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Abstract

Estimating 3D hand pose directly from RGB images

is challenging but has gained steady progress recently by

training deep models with annotated 3D poses. However

annotating 3D poses is difficult and as such only a few 3D

hand pose datasets are available, all with limited sample

sizes. In this study, we propose a new framework of training

3D pose estimation models from RGB images without using

explicit 3D annotations, i.e., trained with only 2D informa-

tion. Our framework is motivated by two observations: 1)

Videos provide richer information for estimating 3D poses

as opposed to static images; 2) Estimated 3D poses ought

to be consistent whether the videos are viewed in the for-

ward order or reverse order. We leverage these two obser-

vations to develop a self-supervised learning model called

temporal-aware self-supervised network (TASSN). By en-

forcing temporal consistency constraints, TASSN learns 3D

hand poses and meshes from videos with only 2D keypoint

position annotations. Experiments show that our model

achieves surprisingly good results, with 3D estimation ac-

curacy on par with the state-of-the-art models trained with

3D annotations, highlighting the benefit of the temporal

consistency in constraining 3D prediction models.

1. Introduction

3D hand estimation is an important research topic in

computer vision due to a wide range of potential applica-

tions, such as sign language translation [45], robotics [1],

movement disorder detection and monitoring, and human-

computer interaction (HCI) [29, 18, 28].

Depth sensors and RGB cameras are popular devices for

collecting hand data. However, depth sensors are not as

widely available as RGB cameras and are much more ex-

pensive, which has limited the applicability of hand pose

estimation methods developed upon depth images. Recent

research interests have shifted toward estimating 3D hand

poses directly from RGB images by utilizing color, texture,
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Figure 1. Motivation and idea: (a) Training a robust 3D hand pose

estimator from RGB images relies on plenty images with 3D hand

pose annotations, but obtaining 3D annotations from 2D images is

quite difficult; (b) We leverage bi-directional temporal consistency

in videos and enable hand pose estimators to make more plausible

predictions. It turns out that the hand pose estimator can be derived

in a self-supervised fashion without using 3D annotations.

and shape information contained in RGB images. Some

methods carried out 3D hand pose estimation from monoc-

ular RGB images [5, 20, 51]. More recently, progresses

have been made on estimating 3D hand shape and mesh

from RGB images [2, 3, 15, 47, 42, 7, 26, 25, 50, 49, 48].

Compared to poses, hand meshes provide richer informa-

tion required by many immersive VR and AR applications.

Despite the advances, 3D hand pose estimation remains a

challenging problem due to the lack of accurate, large-scale

3D pose annotations.

In this work, we develop a new approach to 3D hand

1050



pose and mesh estimation by taking the following two ob-

servations into account. First, most existing methods rely on

training data with 3D information, but capturing 3D infor-

mation from 2D images is intrinsically difficult. Although

there are a few datasets providing annotated 3D hand joints,

the amount is too small to train a robust hand pose estima-

tor. Second, most studies focus on hand pose estimation

from a single image. Nevertheless, important applications

based on 3D hand poses, such as augmented reality (AR),

virtual reality (VR), and sign language recognition, are usu-

ally carried out in videos.

According to the two observations, our approach ex-

ploits video temporal consistency to address the uncer-

tainty caused by the lack of 3D joint annotations on train-

ing data. Specifically, our approach, called temporal-aware

self-supervised network (TASSN), can learn and infer 3D

hand poses without using annotated 3D training data. Fig-

ure 1 shows the motivation and core idea of the proposed

TASSN. TASSN explores video information by embedding

a temporal structure to extract spatial-temporal features. We

design a novel temporal self-consistency loss, which helps

training the hand pose estimator without requiring anno-

tated 3D training data. In addition to poses, we estimate

hand meshes since meshes bring salient evidences for pose

inference. With meshes, we can infer silhouettes to further

regularize our model. The main contributions of this work

are given below:

1. We develop a temporal consistency loss and a reversed

temporal information technique for extracting spatio-

temporal features. To the best of our knowledge, this

work makes the first attempt to estimate 3D hand poses

and meshes without using 3D annotations.

2. An end-to-end trainable framework, named temporal-

aware self-supervised networks (TASSN), is proposed

to learn an estimator without using annotated 3D train-

ing data. The learned estimator can jointly infer the 3D

hand poses and meshes from video.

3. Our model achieves high accuracy with 3D predic-

tion performance on par with state-of-the-art models

trained with 3D ground truth.

2. Related Work

2.1. 3D Hand Pose Estimation from Depth Images

Since depth images contain surface geometry informa-

tion of hands, they are widely used for hand pose estima-

tion in the literature [40, 44, 11, 41, 14, 16, 27, 8, 9]. Most

existing work adopts regression to fit the parameters of a de-

formed hand model [30, 22, 24, 40]. Recent work [14, 16]

extracts depth image features and regress the joints through

PointNet [34]. Wu et al. [41] leverage the depth image as

the intermediate guidance and conduct an end-to-end train-

ing framework. Despite the effectiveness, the aforemen-

tioned methods highly rely on accurate depth maps, and are

less practical in the daily life since depth sensors are not

available in many cases due to the high cost.

2.2. 3D Hand Pose Estimation from RGB Images

Owing to the wide accessibility of RGB cameras, esti-

mating 3D hand poses from monocular images becomes an

active research topic [5, 20, 31, 38, 43, 51] and significant

improvement has been witnessed. These methods use con-

volutional neural networks (CNN) to extract features from

RGB images. Zimmermann and Brox [51] feed these fea-

tures to the 3D lift network and camera parameter estima-

tion network for depth regression. Building on Zimmer-

mann and Brox’s work, Iqbal et al. [20] add depth maps as

intermediate guidance while Cai et al. [5] propose a weakly

supervised approach to utilize depth maps for regulariza-

tion. However, these methods suffer from limited training

data since 3D hand annotations are hard to acquired. Also,

they all dismiss the temporal information.

2.3. 3D Hand Mesh Estimation

3D hand mesh estimation is an active research topic [15,

3, 2, 21, 47]. Methods in [3, 2, 47] estimate hand meshes

by using a pre-defined hand model, named MANO [35].

Due to the high degree of freedom of hand gestures, hand

meshes lie in a high dimensional space. The MANO model

serves as a kinematic and shape prior of meshes and can

help reduce the dimension. However, since MANO is a lin-

ear model, it is not able to capture the nonlinear transfor-

mation for hand meshes [15]. Thus, mesh estimators based

on MANO suffer from this issue. On the other hand, Ge et

al. [15] regress 3D mesh vertices through graphical con-

volutional neural network (GCN) with down-sampling and

up-sampling. Their work achieves the state-of-the-art per-

formance, but it is trained on a dataset with 3D mesh ground

truth which is even more difficult to label than 3D joint an-

notations. This drawback limits its applicability in practice.

2.4. Selfsupervised Learning

Self-supervised learning [12, 33, 13] is a type of train-

ing methodologies, where training data are automatically

labeled by exploiting existing information within the data.

With this training scheme, manual annotations are not re-

quired for a given training set. This scheme is especially

beneficial when data labeling is difficult or the data size

is exceedingly large. Self-supervised learning has been

applied to hand pose estimation. Similar to ours, the

method in [13] adopts temporal cycle consistency for self-

supervised learning. However, this method uses soft nearest

neighbors to solve the video alignment problem, which is

not applicable to 3D pose and mesh estimation. Simon et
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Figure 2. Overview of the proposed TASSN. TASSN involves both forward and backward inference to utilize temporal information.

Namely, the hand poses estimated by forward and backward inference should be consistent. Our hand pose estimator leverages this

observation and can be trained by using self-supervised learning without the need of 3D hand joint labels. Moreover, with the constraints

of temporal consistency, either forward or backward inference can gain more accurate hand pose estimation results.

al. [37] adopt multi-view supervisory signals to regress 3D

hand joint locations. While their approach resolves the hand

self-occlusion issue using multi-view images, it in the train-

ing stage requires 3D joint annotations, which are diffi-

cult and expensive to get in this task. Another attempt of

using self-supervised learning for hand pose estimation is

presented in [39], where an approach leveraging a massive

amount of unlabeled depth images is proposed. However,

this approach may be limited due to the high variations of

depth maps in diverse poses, scales, and sensing devices.

Instead of leveraging multi-view consistency or depth con-

sistency, the proposed self-supervised scheme relies on tem-

poral consistency, which is inexpensive to get and does not

require 3D keypoint annotations.

3. Proposed Method

We aim to train a 3D hand pose estimator from videos

without 3D hand joint labels. To tackle the absence of

3D annotations, we adopt the temporal information from

hand motion videos, and address the ambiguity caused by

the lack of 3D joint ground truth. Specifically, we present

a novel deep neural network, named temporal-aware self-

supervised networks (TASSN). By developing the temporal

consistency loss on the estimated hand gestures in a video,

TASSN can learn and infer 3D hand poses through self-

supervised learning without using any 3D annotations.

3.1. Overview

Given an RGB hand motion video x with N frames, x =
{I1, ..., IN}, we aim at estimating 3D hand poses in this

video, where It ∈ R
3×W×H is the t-th frame, and W and

H are the frame width and height, respectively. The 3D

hand pose at frame t, pt ∈ R
3×K , is represented by a set of

K 3D keypoint coordinates of the hand. Figure 2 illustrates

the network architecture of TASSN.

Leveraging the temporal consistency properties of

videos, the hand poses and meshes predicted in the for-

ward and backward inference orders can perform mutual

supervision. Our model can be fine-tuned on any target

dataset using this self-supervised learning and the tempo-

ral consistency is a good substitute for the hard-to-get 3D

ground truth. TASSN alleviates the burden of annotating

3D ground-truth of a dataset without significantly sacrific-

ing model performance.

Recent studies [15, 47] show that training pose estima-

tors with hand meshes improves the performance because

hand meshes can act as intermediate guidance for hand pose

prediction. To this end, we propose a hand pose and mesh
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Figure 3. Network architecture of the pose and mesh estimation (PME) module. PME module consists of four sub-modules, including the

flow, 2D keypoint heatmap, 3D hand mesh, and 3D hand pose estimators. The flow estimator computes the optical flow ot+1 from two

consecutive frames It and It+1. With It+1, ot+1, and Ht, the 2D heatmap estimator computes the keypoint heatmap Ht+1 at timestamp

t + 1, as well as extract the image features. Based on the extracted image features, the 3D hand pose and mesh estimators predict the

3D hand pose pt+1 and mesh mt+1 at timestamp t + 1. Two loss terms, the heatmap loss Lh and the hand mesh loss Lm, are used for

optimization.

estimation (PME) module, which jointly estimates the 2D

hand keypoint heatmaps, 3D hand poses and meshes from

every two adjacent frames Ii and Ii+1.

3.2. Pose and Mesh Estimation Module

The proposed PME module consists of four estima-

tor sub-modules, including flow estimator, 2D keypoint

heatmap estimator, 3D hand mesh estimator, and 3D hand

pose estimator. Given two consecutive frames as input, it

estimates the 3D hand pose and mesh. Figure 3 shows its

network architecture.

Flow Estimator: To capture temporal clues from a hand

gesture video, we adopt FlowNet [19] to estimate the opti-

cal flow ot+1 ∈ R
2×W×H between two consecutive frames

It and It+1. In forward inference, FlowNet computes ot+1,

the motion from frame It to frame It+1. In backward infer-

ence, FlowNet computes the reverse motion.

Heatmap Estimator: Our heatmap estimator computes 2D

hand keypoints and generates the features for the 3D hand

pose and mesh estimators. The estimated 2D keypoint

heatmaps are denoted by H ∈ R
K×W×H , where K rep-

resents the number of keypoints. We adopt a two stacked

hourglass network [32] to infer the hand keypoint heatmaps

H and compute the features F . We concatenate It+1, ot+1,

and Ht as input to the stacked hourglass network, which

produces heatmaps Ht+1, as shown in Figure 3. The esti-

mated Ht+1 includes K heatmaps {Hk
t+1 ∈ R

W×H}Kk=1,

where Hk
t+1 expresses the confidence map of the location

of the kth keypoint. The ground truth heatmap H̄k
t+1 is

the Gaussian blur of the Dirac-δ distribution centered at the

ground truth location of the kth keypoint. The heatmap loss

Lh at frame t is defined by

Lh =
1

K

K∑

k=1

||Hk
t − H̄k

t ||
2
F . (1)

3D Hand Mesh Estimator: Our 3D hand mesh estimator is

developed based on Chebyshev spectral graph convolution

network (GCN) [15], and it takes hand features F as input

and infers the 3D hand mesh. The output hand mesh mt ∈
R

3×C is represented by a set of 3D mesh vertices, where C
is the number of vertices in a hand mesh.

To model hand mesh, we use an undirected graph

G(V ,E), where V and E are the vertex and edge sets,

respectively. The edge set E can be represented by an ad-

jacent matrix A, where Ai,j = 1 if edge e(i, j) ∈ E, oth-

erwise Ai,j = 0. The normalized Laplacian normal matrix

of G is obtained via L = I − D−
1

2AD−
1

2 , where D is

the degree matrix and I is the identity matrix. Since L is

a positive semi-definite matrix [4], it can be decomposed as

L = UΛUT , where Λ = diag(λ1, λ2, ..., λC), and C is

the number of vertices in G.

We follow the setting in [10], and set the convolution

kernel to Λ̂ = diag(
∑S

i=0 αiλ
i
1, ...,

∑S

i=0 αiλ
i
C), where α

is the kernel parameter. The convolutional operations in G

can be calculated by F ′ = UΛ̂UTFθi =
∑S

i=0 αiL
iFθi,

where F ∈ R
N×Fin and F ′ ∈ R

N×Fout indicate the input

and output features respectively, S is a preset hyperparam-

eter used to control the receptive field, and θi ∈ R
Fin×Fout is

trainable parameter set used to control the number of output

channels.

The Chebyshev polynomial is used to reduce the model

complexity by approximating convolution operations, lead-

ing to the output features F ′ =
∑S

i=0 αiTi(L̂)θi where
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Figure 4. Examples of our estimated silhouettes. The first and

third rows show the training images in STB and MHP datasets,

respectively. The second and the fourth rows show the estimated

silhouettes by our method.

Tk(x) is the k-th Chebyshev polynomial and L̂ =
2L/λmax − I is used to normalize the input features.

We adopt the scheme in [10, 15] to construct the hand

mesh in a coarse-to-fine manner. We use the multi-level

clustering algorithm for coarsening the graph, and then

store the graph at each level and the mapping between graph

nodes in every two consecutive levels. In forward inference,

the GCN first up-samples the node features according to the

stored mappings and graphs and then preforms the graph

convolutional operations.

Mesh Silhouette Constraint: In our model, without 3D

mesh ground truth, the model tends to collapse to any kind

of mesh as long as it is temporally consistent. To avoid this

issue, we introduce the mesh loss Lm to calculate the differ-

ence between the silhouette of the predicted hand mesh st
and the ground-truth silhouette s̄t at frame t. The silhouette

loss is defined by

Lm = ||st − s̄t||
2
F . (2)

To obtain s̄t, we use GrabCut [36] to estimate the hand

silhouettes from the training images. Some silhouettes es-

timated from training images are shown in Figure 4. The

silhouette of our predicted hand mesh st is obtained by us-

ing the neural rendering approach in [23].

3D Hand Pose Estimator: The proposed 3D pose estima-

tor directly infers 3D hand keypoints pt from the predicted

hand mesh mt. Taking the mesh as the input, we adopt a

network of two stacked GCNs, which has a similar struc-

ture to that used in 3D hand mesh estimator. We add a pool-

ing layer to each GCN to extract the pose features from the

mesh. Those pose features are then fed to two fully con-

nected layers to regress the 3D hand pose pt.

3.3. Temporal Consistency Loss

Due to the lack of 3D keypoint annotations, conventional

supervised learning schemes no longer work in model train-

ing. We propose a temporal consistency loss Lc to solve

this problem. Figure 2 shows the idea of our approach.

Given a video clip with n frames, we feed every two ad-

jacent frames {Ii, Ii+1}
t+n
i=t to PME module for hand mesh

and pose estimation, i.e., {pi, mi}
t+n
i=t . TASSN analyzes

the temporal information according to their relative input

orders. Thus, we can reverse the input order from {Ii, Ii+1}
to {Ii+1, Ii} to infer the pose and mesh in Ii from Ii+1.

With this reversed temporal measurement (RTM) technique,

we can infer the hand pose and mesh from the reversed tem-

poral order. We denote the estimated pose and mesh in the

reversed order as {p̃i, m̃i}
t+n
i=t . As shown in Figure 2, the

prediction results estimated by the PME module in both for-

ward and backward inference must be consistent with each

other since the same mesh and pose are estimated at any

frame. The temporal consistency loss on hand pose L
p
c and

mesh L
m
c can be computed by

L
p
c =

1

n

t+n∑

i=t

||pi − p̃i||
2
F , (3)

L
m
c =

1

n

t+n∑

i=t

||mi − m̃i||
2
F . (4)

The temporal consistency loss Lc is defined as the summa-

tion of Lm
c and L

p
c , i.e.,

Lc = λm
L

m
c + λp

L
p
c , (5)

where λm and λp are the weights of the corresponding

losses.

3.4. TASSN Training

Suppose we are given an unlabeled hand pose dataset

X for training, which contains M hand gesture videos,

X = {x(i)}Mi=1, where video x(i) = {I1, ..., IN} consists

of N frames. We divide each training video into several

video clips. Each training video clip v is with n frames,

i.e., v = {It, It+1, ..., It+n}. With the losses defined in

Eq. (1), Eq. (2), and Eq. (5), the objective for training the

proposed TASSN is

L = λsLm + λhLh +Lc, (6)

where λs and λh denote the weights of the loss Lm and the

loss Lh, respectively. The details of parameter setting are

given in the experiments.

4. Experiments Setting

4.1. Datasets for Evaluation

We evaluate our approach on two hand pose datasets,

Stereo Tracking Benchmark Dataset (STB) [46] and Multi-
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Figure 5. Some examples of the two hand pose datasets used for

evaluation. The first row shows examples of the STB dataset [46]

and the second row gives examples of the MHP dataset [17]. Both

datasets include real hand video sequences performed by different

subjects and have 3D hand keypoint annotations

view 3D Hand Pose dataset (MHP) [17]. These two datasets

include real hand video sequences performed by different

subjects and 3D hand keypoint annotations are provided for

the hand video sequences.

For the STB dataset, we adopt its SK subset for training

and evaluation. This subset contains 6 hand videos, each

of which has 1, 500 frames. Following the train-validation

split setting used in [15], we use the first hand video as the

validation set and the rest videos for training.

The MHP dataset includes 21 hand motion videos. Each

video provides hand color images and different kinds of an-

notations for each sample, including the bounding box and

the 2D and 3D location on the hand keypoints.

The following scheme of data pre-processing is applied

to both STB and MHP datasets. We crop the hand from

the original image by using the center of hand and the scale

of the hand. Thus, the center of the hand is located at the

center of the cropped images, and the cropped image covers

the whole hand. We then resize the cropped image to 256×
256. As mentioned in [5, 51], the STB and MHP datasets

use the palm center as the center of the hand. We use the

mechanism introduced by [5] to change the center of hand

from the palm center to the joint of wrist.

4.2. Metric

We follow the setting adopted in previous work [51, 15]

and use average End-Point-Error (EPE) and Area Under

the Curve (AUC) on the Percentage of Correct Keypoints

(PCK) between threshold 20 millimeter (mm) and 50mm

(AUC20-50) as the two metrics. Beside, we adopt AUC on

PCK between threshold 0mm and 50mm (AUC0-50) as the

third metrics for evaluating 3D hand pose estimation perfor-

mance. The measuring unit of EPE is millimeter (mm).

4.3. Implementation Details

We implement our TASSN by using PyTorch. In training

phase, we set the batch size to 24 and the initial learning

rate to 10−5. We train and evaluate our TASSN by using a

machine with four GeForce GTX 1080Ti GPUs.

Table 1. 3D hand pose estimation results on the STB and MHP

datasets. ↑: higher is better; ↓: lower is better; The measuring unit

of EPE is millimeter (mm).

AUC0-50 ↑ AUC20-50 ↑ EPE↓
STB Dataset

TASSN w/o Lc 0.541 0.735 24.2

TASSN w/o L
m
c 0.754 0.936 13.6

TASSN 0.773 0.972 11.3

MHP Dataset

TASSN w/o Lc 0.492 0.677 28.2

TASSN w/o L
m
c 0.665 0.870 17.5

TASSN 0.689 0.892 16.2

Since end-to-end training a network from scratch with

multiple modules is very difficult, we train our TASSN by

using a three-stage procedure. In the first stage, we train the

heatmap estimator with the loss Lh. In the second stage,

the GCN hand mesh estimator is initialized by using the

pre-trained model provided by [15]. We jointly fine-tune

heatmap and hand mesh estimator with the losses Lh and

Lm on the target dataset without 3D supervision. In the fi-

nal stage, we conduct an end-to-end training for our TASSN

and fine-tune the weights of each sub-module. The model

weights of heatmap, GCN hand mesh estimator, and 3D

pose estimators are fine-tuned end-to-end. In this stage, we

set λs = 0.1, λh = 1, and λp
c = λm

c = 10.

5. Experimental Results

5.1. Ablation Study of Temporal Consistency Losses

To study the impact of the proposed temporal consis-

tency constraint, we train and evaluate TASSN under the

following three settings: 1) TASSN is trained without us-

ing temporal consistency loss Lc, i.e., without any tempo-

ral consistency constraint; 2) TASSN is trained without us-

ing temporal consistency loss of hand mesh L
m
c , i.e., with

temporal 3D pose constraint but not 3D mesh constraint; 3)

TASSN is trained with all the proposed loss functions.

Table 1 shows the evaluation results on two 3D hand pose

estimation tasks under the three different settings described

above. The PCK curves corresponding to different settings

are shown in Figure 6.

We note the following two observations from the abla-

tion study. First, the temporal consistency constraint is crit-

ical for 3D pose estimation accuracy. This is clearly illus-

trated by comparing the results between settings 1 and 3.

As shown in Figure 6, TASSN trained with the tempo-

ral consistency loss Lc (red curve, setting 3) outperforms

the TASSN trained without using temporal consistency loss

(blue curve, setting 1) by a large margin on both the STB

and MHP datasets. The quantitative results in Table 1 show

that AUC0-50, AUC20−50 and EPE, are improved by 0.232,
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(a) (b)
Figure 6. Performance in PCK on the (a) STB and (b) MHP datasets. TCL and TMCL denote the losses Lc and L

m

c , respectively.

(a) (b)
Figure 7. Comparison with the state-of-the-arts. Results in AUC20-50 on (a) the STB dataset and (b) the MHP dataset.

0.237, 12.9 on the STB dataset, respectively. A similar trend

is also observed on the MHP dataset.

Second, imposing temporal mesh consistency con-

straints is beneficial for 3D pose estimation. This is illus-

trated by comparing the results between settings 2 and set-

ting 3. By using the temporal mesh consistency loss L
m
c ,

AUC0-50, AUC20-50, EPE improves by 0.024, 0.022, 1.3, re-

spectively, on the STB dataset (Table 1). Results on MHP

dataset share a same trend: Test AUCs are boosted by in-

cluding the temporal mesh consistency loss L
m
c . It points

out that the temporal mesh consistency loss, as an interme-

diate constraint, facilitates 3D hand pose estimator learning.

In addition to the quantitative analysis, Figure 8 and Fig-

ure 9 display some estimated 3D hand poses for visual com-

parison among these settings on the STB and MHP datasets,

respectively. We can see that TASSN, when trained with

temporal consistency loss, can produce 3D hand pose esti-

mations highly similar to the ground truth in diverse poses.

It is worth noting that our GCN model is initialized with

model [15] pretrained on the STB dataset. Our results on

STB demonstrate that the temporal consistency is critical

to enforce the 3D constraints, without which 3D predic-

tion accuracy drops substantially (Table 1). Moreover, our

method generalizes well on other target datasets, e.g., the

MHP dataset, where 3D annotations are not used in either

model initialization or training. The pose categories and

capturing environments are quite different between the two

datasets (Figure 5). The effectiveness of our method on the

MHP dataset can only be attributed to the temporal consis-

tency constraint (Figure 6).

5.2. Comparison with the Stateoftheart Methods

The state-of-the-art methods on both STB and MHP

datasets are trained with the 3D annotations, while our

method is not. Therefore, we take these methods as the

upper bound of our method, and evaluate the performance

gaps between these methods and ours.

For the STB dataset, we select six the-state-of-the-art

methods for comparison. The selected methods include

PSO [3], ICPPSO [8], CHPR [46], the method by Iqbal et

al. [20], Cai et al. [5] and the approach by Zimmermann

and Brox [51]. For the MHP dataset, we select two the-

state-of-the-art methods for comparison including the ap-

proach by Cai et al. [5] and the method by Chen et al. [6].
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Figure 8. Comparison among three different settings on the STB dataset. Columns 1 and 6 are RGB images. Columns 2 and 7 are the

result by TASSN trained without temporal consistency loss. Columns 3 and 8 are the result by TASSN trained without temporal mesh

consistency loss. Columns 4 and 9 are the result by TASSN. Columns 5 and 10 are the ground truth.

Figure 9. Comparison among three different settings on the MHP dataset. Columns 1 and 6 are RGB images. Columns 2 and 7 are the

result by TASSN trained without temporal consistency loss. Columns 3 and 8 are the result by TASSN trained without temporal mesh

consistency loss. Columns 4 and 9 are the result by TASSN. Columns 5 and 10 are the ground truth.

Figure 7(a) and Figure 7(b) show the comparison results on

STB and MHP datasets, respectively. As expected, TASSN

has a performance gap with current state-of-the-art methods

on both datasets due to the lack of 3D annotation. However,

the performance gaps are relative small. In STB dataset, as

shown in Figure 7(a), our methods could even beat some of

the methods trained with full 3D annotations.

All together, these results illustrate that 3D pose estima-

tor can be trained without using 3D annotations. Estimat-

ing hand pose and mesh from single frames is challenging

due to the ambiguities caused by the missing depth infor-

mation and high flexibility of joints. These challenges can

be partly mitigated by utilizing information from video, in

which pose and the mesh are highly constrained by the ad-

jacent frames. Temporal information offers an alternative

way of enforcing constraints on 3D models for pose and

mesh estimation.

6. Conclusions

We propose a video-based hand pose estimation model,

temporal-aware self-supervised network (TASSN), to learn

and infer 3D hand pose and mesh from RGB videos. By

leveraging temporal consistency between forward and re-

verse measurements, TASSN can be trained through self-

supervised learning without explicit 3D annotations. The

experimental results show that TASSN achieves reasonably

good results with performance comparable to state-of-the-

art models trained with 3D ground truth.

The temporal consistency constraint proposed here of-

fers a convenient and yet effective mechanism for training

3D pose prediction models. Although we illustrate the ef-

ficacy of the model without using 3D annotations, it can

be used in conjunction with direct supervision with a small

number of 3D labeled samples to improve accuracy.
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