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Abstract

Real-time understanding in video is crucial in various

AI applications such as autonomous driving. This work

presents a fast single-shot segmentation strategy for video

scene understanding. The proposed net, called S3-Net,

quickly locates and segments target sub-scenes, meanwhile

extracts structured time-series semantic features as inputs

to an LSTM-based spatio-temporal model. Utilizing ten-

sorization and quantization techniques, S3-Net is intended

to be lightweight for edge computing. Experiments using

CityScapes, UCF11, HMDB51 and MOMENTS datasets

demonstrate that the proposed S3-Net achieves an accuracy

improvement of 8.1% versus the 3D-CNN based approach

on UCF11, a storage reduction of 6.9× and an inference

speed of 22.8 FPS on CityScapes with a GTX1080Ti GPU.

1. Introduction

Visual environment perception is critical for autonomous

vehicles, say, in the advanced driver assistance system

(ADAS), which requires real-time segmentation and un-

derstanding of driving scenes such as free-space areas and

surrounding behaviors, etc. Compared to the solutions

with LIDARs, RADARs, etc. [3, 16], the computer vision-

based approaches with deep learning can adequately ex-

tract scene information [7, 2]. Nevertheless, these pixel-

wise approaches are designed to segment all pixels in a

frame, which incurs unnecessary computational complexity

and low processing speed. Proposal-wise methods [15, 13]

avoid handling all pixels by learning only the proposed ob-

ject candidates, but still require multiple steps of compu-

tationally expensive candidate proposal methods. A large

amount of segmentation time is wasted on the unadopted

candidates or overlapped areas of candidates. Moreover,

most existing methods do not consider the temporal rela-

tionship of objects (viz., activities) in video stream, which

is practically essential for autonomous emergency-braking,

forward-collision avoidance and behavior-anticipation sys-

tems. As there are numerous possible activities of pedestri-

ans and vehicles in the real driving environment, it is chal-

lenging to perform fast video scene understanding using ex-

isting segmentation networks.

To overcome these hurdles, we design S3-Net (a scene

understanding network by Single-Shot Segmentation) for

real-time video analysis in autonomous driving. The con-

tributions come from fourfold:

• We devise a single-shot segmentation strategy to

quickly locate and segment the target sub-scenes (op-

timized object areas without background), instead of

segmenting all pixels or every object candidate in a

frame.

• We build an LSTM-based spatio-temporal model

based on the structured time-series semantic features

extracted from the former segmentation model for ac-

tivity recognition in video stream.

• We realize both object segmentation and activity

recognition, for the first time, in a single lightweight

framework.

• We develop a structured tensorization of the LSTM-

based spatio-temporal model, which results in accu-

racy improvement even under deep compression and

hence can be used on terminal/edge devices.

Experimental results on CityScapes [9], UCF11 [21], H-

MDB51 [18] and MOMENTS [21] show that the proposed

method achieves a remarkable accuracy improvement of

8.1% over the 3D-CNN based approach on UCF11, a stor-

age reduction of 6.9× and an inference speed of 22.8 FPS

on CityScapes with a GTX1080Ti GPU.

In the following, Section 2 reviews the related work-

s. Section 3 presents the proposed S3-Net. Section 4 in-

troduces the further improvements of S3-Net by structured
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Figure 1. S3-Net: a single-shot segmentation network for fast video scene understanding towards autonomous driving.

tensorization and trained quantization. Section 5 provides

the experimental results on several large-scale datasets, fol-

lowed by conclusion in Section 6 concludes the paper.

2. Related Work

Modern researches on segmentation mainly fall into 3
categories.

Pixel-wise Existing pixel-wise approaches for segmenta-

tion are designed to predict a category label for each pixel,

which are usually realized by fully convolutional network-

s (FCNs) [2].Various improvements like dilated convolu-

tions [33] are further developed for enhanced performance.

These methods are, however, limited with slow runtime and

relatively low accuracy.

Proposal-wise Driven by the advancement of object detec-

tion networks, recent works perform instance segmentation

with R-CNN to first propose object candidates and then seg-

ment all of them. The work in [10] utilizes the shared con-

volutional features among object candidates in segmenta-

tion layers. Multi-task cascaded network [11] is develope-

d with an instance-aware semantic segmentation on object

candidates. Mask R-CNN [15] is developed as the extension

of Faster R-CNN with a mask branch. All these approaches

require multiple steps that first generates object candidates,

then segments all of them, and at last detects and recog-

nizes the correct ones. Apparently, such object proposal

methods waste unnecessary computation on the unadopted

candidates and overlapped areas of candidates.

Single-stage Lately, there are attempts to produce a single-

stage segmentation. FCIS [19] assembles the position-

sensitive score maps within the ROI to directly predict seg-

mentation results. YOLACT [4] tries to combine the proto-

type masks and predicted coefficients and then crops with

a segmented bounding box. PolarMask [32] introduces the

polar representation to formulate pixel-wise segmentation

as a distance regression problem. SOLO [31] divides net-

work into two branches to generate instance segmentation

with predicted object locations. However, they still require

significant amounts of pre- or post-processing before or af-

ter localization, and cannot achieve a real-time speed.

Moreover, in the real driving environment, vehicles re-

quire precise scene understanding not only segmentation.

In contrast to all aforementioned approaches, we propose

the practical scene understanding network S3-Net for au-

tonomous driving. S3-Net adopts a single-shot segmenta-

tion model to quickly locate and segment the target sub-

scenes; and an LSTM-based spatio-temporal model to pre-

cisely recognize activities from the structured time-series

semantic features. With elaborated tensorization and quan-

tization algorithms, the proposed framework provides a fast

and lightweight scene understanding for vehicle-mounted

edge/terminal devices.

3. S3-Net

This section elaborates the proposed scene understand-

ing network S3-Net, as shown in Fig. 1. It leverages object

segmentation and activity recognition, for the first time, in a

single lightweight framework. Our design targets 3 criteria,

namely, real-time speed, high accuracy and small size.

3.1. Single-shot Segmentation

To precisely detect the free-space areas and determine

the following moves, the frames in autonomous driving are

usually high-resolution (e.g., 2048×1024), which contain a

huge number of pixels. We divide these pixels into 2 parts:

1) Target object areas, which are important but practical-

ly minority in frames. 2) Background areas, which are the

majority in most situations. This implies significant pro-

cessing time can be saved if target areas in a frame can be

quickly and precisely located. With such analysis, we pro-

pose the single-shot segmentation strategy. Instead of han-

dling all pixels (e.g., SegNet [2]) or every object candidate

(e.g., Mask R-CNN [15]) in a frame, the single-shot seg-

mentation focuses on only segmenting the target sub-scenes

of optimized object areas without background, as shown in

Fig. 2.

In the proposed single-shot segmentation, we regard the

sub-scene detection as a single-shot regression problem and

directly learn sub-scene coordinates and class probabilities

from raw features. Assuming that Ft ∈ R
l1×l2 are the
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Figure 2. Comparison between the proposal-wise segmentation and the proposed single-shot segmentation.

video frames and St ∈ R
l1×l2 are the target sub-scenes

of optimized object areas, where subscript t denotes the

time sequence and l represents the mode size of dimension.

First, the sub-scene detector is employed to locate target

sub-scenes:
St = detc(Ft), (1)

using detc operation to represent the sub-scene detection

processing. Note that we set the number of sub-scenes in a

frame to be lower than a certain value (in our experiments

is 25), and we skip the frame if no sub-scene detected. Af-

ter obtaining the target sub-scenes, we apply the sub-scene

segmentor with fewer layers than the proposal-wise meth-

ods to deliver even higher accuracy. Furthermore, as seen

in Fig. 2, the semantic features are extracted from the last

convolutional layer of single-shot segmentation model for

activity recognition, which will be discussed next.

3.2. Spatio-temporal Model

In practice, we construct a spatio-temporal model based

on an LSTM network using the structured time-series se-

mantic features aggregated from each frame. Suppose that

X t ∈ R
l1×l2×...×ld (here dimensions l1, l2, etc. are gener-

ic and not to be confused with those in Ft and St) are

the time-series semantic features structured into the tensor

format, where d is the dimensionality of the tensor. The

single-shot segmentation model uses several convolutional

layers to learn structured time-series semantic features from

frames:
X t = extr(St), (2)

the extr operation represents the corresponding extraction

method in the proposed feature extractor. Specifically, the

X t are structured as an s× f × c tensor, where s is number

of sub-scenes for each frame, f denotes the learned fea-

tures for each sub-scene, and c represents confidence scores

for those sub-scenes. Then the LSTM cells (consisting of

fully-connected layers) in the LSTM network take X t as

inputs, instead of direct video frames Ft, to learn the spatio-

temporal information. Each LSTM cell keeps track of an

internal state that represents its memory and learns to up-

date its state over time based on the current input and past

states, as in the following:

Et = σ(WeX t + UeHt−1 + Be),Zt = σ(WzX t + UzHt−1 + Bz),

Dt = σ(WdX t + UdHt−1 + Bd), C̃t = tanh(WcX t + UcHt−1 + Bc),

Ct = Et ⊙ Ct−1 + Zt ⊙ C̃t,Ht = Dt ⊙ tanh(Ct), (3)

where ⊙ denotes the element-wise product, σ(◦) represents

the sigmoid function and tanh(◦) represents the hyperbolic

tangent function. Ht−1 and Ct−1 are the previous hidden

state and previous update factor, Ht and Ct are the curren-

t hidden state and current update factor, respectively. The

weight matrices W and U weigh the input X t and the pre-

vious hidden state Ht−1 to update factor C̃t and three sig-

moid gates, namely, Et, Zt and Dt. Note that all these

data structures have been tensorized and quantized, which

is further discussed in Section 4.

For each frame in autonomous driving, the spatio-

temporal model calculates its information by combining

previous and current features. Therefore, all temporal infor-

mation in video stream can be captured from the beginning

till the current frame, and then activities can be recognized.

Note that we make use of structured time-series semantic

features instead of the direct video frames as inputs to the

LSTM, as shown in Fig. 2. This way, the LSTM is fed with

structured and distilled sub-scene information yielding high

accuracy and performance.

3.3. Video Scene Understanding

Based on the proposed single-shot segmentation and

spatio-temporal models, S3-Net can run a fast object seg-

mentation and activity recognition, whose workflow is

shown in Fig. 3. First, the raw video frames are fed into the
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Figure 3. Workflow of S3-Net based scene understanding: object segmentation and activity recognition.

single-shot segmentation model, the object segmentation re-

sults and semantic features of each frame are stacked. Then,

the structured time-series semantic features are fed into the

spatio-temporal LSTM model. Finally, after processing the

deeply learned features, activities are recognized. As a re-

sult, the proposed S3-Net represents a highly-optimized ap-

proach to autonomous driving.

4. Other Improvements

To deal with high-dimensional video-scale inputs, the

weight matrix mapping from the input to the hidden layer

becomes extremely large. To address this issue, we present

the structured tensorization and trained quantization algo-

rithms during the training of the S3-Net as follows.

4.1. Structured Tensorization

A tensor is a d-dimensional generalization of a vector or

matrix, denoted by calligraphic letters X ∈ R
l1×l2×...×ld

where X (h1, h2, . . . , hd) is an element specified by the in-

dices h1, h2, . . . , hd. One can tensorize a vector x or matrix

X into a high-dimensional tensor X using the reshape op-

eration, as depicted in Fig. 4. The total number of elements

is l1l2 · · · ld which grows exponentially as d increases. In

practice, tensor decomposition is used to find a low-rank

approximation that expresses the original tensor by a num-

ber of small tensor factors. This often reduces the compu-

tational complexity from exponential to only linear, thereby

eluding the curse of dimensionality.

In S3-Net, the initial inputs of spatio-temporal model

are time-series semantic features, which are already struc-

tured as an s × f × c tensor. In practice, we adopt a struc-

tured tensorization strategy to advance S3-Net. Given a d-

dimensional feature tensor X , the tensorization reads

X (h1, h2, . . . , hd) =

r1,...,rd−1
∑

α1,...,αd−1

G1(1, h1, α1)

G2(α1, h2, α2) . . .Gd(αd−1, hd, 1),

(4)

where Gk ∈ R
rk−1×lk×rk is the tensor core and rk is the

tensor train rank, αk is the summation index ranging from

1 to rk. Using the notation Gk(hk) ∈ R
rk−1×rk (a matrix

slice from the 3-dimensional tensor Gk), (4) can be written

2-d matrix1-d vector
l2 l2

3-d tensor

reshape

reshape

l2 l2

l3

l1l1

l3
l2

l1

l1

l2

l2

l2

l2

l3

Figure 4. Reshaping a vector into a matrix and then into a 3-

dimensional tensor.

=l3

l2

l1

l2

r2

r1
r2

1

l3l1

1
r1

Figure 5. Tensor decomposition of a 3-dimensional tensor.

compactly as

X (h1, h2, . . . , hd) = G1(h1)G2(h2) . . .Gd(hd). (5)

The decomposition of a 3-dimensional tensor is intu-

itively shown in Fig. 5. Since each integer lk in (5) can

be further decomposed as lk = nk · mk, each tensor core

Gk can be reformed with G
t

k ∈ R
nk×mk×rk−1×rk , and

G
t

k(jk, ik) ∈ R
rk−1×rk . Therefore, the decomposition for

the tensor X ∈ R
(n1×m1)×(n2×m2)×...×(nd×md) can be re-

formulated as:

X ((j1, i1), (j2, i2), . . . , (jd, id)) = G
t
1
(j1, i1)G

t
2
(j2, i2) . . .G

t
d(jd, id).

(6)

Such double-index trick is then used to tensorize the LSTM-

based spatio-temporal model in S3-Net, as shown in Fig. 6.

Specifically, the most costly computation in LSTM is the

large-scale matrix-vector multiplication generically repre-

sented as y = Wx + b where W ∈ R
N×M is the weight

matrix, x ∈ R
M is the feature vector, b ∈ R

N is the

bias vector. To approximate Wx with much fewer param-

eters, we first reshape W ∈ R
N×M into a tensor W ∈

R
(n1×n2×···×nd)×(m1×m2×···×md), where N = Πd

k=1nk

and M = Πd
k=1mk. Following (6), W(h1, h2 · · · , hd) can
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be rewritten as Gt
1(j1, i1)G

t
2(j2, i2) . . .G

t
d(jd, id). Similar-

ly, we can reshape x ∈ R
M , b ∈ R

N into d-dimensional

tensors X ∈ R
m1×m2×...×md , B ∈ R

n1×n2×...×nd . As a

result, the output y ∈ R
N also becomes a d-dimensional

tensor Y ∈ R
n1×n2×...×nd . Therefore, the matrix-vector

multiplication can be expressed in the tensor form with usu-

ally low-rank cores

Y(j1, j2, . . . ,jd) =

m1
∑

i1=1

m2
∑

i2=1

. . .

md
∑

id=1

[G
t
1
(j1, i1)G

t
2
(j2, i2) . . .

G
t
d(jd, id)X (i1, i2, . . . , id)] + B(j1, j2, . . . , jd).

(7)

The settings of mk and nk in our structured tensorization

are determined by 2 criteria: 1) Make the tensorization-

based parameters uniformly small; 2) Keep the sizes of di-

mensions not far from the already-structured inputs (in our

experiments we structure 25×425×8 into 25×25×17×8).

This way, accuracy improvement can be maintained even

under deep compression, which will be reported in Sec-

tion 5.

4.2. Trained Quantization

The network processing with full-precision parameter-

s requires unnecessarily large software and hardware re-

sources. Here we present a quantization strategy on the

whole S3-Net framework for further improvement. Note

that we apply the quantized constraints during both network

training and inference, called the trained quantization. S-

ince the main parameters in S3-Net are weights and fea-

tures, the trained quantization with 8-bit weights and fea-

tures can result in high compression and efficiency. Note

that such particular choice of 8-bit is determined by several

S3-Net realizations from 4-bit to 10-bit. Assuming wk is

the full-precision weight entry, it can be quantized into its

8-bit counterpart w
q
k as:

w
q

k
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wk
|wk|

, 0 < |wk| ≤
1

27
,

floor(27 × wk),
1

27
< |wk| < 1,

(27 − 1)
wk
|wk|

, |wk| ≥ 1,

0, |wk| = 0,

(8)

where the function floor takes the smaller nearest integer.

We also enforce 8-bit features by quantizing a real feature

element xk into its 8-bit x
q
k ∈ [0, 1]:

x
q

k
=

1

28
×

{

floor(28 × xk), 0 ≤ xk < 1,

28 − 1, xk ≥ 1.
(9)

Note that the batch normalization and max-pooling layers

are also quantized into 8-bit similarly.

Based on proposed structured tensorization and trained

quantization, we tensorize all matrix-vector products in the

S3-Net similarly to (7) and quantize all tensor core entries

(i.e. those entries in G1, · · · ,Gd) into 8-bit. Due to these

improvements, the computational complexity of S3-Net re-

duces from O(nd
m) to O(dr2maxnm), where rmax is the

maximum rank of cores Gk, and nm is the maximum model

size nk ·mk of tensor weights W .

5. Experiments

The advantages of the S3-Net are demonstrated by com-

parisons with state-of-the-art results. Our experimental

setup employs Tensorflow for coding and NVIDIA GTX-

1080Ti for hardware realization. We validate S3-Net

by evaluations on 1 large-scale segmentation dataset: C-

ityScapes [9] and 3 challenging activity recognition dataset-

s: UCF11 [21], HMDB51 [18] and MOMENTS [25].

5.1. Evaluation on Object Segmentation

To verify the performance of S3-Net on video object seg-

mentation, we apply the CityScapes for comparison. This

large-scale dataset contains high-quality pixel-level annota-

tions of 5000 images of 2048 × 1024 resolution collected

in street scenes from 50 different cities. Following the e-

valuation protocol for the single-shot segmentation and fur-

ther activity recognition, we select 8 object labels: person,

rider, car, truck, bus, train, motorcycle, bicycle (be-

longing to 2 super categories: human and vehicle), which

have the possibility of performing an activity, and all oth-

er labels are considered as background. Note that the sub-

scene detector has been pre-trained on COCO [20] with

these 8 categories. The training, validation, and test sets

contain 2975, 500 and 1525 images, respectively.
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Figure 7. Sample visual results of S3-Net on CityScapes.

Approach AP AP50 person rider car truck bus train motorcycle bicycle

Pixel-level-Encoding [27] 8.9 21.1 - - - - - - - -

InstanceCut [17] 13.0 27.9 10.0 8.0 23.7 14.0 19.5 15.2 9.3 4.7

SGN [22] 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4

PolygonRNN++ [1] 27.6 44.6 - - - - - - - -

SegNet [2] 29.5 55.6 29.9 23.4 43.4 29.8 41.0 33.3 18.7 16.7

SSAP [12] 32.7 51.8 35.4 25.5 55.9 33.2 43.9 31.9 19.5 16.2

Mask R-CNN [15] 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0

Mask R-CNN[COCO] [15] 32.0 58.1 34.8 27.0 49.1 30.1 40.9 30.9 24.1 18.7

PA-Net [23] 31.8 57.1 36.8 30.4 54.8 27.0 36.3 25.5 22.6 20.8

GMIS [24] 27.3 45.6 31.5 25.2 42.3 21.8 37.2 28.9 18.8 12.8

Box2Pix [28] 13.1 27.2 - - - - - - - -

S3-Net 32.3 57.2 35.8 27.9 51.3 29.7 39.5 29.1 24.3 20.4

“-” represents not reported or no open source for evaluation.

Table 1. Accuracy comparison with state-of-the-arts on CityScapes.

The segmentation accuracy is measured in terms of

the standard average precision metrics: AP and AP50,

where AP50 represents the score over intersection-over-

union (IoU) threshold 0.5. Moreover, the individual AP

scores for every class are further evaluated. Some state-of-

the-art results on CityScapes are chosen for accuracy com-

parison, as listed in Table 1. It can be seen in Table 1 that

S3-Net outperforms various approaches and is only slightly

lower than SSAP [12]. Specifically, the AP of S3-Net reach-

es 32.3, which is 0.3 higher than the Mask R-CNN[COCO]

[15] and 0.5 higher than the PA-Net [23]. Sample visual

results on CityScapes are presented in Fig. 7. It is found

that S3-Net can precisely locate and segment the target sub-

scenes, even for crowds in the distance.

5.2. Evaluation on Activity Recognition

For activity recognition, we use UCF11 and HMDB51

video datasets for accuracy comparison. The UCF11 con-

tains 1600 video clips, falling into 11 activity classes that

summarize the human activities visible in each clip such as

biking, diving or walking. We resize the RGB frames into

160 × 120 at the FPS of 24 and sample all frames of each

Approach UCF11 HMDB51

Bag-of-words approach [21] 71.2% 59.4%

Two-stream CNN [26] 73.3% 66.4%

Original LSTM [14] 76.1% 69.6%

CNN+RNN [29] 83.7% 67.6%

3D-CNN [6] 89.2% 78.6%

Tensorized LSTM [8] 93.2% 79.5%

Temporal Segment Networks [30] 94.2% 69.4%

Two-Stream I3D [5] 97.9% 80.2%

S3-Net 98.3% 80.8%

Table 2. The activity recognition accuracy (top-1) comparison on

UCF11 and HMDB51 datasets.

video clip as the input data. The HMDB51 provides 3 train-

test splits each consisting of 5100 videos, falling into 51

classes of human activities like Drink, Jump or Throw.

The training set contains 3570 videos (70 per class) and the

test set has 1530 videos (30 per class). Each video has an

FPS of 30. Table 2 shows the comparison between S3-Net

with state-of-the-art results on the UCF11 and HMDB51

datasets. It can be seen that S3-Net significantly outper-

forms other approaches. Specifically, on UCF11 dataset,

the top-1 accuracy of S3-Net reaches 98.3%, 8.1% higher
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Figure 8. Sample visual results of S3-Net based scene understanding on MOMENTS.

Task Approach Storage(MB) FPS(CityScapes) FPS(MOMENTS)

Object segmentation

SegNet [2] 112 2.4 15.7

SSAP [12] - 3.4 19.2

Mask R-CNN [15] 245.6 6.9 41.5

PA-Net [23] 245.6 5.3 34.7

Box2Pix [28] - 10.9 -

Activity recognition

Two-stream CNN [26] 243.2 3.3 20.1

Original LSTM [14] 616.3 5.9 38.0

CNN+RNN [29] 720.5 - 11.5

3D-CNN [6] 395.7 8.2 48.3

Object segmentation + Activity recognition S3-Net 89.2 22.8 137.3

Table 3. The model size and speed comparisons on CityScapes and MOMENTS.

than the 3D-CNN [6] and 4.1% higher than the Temporal

Segment Networks [30]. The quantitative comparison re-

sults demonstrate the unique benefit of the proposed S3-Net

arises from the use of structured tensorization, namely, ac-

curacy improvement even under deep compression.

We further report experimental results on the large-scale

video dataset MOMENTS that contains one million labeled

3-second video clips involving people, animals, objects and

natural phenomena that capture the gist of a dynamic scene.

Each clip is assigned with 339 activity classes such as

walking, playing or jogging. Based on the majority of the

clips, we resize every frame to a standard size of 340× 256
at an FPS of 25. After training, S3-Net runs a real-time

video scene understanding on MOMENTS. Sample visu-

al results of S3-Net on MOMENTS are shown in Fig. 8.

We observe that all objects in these frames can be located

and segmented, then activities in video stream can be rec-

ognized precisely.

5.3. Performance Analysis

Besides the impressive functions and accuracy of the

proposed framework, the compactness and speed are al-

so outstanding compared to existing approaches. Table 3

shows the model size and speed comparisons among differ-

ent baselines. It can be seen that S3-Net achieves an ex-

cellent compression ratio, namely, 6.9× and 2.9× storage

reduction when compared to the original LSTM [14] and

Mask R-CNN [15], respectively. The whole S3-Net cost-

s only 89.2MB to perform both object segmentation and

activity recognition with good accuracy. Moreover, S3-

Net runs at 22.8 FPS on the high-resolution CityScapes,

while 137.3 FPS on MOMENTS, which is considered “very

fast” for both object segmentation and activity recognition

tasks. Since the model size is significantly reduced and the

speed is highly accelerated, the proposed S3-Net provides a

turnkey solution for fast and lightweight video scene under-

standing, say, in autonomous driving.
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Scale Depth AP AP50 Acc(%) FPS

480

9 24.6 48.7 89.8 33.1

12 28.2 51.5 95.1 31.3

15 28.5 52.1 95.6 28.8

800

9 29.4 53.5 95.8 26.5

12 32.3 57.2 98.3 22.8

15 32.8 57.9 98.5 19.6

Table 4. Sub-scene Detector: Larger and deeper layers bring high-

er accuracy, while too large or deep layers highly slow down the

speed.

Backbone AP AP50 FPS

ResNet-101-FPN 34.9 59.5 13.4

ResNet-50-FPN 32.3 57.2 22.8

Table 5. Backbone Architecture: Better backbones bring expected

benefits, but not all frameworks rely on the deeper networks.

COCO AP AP50 Acc(%)

with 32.3 57.2 98.3

without 27.9 53.6 92.0

Table 6. Pretrained COCO Model: Pretrained model on COCO

remarkably improves accuracy.

5.4. Ablation Study

We run a series of ablations to further analyze S3-Net.

All experiments are valuated on CityScapes and UCF11

with the same software-hardware environments. Note that

in all tables, we apply AP and AP50 as the object segmenta-

tion accuracy on CityScapes and Acc as the activity recog-

nition accuracy on UCF11.

Sub-scene Detector The first concern arises from the be-

ginning of the network. As the sub-scene detector learn-

s important coordinates for the subsequent parts, the input

frame scale and depth should be investigated. In Table 4, we

compare different detectors’ scales and depths. At a frame

scale of 800, changing the head depth from 9 to 12 pro-

vides 2.9 AP and 2.5 Acc gains while 12 to 15 provides 0.5
AP and 0.2 Acc gains and becomes stable. Therefore, we

conclude that 12 is the best choice for layer depth of the

sub-scene detector. Next, setting depth to be 12, changing

input frame scale from 800 to 480 provides 8.5 FPS gains,

and causes 4.1 AP and 3.2 Acc losses. In practice, we apply

S3-Net-800 as the default, and enable S3-Net-480 when the

frame sizes are small, say, in MOMENTS.

Backbone Architecture For the backbone architecture of

the single-shot segmentation model, we evaluate S3-Net

with 2 different backbones: ResNet-50-FPN and ResNet-

101-FPN, as shown in Table 5. The results show that re-

placing ResNet-101-FPN to ResNet-50-FPN provides 9.4
FPS gains, and causes 2.6 AP losses. We stress that S3-Net

can get competitive accuracy with the lightweight backbone

when compared with larger-scale networks. Subsequently,

we employ ResNet-50-FPN as the default backbone due to

its compactness.

COCO Pretrained Model Here we evaluate the impacts

Inputs Acc(%)

Raw frame data 79.7

Non-structured semantic features 92.4

Structured semantic features 98.3

Table 7. Structured Time-series Semantic Features: Optimized in-

puts of the spatio-temporal model bring expected benefits.

Structured tensorization × × � �

Trained quantization × � × �

AP 32.6 32.3 32.6 32.3

Acc(%) 76.1 75.9 98.4 98.3

Storage(MB) 972.5 243.1 356.8 89.2

FPS 2.8 3.1 22.1 22.8

Table 8. Tensorization and Quantization: Unique benefit of accu-

racy improvement under deep compression.

of the COCO pretrained model used in training. Table 6

reports the accuracy with/without COCO pretrained model.

We have the observation that the COCO pretrained model

provides a 4.3 AP and 6.3 Acc improvement on CityScapes

and UCF11.

Structured Time-series Semantic Features The structured

time-series semantic features plays an important role in the

proposed spatio-temporal model for activity recognition. In

Table 7, we report the Acc scores with 3 different inputs

to the spatio-temporal model: 1) raw frame data, 2) non-

structured semantic features and 3) structured semantic fea-

tures. As we can see, the proposed method gets the highest

Acc among all schemes, which demonstrate its importance.

Tensorization and Quantization Finally, in Table 8, we

present the ablation study on tensorization and quan-

tization by testing different training strategies, namely,

with/without quantization/tensorization. The series of e-

valuations demonstrate the unique benefit arises from the

structured tensorization and trained quantization, namely,

accuracy improvement even under deep compression.

6. Conclusion

This paper has proposed the S3-Net for fast video scene

understanding. A single-shot segmentation method is pro-

posed to quickly locate and segment the target sub-scenes,

instead of handling all pixels or every object candidate in

the frame. Then, an LSTM-based spatio-temporal model

is built from highly structured time-series semantic features

for activity recognition. Moreover, the structured tensoriza-

tion and trained quantization are utilized to significantly ad-

vance the S3-Net, making it friendly for edge computing.

Using the benchmarks of CityScapes, UCF11, HMDB51

and MOMENTS, S3-Net achieves a remarkable accuracy

improvement of 8.1%, a storage reduction of 6.9× and an

inference speed of 22.8 FPS, thereby rendering it a strong

candidate for real-time video scene understanding in au-

tonomous driving.
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