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Abstract

The development of large-scale image-captioning

datasets is expensive, while the abundance of unpaired im-

ages and text corpus can potentially help reduce the efforts

of manual annotation. In this paper, we study the few-shot

image captioning problem that only requires a small amount

of annotated image-caption pairs. We propose an ensemble-

based self-distillation method that allows image captioning

models to be trained with unpaired images and captions.

The ensemble consists of multiple base models trained with

different data samples in each iteration. For learning from

unpaired images, we generate multiple pseudo captions with

the ensemble and allocate different weights according to

their confidence levels. For learning from unpaired captions,

we propose a simple yet effective pseudo feature generation

method based on Gradient Descent. The pseudo captions

and pseudo features from the ensemble are used to train the

base models in future iterations. The proposed method is

general over different image captioning models and datasets.

Our experiments demonstrate significant performance im-

provements and meaningful captions generated with only

1% of paired training data. Source code is available at

https://github.com/chenxy99/SD-FSIC.

1. Introduction

The advances in Deep Neural Networks (DNNs) have

demonstrated promising performances in vision and natural

language processing tasks. Driven by such advances, re-

search in image captioning, a cross-modal task that requires

both visual and language modeling, has been developing

rapidly in recent years. Most image captioning methods learn

a deep neural network model in a supervised learning manner

based on manually labeled image-caption pairs [5, 54, 57].

Despite their success, the training of these supervised mod-

els requires a large corpus of captions paired with images,

which is extraordinarily labor-intensive. With over 123k

images annotated with 5 captions each, the most popular

image captioning dataset Microsoft COCO [39] is still con-

sidered relatively small compared with general datasets such

as ImageNet [47] and OpenImages [32]. Therefore, the high

cost of manual annotations has limited the generalizability

of image captioning models.

To alleviate the expensive cost of annotating image-

caption pairs, recent studies propose semi-supervised learn-

ing [8, 28, 40] and unsupervised image captioning [13, 19,

33] approaches, allowing image captioners to learn from un-

paired images and captions. These methods utilize externally

trained object detectors [45, 59, 61] and external sentence

corpus [13]. Semi-supervised image captioners also leverage

external modeling [28, 40] and language data [8] to establish

semantic alignments between visual and language data and

hence boost the performance of image captioners. Despite

their success, their performances are highly dependent on

the availability of external data and models, especially when

only few image-caption pairs are annotated.

To address the few-shot image captioning problem, we

for the first time propose an ensemble-based self-distillation

method that does not depend on any external knowledge.

Specifically, we train multiple base models using annotated

image-caption pairs together with unpaired images and cap-

tions, which forms an ensemble that performs better than the

individual models. Pseudo captions and image features are

generated with the ensemble, and added to the training of the

base models. This method is considered a self-distillation

approach, in which the ensemble serves as a teacher and the

base models serve as the students. To improve the accuracy

and robustness of the ensemble, different weights of loss are

assigned to the pseudo captions depending on their confi-

dence levels. Further, we introduce a simple yet effective

method to generate pseudo features from unpaired captions,

and use these features to train the base models. With the pro-

posed method, we can leverage the large number of unpaired

images and captions to improve the performance of few-shot

image captioning.

In sum, the contributions of this work include: 1) a novel

approach to few-shot image captioning based on temporal

ensemble and multi-model ensemble, 2) a self-distillation

method with Confidence Reweighting (CR) for learning from

unpaired images, and 3) a pseudo feature generation method

based on Gradient Descent for learning from unpaired cap-
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tions.

2. Related Work

2.1. Image Captioning with Unpaired Data

Different methods have been proposed to train image cap-

tioners with partially annotated image-caption pairs [7, 8,

18, 19, 21, 40] or with only unpaired data [13, 33]. Chen

et al. [8] first exploits external language data to improve

the performance of image captioners. The cross-domain

image captioner [7] uses adversarial training to transfer a su-

pervised image captioner to a target domain without paired

training data. Non-autoregressive image captioning [22]

formulates a multi-agent reinforcement learning system to

cooperatively maximize a sentence-level reward in a semi-

supervised setting. Liu et al. [40] proposes a self-retrieval

approach to make use of unpaired images. Gu et al. [18]

captures the characteristics of an image captioner from a

pivot language and aligns it with the target language. Kim et

al. [28], Yang et al. [13], Laina et al. [33] and Gu et al. [19]

use Generative Adversarial Networks (GANs) to generate

pseudo images from captions or to project images and cap-

tions into a common latent space [20, 65]. Guo et al. [21]

implements a concepts-to-sentence memory translator cor-

relating the relational reasoning between visual concepts

and generated captions. Different from these works, our

ensemble-based self-distillation approach focuses on maxi-

mizing the use of existing data for few-shot image captioning.

It does not require additional models to generate pseudo fea-

tures or searching for the unpaired captions over the training

set, which is more efficient than previous methods.

2.2. Novel Object Captioning

A related problem to few-shot image captioning is novel

object captioning. It aims to describe images of objects ab-

sent from training data. Novel object captioning methods

highly depend on externally trained image taggers or ob-

ject detectors [37, 60, 64] to generalize pretrained image

captioners for describing near-domain or out-of-domain im-

ages [2]. Deep Compositional Captioner (DCC) [24] and

Novel Object Captioner (NOC) [53] are the first methods

to address this problem with the incorporation of external

knowledge. Following a template-based framework, Lu et

al. [41], Wu et al. [56], and Feng et al. [12] further propose

Neural Baby Talk (NBT), Decoupled Novel Object Captioner

(DNOC) and Cascaded Revision Network (CRN), respec-

tively. Mogadala et al. [42], Yao et al. [60] and Li et al. [37]

propose a copying mechanism with knowledge guided at-

tention, LSTM with Copying (LSTM-C) and LSTM with

Pointing (LSTM-P), respectively. Finally, inference-time

strategies are proposed for generating sentences with spe-

cific novel objects, namely image Captions with Guiding Ob-

jects (CGO) [64] and Constrained Beam Search (CBS) [4].

These novel object captioning methods assume the absence

of training data for novel objects, but for few-shot image

captioning, such knowledge is available in the unpaired train-

ing data and can be learned with semi-supervised learning

methods. Therefore, instead of focusing on the use of exter-

nal knowledge and specialized architectures for describing

novel objects, our ensemble-based self-distillation approach

is more general and more feasible to address the few-shot

image captioning problem.

2.3. Ensemble­Based Semi­Supervised Learning

Our work is also related to a number of ensemble-based

semi-supervised learning approaches [34, 51, 62]. Ensem-

ble [14] is commonly used in semi-supervised learning to

generate pseudo labels for unlabeled data, which has been

applied in various tasks, such as object detection [9, 63],

person re-identification [16], machine translation [55] and

natural language inference [58]. For example, in image clas-

sification, multi-model ensemble [62] uses different base

models to generate pseudo class labels and integrates their

results, whereas temporal ensemble [34, 51] integrates mod-

els at different training iterations to generate pseudo labels.

Despite the success of these methods, their application in

the image captioning task has not been explored, and how

to utilize unpaired data from both vision and language do-

mains remains an open question. In this work, we bridge

this gap by generating pseudo captions and pseudo image

features based on an integration of multi-model ensemble

and temporal ensemble.

3. Approach

The goal of few-shot image captioning is to develop an

image captioner y = F (x|θ) that generates a caption y =
{y1, . . . , yt} to describe an input image x. Its parameters θ

can be jointly optimized on three datasets: a scarcely anno-

tated set of image-caption pairs Dx,y = {(x(i),y(i))}
Nx,y

i=1 ,

a set of unpaired images Dx = {x(i)}Nx

i=1, and a set un-

paired captions Dy = {y(i)}
Ny

i=1. The training of an image

captioner can be achieved by minimizing the loss function

L = Lx,y + λxLx + λyLy, (1)

where Lx,y, Lx, and Ly are computed on the three datasets

Dx,y, Dx, Dy, respectively, and λx and λy balance the

weights of the corresponding loss terms.

In the rest of this section, we introduce our ensemble

method (see Section 3.1) to generate pseudo captions of the

unpaired images (see Section 3.2) and pseudo features of the

unpaired captions (see Section 3.3). A complete summary of

our algorithm is described in the Supplementary Materials.
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Figure 1. Overview of the ensemble-based self-distillation method. We train M encoder-decoder networks (i.e., base models) and build an

ensemble to generate pseudo captions and pseudo features. (a) We feed the unpaired images to the base models and obtain K output captions

from the ensemble. These captions are used in later iterations of the training process as pseudo captions, with their normalized confidences

as the weights of loss. (b) Given an unpaired caption, we use Gradient Descent to find the optimal latent features for the ensemble to generate

the caption. The M Mean Teacher models are sequentially selected during the optimization.

3.1. Ensemble Method

Assume that an image captioner is designed following

the encoder-decoder framework [54]. It is composed of

an encoder z = E(x|θE) that projects the input image x

into a latent feature vector z, and a decoder y = D(z|θD)
that generates the output caption y from the vector z. In

practice, the encoder is commonly implemented using a

Convolutional Neural Network (CNN), and the decoder is

commonly implemented using a Recurrent Neural Network

(RNN). To generate accurate yet diverse pseudo captions

and pseudo features, we train M image captioners as base

models and develop an ensemble out of the base models.

Training on the paired data is achieved by minimizing the

supervised loss

Lx,y =

M∑

m=1

∑

(x,y)∈Dx,y

ℓCE(y, F (x|θm)), (2)

where θm is the parameters of the m-th base model, and

ℓCE(·, ·) measures the sequential cross entropy loss.

We develop an ensemble by computing a Mean

Teacher [51] for each of the M base models, and the predic-

tions of the M Mean Teachers are averaged into the final

output. Mean Teacher is a temporal ensemble method that

averages model weights instead of their outputs to prevent

overfitting. Specifically, given the parameters θt
m of the

m-th base model at the t-th training iteration, the parameters

for the m-th Mean Teacher are computed as

Θ
t
m = αΘt−1

m + (1− α)θt
m, m = 1, . . . ,M, (3)

where α is a smoothing coefficient, and the parameters at

t = 0 are initialized as Θ0
m = θ0

m.

Thus, the temporal and multi-model ensemble not only

generates more accurate and robust captions than the base

models, but also enables the generation of pseudo captions

and pseudo features that can be used to train the base models.

As shown in Figure 1, for the diversity of base models and

the robustness of the ensemble, we randomly assign the gen-

erated pseudo captions and features to different base models.

Specifically, at each iteration, we randomly split the batched

training data into M blocks and train each base model with

only one block of the data. Compared with other resam-

pling strategies such as Monte Carlo cross-validation [10]

or Bootstrap [50], the non-repeated M -fold splitting leads

to relatively noisier samples, which improves the diversity

of different base models and prevents them from generating

similar captions. By iteratively including pseudo captions

and features into the training set, this method is referred to

as self-distillation.

3.2. Self­Distillation with Unpaired Images

Figure 1a shows the process of self-distillation with un-

paired images. With beam search [30], the ensemble gen-

erates K pseudo captions {ỹ1, . . . , ỹK} that describe the

input image with different confidence levels (i.e., sum of

log-likelihood). Using less confident pseudo captions as

training labels may result in error accumulation and gradu-

ally degrade the performance of the models. To address this

issue, we propose the Confidence Reweighting (CR) method

to assign different weights to each training sample according

to the confidence of the pseudo captions. Given the k-th

pseudo caption ỹk = {ỹk1 , . . . , ỹ
k
Lk

}, where Lk represents
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its length, its confidence is computed as

sk =

Lk∑

j=1

log p(ỹkj |ỹ
k
1:j−1,Θ1, . . . ,ΘM ), k = 1, . . . ,K.

(4)

Given the confidence levels of all pseudo captions s =
{s1, . . . , sk}, the weights γ = {γ1, . . . , γk} can be obtained

with a softmax normalization γ = softmax(s).
With the normalized weights, the unsupervised loss term

for the unpaired images is defined as

Lx =M

M∑

m=1

∑

x∈Dx

K∑

k=1

γk1(m = n)ℓMSE(ỹ
k, F (x|θm)),

n ∼ Cat(M,p),

(5)

where ℓMSE(·, ·) is the distillation loss [25, 49, 51], 1(·) is

the indicator function, and Cat(M,p) is the categorical dis-

tribution with probabilistic parameter p.

The proposed CR method allows the base models to

avoid accumulating the errors while learning from less

confident pseudo captions. Unlike the adversarial semi-

supervised learning [28] and the fluency-guided cross-

lingual approach [35], our method directly uses the log-

likelihood from the existing decoder to balance the weights

of the generated captions. Therefore, without additional

parameters, it avoids overfitting due to the few paired data.

3.3. Self­Distillation with Unpaired Captions

To include the unpaired captions in the training of base

models, we propose to generate pseudo image features by

applying Gradient Descent to the trained ensemble (see Fig-

ure 1b). Previous studies typically use GANs [17, 65] to

generate pseudo image features [13, 28, 33] or model pa-

rameters [48], which is less effective under the few-shot

condition. Differently, our method can effectively generate

valid pseudo features without introducing additional parame-

ters, avoiding overfitting the few training examples.

Suppose we have learned M base-model decoders with

their parameters {θD
1 , . . . ,θD

m}, as well as their Mean

Teacher parameters {ΘD
1 , . . . ,ΘD

m}. Given an unpaired

caption y, we aim to find its corresponding latent features

z̃ = argminz

M∑

m=1

ℓCE(y, D(z|ΘD
m)). (6)

Starting from a Gaussian noise z ∼ N (0, σ2I), we se-

quentially select one of the Mean Teachers to calculate the

sequential cross entropy and update the features z using

Gradient Descent:

z := z − η
∂ℓCE(y, D(z|ΘD

m))

∂z
, (7)

where η is the learning rate of this inner optimization prob-

lem. This strategy can reduce the computational complexity

and improve the robustness of self-distillation. Its conver-

gence can be guaranteed by the online learning with non-

convex losses [15]. The optimal features z̃ can be used as a

pseudo feature vector to train the base models, so that they

can generate more fluent and accurate captions. Thus, the

unsupervised loss term for unpaired captions is denoted as

Ly =M

M∑

m=1

∑

y∈Dy

1n(m = n)ℓCE(y, D(z̃|θD
m)),

n ∼ Cat(M,p).

(8)

4. Experiments

In this section, we report our experiments and results

to demonstrate the effectiveness of the proposed approach.

First, we introduce datasets, evaluation, and implementation

details. Next, we conduct quantitative comparisons with the

state of the art and various baselines. Finally, we present the

qualitative results, and analyze the model complexity.

4.1. Datasets and Evaluation

Our experiments are mainly conducted on the Karpa-

thy splits [26] of the Microsoft COCO dataset [39], with

113k training images, 5k validation images, and 5k test

images. Following [28], we randomly sample 1% of the

image-caption pairs for training, and use the rest images and

captions as unpaired training data.

In addition, following the practices of [13] and [28], we

introduce Shutterstock [1] as an external sentence corpus.

We use 2, 322, 628 distinct image descriptions from this web-

site as the unpaired captions and randomly sample a small

portion of image-captions pairs from the COCO dataset. The

remaining training images from the COCO dataset are used

as the unpaired training data.

We use the common evaluation metrics for image caption-

ing: BLEU [43], METEOR [6], ROUGE [38], CIDEr [52],

SPICE [3] and WMD [27]. Since CIDEr [52] is well-

accepted to measure the information and smoothness of the

sentences, the hyper-parameters of our models are tuned on

the validation set for the best CIDEr, and the final results are

evaluated on the test set.

4.2. Implementation Details

We use the Neural Image Caption (NIC) [54] with a

ResNet-101 [23] backbone as our base model, as well as

the Att2in2 [46] and the Up-Down [5] models. We train

the models using a minibatch size of 50 and the Adam [29]

optimizer with learning rate 2.5 × 10−3. We initialize the

hyperparameters λx and λy as 0, and linearly increase them

to λx = 0.1 and λy = 1 with the number of epochs. For

inner optimization of the latent feature vector z̃, we run the
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Method Base Model COCO test

BLEU-1 BLEU-2 BLEU-3 BLEU-4 Meteor ROUGE L CIDEr SPICE WMD

Adversarial Learning [28] NIC [54] 63.0 - - 18.7 20.7 - 55.2 - -

Pseudo Label [36] NIC [54] 63.3 44.6 20.9 21.3 19.4 46.0 57.2 12.0 14.0

Deep Mutual Learning [62] NIC [54] 63.7 44.9 31.1 21.6 19.5 46.2 58.3 12.3 14.1

Pivoting [18] NIC [54] 46.2 24.0 11.2 5.4 13.2 - 17.7 - -

GAN [13] NIC [54] 58.9 40.3 27.0 18.6 17.9 43.1 54.9 11.1 -

SME [33] NIC [54] - - - 19.3 20.2 45.0 61.8 12.9 -

SGA [19] SGAE [59] 67.1 47.8 32.3 21.5 20.9 47.2 69.5 15.0 -

Ours NIC [54] 64.5 45.9 32.1 22.5 20.0 46.7 62.4 12.7 14.7

Ours Att2in2 [46] 66.9 48.6 34.5 24.3 20.8 48.2 66.3 13.2 15.4

Ours Up-Down [5] 67.9 49.8 35.4 25.0 21.7 49.3 73.0 14.5 16.6

Table 1. Quantitative comparisons on the COCO test set between our method and state-of-the-art semi-supervised [28, 36, 62] and

unsupervised [13, 18, 19, 33] image captioners.

Adagrad [11] optimizer for N = 100 iterations with learn-

ing rate η = 1. The standard derivation of the initialized

pseudo feature is σ = 0.1. We set the smoothing coefficient

α = 0.99 for the Mean Teacher method and the weight de-

cay as 0.0005. The total epoch is set as 100, where the first

two epochs are used to pretrain the models on the unpaired

captions only. We also use M = 3 base models to form our

ensemble model and set beam search size as K = 5. The

elements of p for the categorical distribution are set as 1/M .

We implement our experiments in PyTorch [44].

4.3. Quantitative Results

Quantitative results on the COCO dataset. We com-

pare our method with state-of-the-art approaches on COCO

test set. First, our method is compared with three few-shot

image captioning methods (see the first panel of Table 1):

Adversarial Learning [28] uses a GAN model to match

the distribution of latent feature from images and captions.

Pseudo Label [36] is a conventional semi-supervised classi-

fication model. Deep Mutual Learning [62] is an ensemble

of students learning collaboratively and teaching each other

throughout the training process. For a fair comparison with

our method, we have similarly applied ensembles to the

Pseudo Label [36] and Deep Mutual Learning [62] meth-

ods with M = 3 and α = 0.99, and adapted them for the

few-shot image captioning task. In addition, we also com-

pare our method with four unsupervised methods (see the

second panel of Table 1): Pivoting [18] uses a joint learning

framework with an image-to-pivot captioning model and a

pivot-to-target neural machine translation model. GAN [13]

generates an adversarial caption, reconstructs an alignment

of visual and sentence embedding space and uses gradient

policy to optimize the awards. SME [33] aligns images and

sentences in a shared latent representation structured through

visual concepts. SGA [19] presents a scene graph-based ap-

proach for unpaired image captioning. For our proposed

method, we use three image captioners as the base model,

e.g.,NIC [54], Att2in2 [46] and Up-Down [5] (see the last

panel of Table 1) and compare their performances with the

state of the arts.

As shown in Table 1, most of the compared methods

are based on the NIC [54] model, while only SGA uses the

state-of-the-art Auto-Encoding Scene Graphs (SGAE) [59]

and policy gradient [46] to improve its performance. In

comparison with SME [33], the best NIC-based approach,

our method performs 1.0% better in CIDEr (from 61.8 to

62.4) using the same base model. Different from SME [33]

that depends on external object detectors, our method sim-

ply depends on the base models, without any externally

trained models. Therefore, our approach can be easily ap-

plied to different state-of-the-art image captioners to handle

the few-shot situation. For example, our method based on

the Up-Down base model performs significantly better than

the SGA method [19], while the Up-Down model [5] is infe-

rior to the SGAE [59] captioner used in SGA [19]. Further

comparisons across different base models are reported in the

Supplementary Materials.

Quantitative results on the Shutterstock dataset. Fur-

ther, following the practices of [13] and [28], we use the

image descriptions from Shutterstock as unpaired captions

and test the model performances on the COCO test set. In

Table 2, we compare our method with three state-of-the-

art semi-supervised [28] and unsupervised [13, 21] image

captioners, including Adversarial Learning [28], GAN [13],

and R2M [21]. Our method significantly outperforms these

methods, even with only 0.5% of paired data (i.e.,566 image-

caption pairs). The performance of our method increases

with the number of paired data, while being consistently

better than the Adversarial Learning [28] method. Interest-

ingly, the discrepancy between the unpaired Shutterstock

captions and COCO images affects our method and Ad-

versarial Learning [28] differently. On one hand, with 1%
paired data, replacing the unpaired COCO captions with

the Shutterstock captions only causes a minor degradation
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Method Paired COCO test

BLEU-1 BLEU-2 BLEU-3 BLEU-4 Meteor ROUGE L CIDEr SPICE WMD

GAN [13]
0%

41.0 22.5 11.2 5.6 12.4 28.7 28.6 8.1 -

R2M [21] 44.0 25.4 12.7 6.4 13.0 31.3 29.0 9.1 -

Adversarial Learning [28]
0.5%

- - - 5.4 12.0 34.6 10.5 4.2 -

Ours 61.9 42.4 28.5 18.9 17.3 44.6 46.5 9.8 11.5

Adversarial Learning [28]
0.8%

- - - 12.2 15.1 41.6 29.0 7.6 -

Ours 63.9 44.9 31.0 21.1 18.8 46.1 54.7 11.6 13.2

Adversarial Learning [28]
1%

- - - 15.2 16.9 43.3 39.7 9.4 -

Ours 64.1 45.2 31.3 21.5 19.3 46.4 58.4 12.1 14.1

Table 2. Quantitative comparisons on the COCO test set between our method and state-of-the-art semi-supervised [28] and unsupervised [13,

21] image captioners trained with Shutterstock captions. Both our method and Adversarial Learning [28] are trained with 0.5 − 1% of

COCO image-caption pairs in addition to the unpaired COCO images and Shutterstock captions. The unsupervised GAN [13] and R
2
M [21]

methods use an additional set of 36 million images from the OpenImage [32] dataset.

Method Data COCO test

P UI UC BLEU-1 BLEU-2 BLEU-3 BLEU-4 Meteor ROUGE L CIDEr SPICE WMD

Mean Teacher (P) X 62.0 43.1 29.4 20.1 18.7 45.1 53.8 11.4 13.4

Mean Teacher (P+UI) X X 63.0 43.9 30.1 20.6 18.9 45.6 55.8 11.6 13.7

Mean Teacher (P+UC) X X 62.5 43.5 29.8 20.5 19.8 45.2 56.1 12.0 13.7

Mean Teacher (P+UI+UC) X X X 62.8 44.2 30.6 21.3 19.5 45.5 59.3 12.2 14.3

Ours (P) X 62.9 44.1 30.4 20.9 19.2 45.7 56.2 11.9 13.7

Ours (P+UI) w/o CR X X 64.2 45.2 31.1 21.3 19.4 46.2 58.0 12.1 13.9

Ours (P+UI) X X 63.8 45.0 31.2 21.6 19.6 46.3 58.7 12.3 14.2

Ours (P+UC) X X 64.4 45.6 31.9 22.2 19.9 46.7 60.4 12.5 14.4

Ours (P+UI+UC) w/o CR X X X 64.3 45.8 32.1 22.4 19.9 46.5 60.7 12.5 14.5

Ours (P+UI+UC) X X X 64.5 45.9 32.1 22.5 20.0 46.7 62.4 12.7 14.7

Ours+ (Visual Genome) X XX X 65.2 46.9 33.0 23.3 20.4 47.6 64.9 13.1 15.1

Ours+ (Unlabeled COCO) X XX X 65.8 47.5 33.5 23.6 20.6 47.9 65.3 13.3 15.4

Table 3. Quantitative comparison with various baselines on the COCO test set. The baselines are trained with different data settings,

including paired data (P), unpaired images (UI), and unpaired captions (UC). The Ours+ model is trained with additional unpaired images

from the Visual Genome [31] dataset or the COCO [39] dataset.

(6.4% in CIDEr, from 62.4 to 58.4), while that of Adversar-

ial Learning [28] is 28.1% (from 55.2 to 39.7). On the other

hand, when the percentage of paired data decreases from

1% to 0.5%, our method has a less significant performance

drop (20.4% in CIDEr, from 58.4 to 46.5) than Adversarial

Learning [28] (73.6% in CIDEr, from 39.7 to 10.5). Since

Adversarial Learning [28] adopts a pseudo-label assignment

strategy to utilize the unpaired data, it cannot avoid the error

propagation due to the domain discrepancy between COCO

images and Shutterstock captions, especially with few paired

data. Differently, our method does not rely on a matching

mechanism, but uses ensemble models and gradient descent

to prevent models from the severe error propagation. In

practice, it allows real-world applications to collect unpaired

images and captions from different domains, which can ef-

fectively reduce the labor-intensive efforts of data collection.

Effects of multi-model ensemble. Since our method is

based on an ensemble of multiple Mean Teachers, when

M = 1, our ensemble model degrades to a single Mean

Teacher model. As shown in Table 3, Mean Teacher

(P+UI+UC) with fewer parameters has already outperformed

the state-of-the-art methods. Hence, we compare our method

with Mean Teacher as a strong baseline, to demonstrate the

effects of multi-model ensemble. As shown in Table 3, with

paired data only (P), the multi-model ensemble leads to a

significant improvement of 4.5% in CIDEr (from 53.8 to

56.2); with both paired data and unpaired images (P+UI),

the improvement is 5.2% (from 55.8 to 58.7); with both

paired data and unpaired captions (P+UC), the improvement

is 7.7% (from 56.1 to 60.4); with all paired and unpaired

data (P+UI+UC), the improvement is 5.2% (from 59.3 to

62.4). These improvements suggest the effectiveness of the

integration of temporal ensemble and multi-model ensemble.

Further, we observe that the performance of our method

(P+UI+UC) increases when M ≤ 5 and then start to de-

crease when M ≥ 5 (see Figure 2a). We also observe
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Figure 2. Results on the COCO test set w.r.t (a) different number

of base models from the ensemble given 1% paired data and (b)

different ratios of paired training data with a fixed number of base

models M = 3.

similar trends in our (P+UI) baseline. It suggests that er-

ror propagation may occur due to the distillation with the

pseudo captions/features instead of ground-truth supervision.

Training with only paired data does not suffer from error

propagation because it is completely supervised. Interest-

ingly, even if we use 10 base models with paired data only

(P), its performance cannot surpass 3 base models with un-

paired images (P+UI) or 1 base models with all the unpaird

data (P+UI+UC), which demonstrate the effectiveness of our

approach in leveraging unpaired data.

Finally, as shown in Figure 2b, with a fixed number of

the models M = 3, the performance improvements between

different baselines are consistent across various ratios of

paired data from 0.5% to 10%, suggesting the effectiveness

of our method and the inclusion of unpaired data.

Effects of self-distillation with unpaired images and

captions. By including the unpaired images, our self-

distillation method increases its CIDEr score from 56.2 to

58.7 (i.e., Ours (P+UI) in Table 3). Similarly, by only in-

cluding the unpaired captions, our approach also achieves a

significant improvement in CIDEr (from 56.2 to 60.4). More-

over, with the pseudo features generated from unpaired cap-

tions, our method achieves a remarkable 6.3% improvement

in CIDEr (from 58.7 to 62.4), suggesting that the knowledge

distilled from the pseudo features is effective. To further ver-

ify the performance gain from the unpaired images, we addi-

tionally include 112k Visual Genome [31] training images

or 123k COCO unlabeled images in the experiments. These

images provide abundant knowledge to improve the general-

ization of the model. As shown Table 3, Visual Genome and

COCO unlabeled images further increase the model’s CIDEr

scores to 64.9 and 65.3, respectively. The improvements

confirm the effectiveness of pseudo caption generation and

suggests potential benefits from larger image datasets.

Note that the main technical novelty of our self-

distillation method is the Confidence Reweighting (CR) ap-

plied to the pseudo captions. As shown in Table 3, the perfor-

mance degrades to CIDEr=58.0 without using this method

(i.e.,by averaging the cross entropy). The difference is also

significant when unpaired captions are added to the training

data (2.8% in CIDEr, from 60.7 to 62.4), which suggests the

effectiveness of CR in protecting model convergence from

the propagation of captioning errors. Moreover, we observe

that the confidence levels of generated pseudo captions are

strongly correlated with their CIDEr scores. For the top-5

most confident captions, their average CIDEr scores on the

COCO validation set are 61.3, 59.5, 59.3, 57.8, and 57.6,

respectively. The most confident caption has the highest

CIDEr score, while the least confident caption has the lowest

score. This correlation justifies the use of confidence level

as a reweighting strategy in the distillation process.

Analysis of SPICE F-scores. To further understand the

contributions of each technical component, we report a break-

down of SPICE F-scores over various subcategories on the

COCO test set. As illustrated in the first panel and the second

panel in Table 4, after adding unpaired images and unpaired

captions, the generated captions are more comprehensive-

ness in relationships between objects, counting number, sizes

and objects. For example, the higher score on objects sug-

gests that the generated captions can describe the object in

the image more precisely. For more detailed ablation studies,

please refer to the Supplementary Materials.

4.4. Qualitative Analysis

In addition to the quantitative results, we further demon-

strate the effectiveness of our method with qualitative ex-

amples on the COCO validation set. Figure 3 compares

the results of our method (P+UI+UC) with the two state-

of-the-art approaches: Pseudo Label [36] and Deep Mutual

Learning [62], as well as two baseline methods: Ours (P)

and Ours (P+UI). The Adversarial Learning [28] method is

not compared because of the inaccessibility of source code.

As shown in Figure 3, the Pseudo Label and Deep Mutual

Learning methods, as well as the baselines, can describe

part of the scenes correctly (e.g., ‘broccoli’ and ‘beach’), but

fail to describe the image contents completely (e.g., missing

the ‘meat’ and ‘surfboard’). By training with images and

unpaired captions, our approach generates more accurate

and fluent captions to describe the input images, and objects

in the images are correctly recognized (e.g., ‘meat’ and ‘surf-

board’). It also verifies that the F-score of objects of our

method is higher than that of other baselines. The qualita-
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Method Data COCO test

P UI UC SPICE Relation Cardinality Attribute Size Color Object

Mean Teacher (P) X 11.4 2.3 0.8 2.8 0.9 2.5 23.1

Mean Teacher (P+UI) X X 11.6 2.6 1.0 2.8 1.5 2.3 23.5

Mean Teacher (P+UC) X X 11.9 2.3 2.2 3.6 1.4 3.8 23.9

Mean Teacher (P+UI+UC) X X X 12.2 2.9 1.2 3.6 2.1 1.5 24.3

Ours (P) X 11.9 2.6 0.5 2.9 1.3 3.2 24.1

Ours (P+UI) w/o CR X X 12.1 2.6 0.6 3.1 1.4 3.4 24.3

Ours (P+UI) X X 12.3 2.7 0.6 3.2 1.5 3.5 24.6

Ours (P+UC) X X 12.6 2.6 2.2 3.6 1.3 3.5 25.3

Ours (P+UI+UC) w/o CR X X X 12.5 2.7 1.0 3.4 1.6 3.5 25.1

Ours (P+UI+UC) X X X 12.7 2.8 1.4 3.6 1.6 3.6 25.3

Ours+ (Visual Genome) X XX X 13.1 3.1 1.0 3.1 1.5 1.3 26.2

Ours+ (Unlabeled COCO) X XX X 13.3 3.2 1.4 3.2 2.0 1.9 26.6

Table 4. Breakdown of SPICE F-scores over various subcategories on the COCO test set.

Pseudo	Label:											A	close	up	of	a	plate	of	broccoli	and	vegetables.
Deep	Mutual	Learning:			A	plate	of	food	with	broccoli	and	broccoli.
Ours	(P):															A	plate	of	food	with	broccoli	and	broccoli.
Ours	(P+UI):												A	plate	of	food	with	broccoli	and	vegetables.
Ours	(P+UI+UC):									A	plate	of	food	with	meat	and	broccoli.
Ground-truth:											A	plate	with	meat	chops,	broccoli	and	pasta	on	it

Pseudo	Label:											A	man	flying	a	kite	on	the	beach.
Deep	Mutual	Learning:			A	man	holding	a	kite	on	a	beach.
Ours	(P):															A	man	is	flying	a	kite	on	a	beach.
Ours	(P+UI):												A	man	holding	a	skateboard	on	a	beach.
Ours	(P+UI+UC):									A	person	holding	a	surfboard	on	a	beach.
Ground-truth:											A	guy	on	a	beach	holding	a	surf	board.

Figure 3. Qualitative examples of our model and various baselines on COCO validation set.

tive results suggest the effectiveness of using unpaired data

in few-shot image captioning. For more qualitative results,

please refer to the Supplementary Materials.

4.5. Model Complexity

Despite its significantly improved performance, com-

pared with non-ensemble approaches, the proposed method

is relatively more complex in model size and computational

cost. Its complexity is mostly decided by the base model

architecture, the number of base models M , and the num-

ber of iterations N for the inner optimization of z. On the

one hand, the model size increase linearly with M , and the

training time increases with O(M +N). In our experiments,

we set N = 100 and M = 3, which takes a total of ∼ 3
hours for training on a single NVIDIA 2080 Ti GPU. To

accelerate the training for faster deployment, a smaller N
can be adopted. With a reduced N = 20, our method can

achieve a 61.2 CIDEr score with M = 3 by converging in

only ∼ 1 hour. On the other hand, to reduce the inference

time, one can selectively choose any number of the base

models to form a new ensemble. For example, a base model

can achieve 59.6 ± 0.09 CIDEr scores, and an ensemble

of two base models can achieve 61.4± 0.08 CIDEr scores,

significantly better than the state-of-the-art approaches.

5. Conclusion

In this paper, we have introduced an ensemble-based self-

distillation method for image captioning with few paired

data and a large number of unpaired images and captions.

It is an effective method to generate accurate and robust

pseudo captions and pseudo features, and use them to train

the base models. Our approach significantly outperforms the

state-of-the-art approaches, demonstrating its effectiveness

of utilizing the unpaired images and captions. Future efforts

will be focused on the exploration of the connection of the

unpaired images and unpaired captions to make the best use

of these unpaired datasets in few-shot image captioning and

other related vision tasks.

552



References

[1] Shutterstock. https://www.shutterstock.com.

[2] Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen,

Rishabh Jain, Mark Johnson, Dhruv Batra, Devi Parikh, Ste-

fan Lee, and Peter Anderson. nocaps: novel object captioning

at scale. IEEE International Conference on Computer Vision

(ICCV), 2019.

[3] Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. SPICE: Semantic propositional image cap-

tion evaluation. European Conference on Computer Vision

(ECCV), 2016.

[4] Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. Guided open vocabulary image captioning

with constrained beam search. Conference on Empirical

Methods in Natural Language Processing (EMNLP), 2017.

[5] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney,

Mark Johnson, Stephen Gould, and Lei Zhang. Bottom-

up and top-down attention for image captioning and visual

question answering. IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018.

[6] Satanjeev Banerjee and Alon Lavie. METEOR: An automatic

metric for mt evaluation with improved correlation with hu-

man judgments. Annual Conference of the Association for

Computational Linguistics Workshop (ACLW), 2005.

[7] Tseng-Hung Chen, Yuan-Hong Liao, Ching-Yao Chuang,

Wan-Ting Hsu, Jianlong Fu, and Min Sun. Show, adapt and

tell: Adversarial training of cross-domain image captioner.

IEEE International Conference on Computer Vision (ICCV),

2017.

[8] Wenhu Chen, Aurelien Lucchi, and Thomas Hofmann. A

semi-supervised framework for image captioning. CoRR,

abs/1611.05321v3, 2016.

[9] Xuanyi Dong, Liang Zheng, Fan Ma, Yi Yang, and Deyu

Meng. Few-example object detection with model communi-

cation. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 2019.

[10] Werner Dubitzky, Martin Granzow, and Daniel Berrar. Fun-

damentals of Data Mining in Genomics and Proteomics.

Springer Science & Business Media, 2007.

[11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgra-

dient methods for online learning and stochastic optimization.

The Journal of Machine Learning Research (JMLR), 2011.

[12] Qianyu Feng, Yu Wu, Hehe Fan, Chenggang Yan, and Yi

Yang. Cascaded revision network for novel object captioning.

CoRR, abs/1908.02726, 2019.

[13] Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo. Unsupervised

image captioning. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2019.

[14] Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen,

Laurent Itti, and Anima Anandkumar. Born-again neural

networks. International Conference on Machine Learning

(ICML), 2018.

[15] Xiang Gao, Xiaobo Li, and Shuzhong Zhang. Online learn-

ing with non-convex losses and non-stationary regret. Inter-

national Conference on Artificial Intelligence and Statistics

(AISTATS), 2018.

[16] Yixiao Ge, Dapeng Chen, and Hongsheng Li. Mutual mean-

teaching: Pseudo label refinery for unsupervised domain adap-

tation on person re-identification. International Conference

on Learning Representations (ICLR), 2020.

[17] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial networks. Conference

on Neural Information Processing Systems (NeurIPS), 2014.

[18] Jiuxiang Gu, Shafiq Joty, Jianfei Cai, and Gang Wang. Un-

paired image captioning by language pivoting. European

Conference on Computer Vision (ECCV), 2018.

[19] Jiuxiang Gu, Shafiq Joty, Jianfei Cai, Handong Zhao, Xu

Yang, and Gang Wang. Unpaired image captioning via scene

graph alignments. IEEE International Conference on Com-

puter Vision (ICCV), 2019.

[20] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron Courville. Improved training of wasser-

stein GANs. Conference on Neural Information Processing

Systems (NeurIPS), 2017.

[21] Dan Guo, Yang Wang, Peipei Song, and Meng Wang. Re-

current relational memory network for unsupervised image

captioning. International Joint Conferences on Artificial In-

telligence (IJCAI), 2020.

[22] Longteng Guo, Jing Liu, Xinxin Zhu, Xingjian He, Jie Jiang,

and Hanqing Lu. Non-autoregressive image captioning with

counterfactuals-critical multi-agent learning. International

Joint Conferences on Artificial Intelligence (IJCAI), 2020.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2016.

[24] Lisa Anne Hendricks, Subhashini Venugopalan, Marcus

Rohrbach, Raymond Mooney, Kate Saenko, and Trevor Dar-

rell. Deep compositional captioning: Describing novel object

categories without paired training data. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016.

[25] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling

the knowledge in a neural network. CoRR, abs/1503.02531,

2015.

[26] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2015.

[27] Mert Kilickaya, Aykut Erdem, Nazli Ikizler-Cinbis, and Erkut

Erdem. Re-evaluating automatic metrics for image caption-

ing. Annual Conference of the Association for Computational

Linguistics (ACL), 2017.

[28] Dong-Jin Kim, Jinsoo Choi, Tae-Hyun Oh, and In So Kweon.

Image captioning with very scarce supervised data: Adver-

sarial semi-supervised learning approach. Conference on Em-

pirical Methods in Natural Language Processing (EMNLP),

2019.

[29] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. International Conference on Learn-

ing Representations (ICLR), 2015.

[30] Philipp Koehn. Statistical Machine Translation. Cambridge

University Press, New York, NY, USA, 1st edition, 2010.

553



[31] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,

Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-

tidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and

Fei-Fei Li. Visual genome: Connecting language and vision

using crowdsourced dense image annotations. International

Journal of Computer Vision (IJCV), 2017.

[32] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings,

Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov,

Matteo Malloci, Tom Duerig, and Vittorio Ferrari. The open

images dataset v4: Unified image classification, object de-

tection, and visual relationship detection at scale. CoRR,

abs/1811.00982, 2018.

[33] Iro Laina, Christian Rupprecht, and Nassir Navab. Towards

unsupervised image captioning with shared multimodal em-

beddings. IEEE International Conference on Computer Vision

(ICCV), 2019.

[34] Samuli Laine and Timo Aila. Temporal ensembling for semi-

supervised learning. International Conference on Learning

Representations (ICLR), 2017.

[35] Weiyu Lan, Xirong Li, and Jianfeng Dong. Fluency-guided

cross-lingual image captioning. ACM Multimedia (ACM-

MM), 2017.

[36] Dong-Hyun Lee. Pseudo-label : The simple and efficient

semi-supervised learning method for deep neural networks.

International Conference on Machine Learning (ICML),

2013.

[37] Yehao Li, Ting Yao, Yingwei Pan, Hongyang Chao, and Tao

Mei. Pointing novel objects in image captioning. IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

2019.

[38] Chin-Yew Lin. ROUGE: A package for automatic evaluation

of summaries. Annual Conference of the Association for

Computational Linguistics Workshop (ACLW), 2004.

[39] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.

Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft

COCO: Common objects in context. European Conference

on Computer Vision (ECCV), 2014.

[40] Xihui Liu, Hongsheng Li, Jing Shao, Dapeng Chen, and Xi-

aogang Wang. Show, tell and discriminate: Image captioning

by self-retrieval with partially labeled data. European Confer-

ence on Computer Vision (ECCV), 2018.

[41] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Neu-

ral baby talk. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018.

[42] Aditya Mogadala, Umanga Bista, Lexing Xie, and Achim

Rettinger. Describing natural images containing novel objects

with knowledge guided assitance. CoRR, abs/1710.06303,

2017.

[43] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing

Zhu. BLEU: a method for automatic evaluation of machine

translation. Annual Conference of the Association for Com-

putational Linguistics (ACL), 2002.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

Gregory Chanan James Bradbury, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
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