Roman Zeyde, Michael Elad, and Matan Protter. On single

image scale-up using sparse-representations. In Interna-

tional conference on curves and surfaces, pages 711–730.

Springer, 2010.

[48] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learning

requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016.

[49] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a

single convolutional super-resolution network for multiple

degradations. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3262–

3271, 2018.

[50] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng

Zhong, and Yun Fu. Image super-resolution using very deep

residual channel attention networks. In Proceedings of the

European Conference on Computer Vision (ECCV), pages

286–301, 2018.

[51] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and

Yun Fu. Residual dense network for image super-resolution.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2472–2481, 2018.

3635


