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Abstract

This paper proposes to use the three vectors in a rotation

matrix as the representation in head pose estimation and

develops a new neural network based on the characteris-

tic of such representation. We address two potential issues

existed in current head pose estimation works: 1. Public

datasets for head pose estimation use either Euler angles

or quaternions to annotate data samples. However, both of

these annotations have the issue of discontinuity and thus

could result in some performance issues in neural network

training. 2. Most research works report Mean Absolute

Error (MAE) of Euler angles as the measurement of perfor-

mance. We show that MAE may not reflect the actual behav-

ior especially for the cases of profile views. To solve these

two problems, we propose a new annotation method which

uses three vectors to describe head poses and a new mea-

surement Mean Absolute Error of Vectors (MAEV) to assess

the performance. We also train a new neural network to

predict the three vectors with the constraints of orthogonal-

ity. Our proposed method achieves state-of-the-art results

on both AFLW2000 and BIWI datasets. Experiments show

our vector-based annotation method can effectively reduce

prediction errors for large pose angles.

1. Introduction

Single image head pose estimation is an important task in

computer vision which has drawn a lot of research attention

in recent years. So far it mainly relies on facial landmark de-

tection [19, 13, 29, 5]. These approaches show robustness in

dealing with scenarios where occlusion may occur by estab-

lishing a 2D-3D correspondence matching between images

and 3D face models. However, they still have notable limi-

tations when it is difficult to extract key feature points from

large poses such as profile views. To solve this issue, a large

array of research has been directed to employ Convolutional

∗The two first authors made equal contributions.

Figure 1: Data samples from 300W-LP dataset and their

Euler angles, converted quaternions and three-vector anno-

tations. From top to bottom, three vectors are left (red),

down (green) and front (blue) vectors respectively.

Neural Network (CNN) based methods to predict head pose

directly from a single image. Several public benchmark

datasets [18, 31, 37, 8] have been contributed in this area

for the purpose of validating the effectiveness of these ap-

proaches. Among these approaches, [23, 10, 32, 22] try to

address the problem by direct regression of either three Eu-

ler angles or quaternions from images using CNN models.

However, these studies use either Euler angles or quater-

nions as their 3D rotation representations. Both Euler an-

gles and quaternions have limitations when they are used to

represent rotations. For example, when using Euler angles,

the rotation order must be defined in advance. Specifically,

when two rotating axes become parallel, one degree of free-

dom will be lost. This causes the ambiguity problem known

as gimbal lock [6]. A quaternion (q ∈ R
4, ||q||2 = 1)

has the antipodal problem which results in q and −q corre-

sponding to the same rotation [26]. In addition, the results

from [36] show that any representation of rotation with four

or fewer dimensions is discontinuous. These findings indi-

cate that it is inappropriate to use Euler angles or quater-

nions to annotate head poses.

This issue can be illustrated by several samples. Fig. 1

shows three images with similar large pose angles from the
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300W-LP dataset. However, neither the Euler angle nor

quaternion annotations between any two of these show sim-

ilarity. This leads to two major problems:

(1) It makes training a neural network difficult since the

network learns to regress different outputs from the same

visual patterns.

(2) It makes mean absolute error (MAE) of Euler angles

a problematic measurement of performance. If the second

image is included in the training samples while the first im-

age is the testing case, the network’s Euler angle predic-

tion will be close to [−19.9◦,−87.4◦, 8.0◦] since it learns

an image-to-pose relationship from the second one. How-

ever, if we compare this prediction with the ground truth

[−80.8◦,−88.9◦, 78.0◦], the MAE will give the result of

44.2◦. This is a large error which cannot reflect the actual

model performance.

These issues can be solved by the introduction of three

pose vectors. As shown in Fig. 2, head pose can be depicted

by a left vector (red), a down vector (green) and a front

vector (blue). Using vectors to represent head pose has the

following advantages:

(1) It makes the annotations consistent, as we show in

the third row in Fig. 1. The vector representations of three

images are close to each other.

(2) Instead of using MAE of Euler angles, we put for-

ward a new measurement which calculates MAE of an-

gles between the vectors (MAEV) that our model predicts

and corresponding ground truth. Continue the example

above, if the network learns to predict vectors, the MAEV

is (2.663◦ + 1.504◦ + 2.579◦)/3 = 2.249◦. This is an ac-

curate measure of performance.

Specifically, our work contributes at:

(1) We illustrate that Euler angle annotation has issues of

discontinuity and that Euler angle based MAE cannot fully

measure the actual performance especially for face profile

image.

(2) We instead present MAEV metric that measures an-

gles between vectors, which is a more reliable indicator for

the evaluation of pose estimation results.

(3) Based on the vector representation and MAEV, we

proposed a deep network pipeline with vectors’ orthogonal

constraints. To our knowledge, this is the first attempt to

formulate head pose estimation problem with vector repre-

sentation meanwhile consider the vectors’ orthogonal con-

straints in the deep network pipeline.

2. Related Work

2.1. LandmarkBased Approaches

These approaches typically detect key landmarks from

images first and then estimate the poses by solving the cor-

respondences between 2d and 3d feature points. [3] pro-

poses an algorithm called Cascaded Pose Regression (CPR)

Figure 2: Sample results of head pose estimation by using

proposed method.

which progressively refines a rough initial guess by differ-

ent regressors in each refinement. [2] learns a vectorial re-

gression function from training data that it uses to obtain a

set of facial landmarks from the image with this function.

With the advent of CNN, numerous CNN-based methods

have been designed and achieve superior performances than

their predecessors. [28] puts forward an approach which

draws on a three-level convolutional network to estimate the

positions of facial landmarks. [37] proposes a new cascaded

neural network called 3D Dense Face Alignment (3DDFA)

which fits a dense morphable 3D face model to the image.

They also propose a method to synthesize large-scale train-

ing samples in profile views for data labeling. Based on

300W dataset [24], they create the synthesized 300W-LP

dataset which includes 122,450 samples. This has become

a widely accepted benchmark dataset. [9] makes a step fur-

ther by proposing a new optimization strategy to regress

3DMM parameters. Their network model simply predicts

9 elements and constructs a rotation matrix from them. As

a result, this can never guarantee it to be a rotation matrix.

Some methods treat head pose estimation as an auxiliary

task. They perform various facial related tasks jointly with

CNN. [21] proposes Hyperface which uses a single CNN

model to perform face detection, pose estimation, feature

localization and gender recognition simultaneously. [13]

proposes a H-CNN (Heatmap-CNN) which refines the lo-

cations of the facial keypoints iteratively and provides the

pose information in Euler angles as a by-product.

These methods rely heavily on the quality of landmark

detection. If it fails to detect the landmark accurately, a

large error will be introduced.

2.2. LandmarkFree Approaches

The latest state-of-the-art landmark-free approaches ex-

plore the research boundary and improve the results by a

significant margin. [23] puts forward a CNN combined with

multi-losses. It predicts three Euler angles directly from a

single image and outperforms all the prior landmark based

methods. [10] further presents their quaternion based ap-

proach which avoids the gimbal lock issue lying in Euler

angles. [32] proposes a CNN model using a stage-wise re-

gression mechanism. They also adopt an attention mecha-

nism combined with a feature aggregation module to group

global spacial features. [15] treats pose estimation as a label
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distribution learning problem. They associate a Gaussian

label distribution instead of a single label with each image

and train a network which is similar to Hopenet [23].

2.3. 6D Object Pose Estimation

6D object pose estimation from RGB images includes

estimation of 3D orientation and 3D location. The task of

orientation estimation resembles our head pose estimation

one. The approaches can be divided into two categories:

[20, 33, 27] first estimate the object mask to determine its

location in the image, then build the correspondence be-

tween the image pixels and the available 3D models. After

that, The 6d pose can be solved through PnP algorithm [14].

The other type of methods such as [30, 16, 7] use network to

predict orientation directly. However, they use either axis-

angle or quaternion as their representations of rotation and

none of them notice the problem of discontinuity.

3. Method

In this section, we first present a thorough discussion

on our vector-based representation and how we formulate

the problem (Sec. 3.1). Then, we give an overview of the

our network structure (Sec. 3.2). Prediction module imple-

mentation is described in Section 3.3. A multi-loss training

strategy is then introduced in Section 3.4. Finally, by means

of Singular Value Decomposition (SVD), we obtain three

orthonormal vectors (Sec. 3.5).

3.1. Representation of Rotation

There are various ways to represent a rotation in a 3D

world. Euler angle, quaternion, axis-angle and lie algebra.

They describe the rotation in a compact form with at most

4 dimensions. However, [36] shows that it needs at least

5 dimensions of information to achieve a continuous rep-

resentation of rotations in 3D space which means all the

above representation methods will have the same issue of

ambiguity as demonstrated in section 1. This makes rota-

tion matrix a good alternative. A 3d rotation matrix has 9

elements and can be described as orthogonal matrices with

determinant equals to +1. The set of all the rotation ma-

trices forms a continuous special orthogonal group SO(3).
When it is used to describe rotation, it doe not have problem

of discontinuity or ambiguity.

The question left is what metric we should adopt to mea-

sure the closeness of two rotation matrices. A straightfor-

ward way is to measure the Frobenius norm of two rotation

matrices, i.e. the square root of the sum of squares of differ-

ences of all 9 elements. If we define the left, down and front

vectors at the reference starting point to be v1 =
[

1, 0, 0
]T

,

v2 =
[

0, 1, 0
]T

and v3 =
[

0, 0, 1
]T

respectively. Af-

ter applying a rotation matrix R3×3 =
[

r1, r2, r3
]

where

ri denotes the ith column vector in R, the three vectors

then become v
′
1 = Rv1 = r1, v′

2 = Rv2 = r2 and

v
′
3 = Rv3 = r3. The equations show that three vectors of

head pose is in essence equivalent to the three columns of

rotation matrices. As a result, Frobenius norm is equivalent

to
√

d21 + d22 + d23 in Fig. 5.

Even though Frobenius norm is an accurate measure-

ment, it is hard for we human beings to perceive the differ-

ence of rotation angles through the distance between end-

points of pose vectors. Therefore, we put forward a new

metric which is more intuitive: the mean absolute error of

vectors (MAEV). For each vector, we compute absolute er-

ror between the ground truth and predicted one, then we ob-

tain MAEV by calculating the mean value of three errors.

The problem of head pose estimation thus can

be defined as: given a set of N training images

X = {x(1), x(2), · · · , x(N)}, find a mapping function

F such that estimates R̂
(i)

= F (x(i)) where R̂
(i)

=
[

r̂1
(i), r̂2

(i), r̂3
(i)
]

that matches the ground truth rotation

matrix R as close as possible. We try to find an optimal

F for all X by minimizing the sum of squared L2 norm

between the predicted and ground truth vectors.

L = 1
N

∑N

i=1

∥

∥

∥
r
(i)
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3.2. TriNet Overview

Rotation matrix is 9-D dimensional representation which

requires the network to predict 9 elements. There is no off-

the-shelf network model that we can adopt to perform this

task, so we design our TriNet shown as Fig. 3. TriNet is

composed of one backbone and three head branches. Each

head follows the coarse-to-fine strategy, constitutes a fea-

ture mapping and prediction module and is responsible for

predicting one vector alone. Ideally, three vectors should

be perpendicular to each other, so we further introduce an

orthogonal loss function which punishes the model if the

predicted ones are not orthogonal.

An input image with fixed size goes through a backbone

network (ResNet50 in Fig. 3). We define S stages and at

each stage s, a feature map is extracted from the output

of an intermediate layer of the backbone network. These

are considered as candidate features and fed into the feature

grouping module. For feature grouping component, we fol-

low the same implementation as FSA-Net [32]. Since the

grouping module requires uniform shape (w× h× c) of in-

put features, we apply average pooling to reduce the feature

map size to w×h and use c 1× 1 convolution operations to

transform the feature channels into c. The feature grouping

module outputs 3 c′-dimensional vectors.

We then feed them to the prediction module to regress

one pose vector. Since three head branches share the identi-

cal structure, the other two pose vectors can be obtained in

the same way by going through different head branches.
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Figure 3: Overview of the network.
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Network

Figure 4: Details of the prediction module.

3.3. Prediction Module

The prediction module follows the strategy of coarse-to-

fine multi-stage regression. Features extracted from shallow

layers are responsible for performing coarse predictions. As

the network goes deeper, the high level features become

more informative and can be used for fine-grained and more

accurate predictions. Since each component of a unit vector

is within the range of [−1, 1], for each stage, we divide the

range into different numbers of intervals. The deeper the

layer is, the more intervals the range [−1, 1] will be divided

into. The prediction module performs the estimation by tak-

ing the average of the expectation values from all S stages

together:

ŷ =
1

S

S
∑

s=1

n(s)
∑

i=1

p
(s)
i · q

(s)
i (2)

where n(s) is the number of intervals at stage s, p
(s)
i is

the probability that the element is in the ith interval and q
(s)
i

is the mean value of the ith interval.

3.4. Training Objective

The training objective involves multiple losses: regres-

sion loss Lreg and the orthogonal loss Lortho which mea-

sures the orthogonality between each pair of the predicted

vectors. The overall objective loss is the weighted sum of

two losses:

L = Lreg(vi, v̂i) + αLortho(v̂i, v̂j) (3)

where v̂i and vi are the ith predicted and ground truth

vectors respectively. The weighted term α is set to a small

number whose range is between [0.1, 0.5]. It best setting

is found through experiments. Each loss term is shown as

follows:

Lreg =

3
∑

i=1

mse(vi, v̂i) (4)

Lortho =
∑

i 6=j

mse(v̂iv̂j , 0) where i, j = 1, 2, 3 (5)
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Figure 5: Given a matrix R =
(

r1, r2, r3
)

, find the closest

rotation matrix R̂ =
(

r̂1, r̂2, r̂3
)

. The Frobenius norm of

the difference between R and R̂ is equal to
√

d21 + d22 + d23

We adopt mean square error loss function for both re-

gression loss and orthogonal loss.

3.5. Vector Refinement

Even though we impose orthogonal constraints Lortho

in the loss function, the three vectors that TriNet predicts

are still not perpendicular to each other. Therefore, it is

necessary to select three orthogonal vectors to match the

predicted vectors as close as possible.

This problem can be stated as: Given a noisy predicted

matrix R, find the closest rotation matrix R̂ and the mea-

sure of closeness needs to have physical meaning. A naive

way to find a rotation matrix from a noisy matrix is applying

the Gram–Schmidt process to either its rows or columns.

Its simple geometric interpretation makes it very popular,

however, the result is rather arbitrary because this method

depends on which two rows or columns of R are selected.

This paper adopts the measure of Euclidean or Frobe-

nius norm of R − R̂. It can be expressed by the following

formula:

min ||R̂−R||F

subject to R̂
T
R̂ = I and detR̂ = +1 (6)

The reasons for choosing Frobenius norm are as follows:

(1) It has a simple geometric interpretation (see Fig. 5).

(2) The solution is unique and can be obtained by a

closed-form formula [25].

[17] shows that given a matrix R = UΣV
T , the optimal

solution can be achieved by R̂ = UV
T . This method does

not guarantee that det(R̂) = +1. If a highly noisy matrix

R is given, det(R̂) = −1 may happen. If this is the case,

the closest rotation matrix can be obtained by

R̂ = Udiag(1, 1,−1)V T (7)

4. Experiments

4.1. Implementation Details

We implement our proposed network using Pytorch. We

follow the data augmentation strategies from [32] and apply

uniformly on the competing methods. We train the network

using Adam optimizer with an initial learning rate of 0.0001

over 90 epochs. The learning rate decay parameter is set to

be 0.1 for every 30 epochs.

4.2. Datasets and Evaluation

Our experiments are based on three popular public

benchmark datasets: 300W-LP [37], AFLW2000 [38], and

BIWI [4] datasets.

300W-LP The 300W-LP dataset [37] is expanded from

300W dataset [24] which is composed of several standard-

ized datasets, including AFW [39], HELEN [35], IBUG

[24] and LFPW [1]. By means of face profiling, this dataset

generates 122,450 synthesized images based on around

4,000 pictures from the 300W dataset.

AFLW2000 The AFLW2000 [38] dataset contains 2,000

images which are the first 2000 images the AFLW dataset

[18]. This dataset possesses a wide range of varieties in

facial appearances and background settings

BIWI The BIWI dataset [4] contains 15,678 pictures of

20 participants in an indoor environment. Since the dataset

does not provide bounding boxes of human heads, we use

MTCNN [34] to detect human faces and loosely crop the

area around the face to obtain face bounding boxes results.

In order to compare to the state-of-the-art methods, we

follow the same training and testing setting as mentioned in

Hopenet [23] and FSA-Net [32]. Notice that we also filter

out test samples with Euler angles that are not in the range

between −99◦ and 99◦ to keep consistent with the strategies

used by Hopenet and FSA-Net. We implement our experi-

ments in two scenarios:

(1) We train the models on 300W-LP and test on two

other datasets: AFLW2000 and BIWI.

(2) We apply a 3-fold cross validation on BIWI dataset

and report the mean validation errors. We split the dataset

into 3 groups and ensure that the images of one person

should appear in the same group. Since there are 24 videos

in the BIWI dataset, each group contains 8 videos and in a

round we have 16 videos for training and 8 for testing.

For all the experiments above, we report both the MAE

of Euler angles and MAEV as results.

4.3. Comparison to Stateoftheart Methods

We compare our proposed TriNet with other state-of-the-

art methods on public benchmark datasets. To make a fair

comparison, we rerun the open-sourced models and ours

under the same experiment environment and measure the

results by both MAE and MAEV. For those which are not
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Method
Euler angles errors Vector errors

roll pitch yaw MAE left down front MAEV

3DDFA[37] 28.432 27.085 4.710 20.076 (30.570 39.054 18.517 29.380)

Dlib[12] 22.829 11.250 8.494 14.191 (26.559 28.511 14.311 23.127)

Hopenet[23] 6.132 7.120 5.312 6.188 (7.073 5.978 7.502 6.851)

FSA-Net[32] 4.776 6.341 4.963 5.360 (6.753 6.215 7.345 6.771)

Quatnet[10]∗ 3.920 5.615 3.973 4.503 - - - -

HPE[11] ∗ 4.800 6.180 4.870 5.280 - - - -

TriNet (4.042 5.767 4.198 4.669) 5.782 5.666 6.519 5.989

Table 1: Mean absolute errors of Euler angles and vectors on AFLW2000. All trained on 300W-LP. Values in () are converted

from the other side. Methods with ∗ are not open source. Their results are claims from authors.

Method
Euler angles errors Vector errors

roll pitch yaw MAE left down front MAEV

3DDFA[12] 13.224 41.899 5.497 20.207 (23.306 45.001 35.117 34.475)

Dlib[12] 19.564 12.996 11.864 14.808 (24.842 21.702 14.301 20.282)

Hopenet[23] 3.719 5.885 6.007 5.204 (7.650 6.728 8.681 7.687)

FSA-Net[32] 3.069 5.209 4.560 4.280 (6.033 5.959 7.218 6.403)

Quatnet[10]∗ 2.936 5.492 4.010 4.146 - - - -

HPE[11] ∗ 3.120 5.180 4.570 4.290 - - - -

TriNet (4.112 4.758 3.046 3.972) 5.565 5.457 6.571 5.864

Table 2: Mean absolute errors of Euler angles and vectors on BIWI. All trained on 300W-LP. Values in () are converted from

the other side. Methods with ∗ are not open source. Their results are claims from authors.

Method
Euler angles Vectors

roll pitch yaw MAE left down front MAEV

Hopenet[23] 4.334 4.420 4.094 4.283 (6.465 6.272 6.268 6.335)

FSA-Net[32] 4.056 4.558 3.155 3.922 (5.854 6.189 5.440 5.828)

TriNet (2.928 3.035 2.440 2.801) 4.067 4.140 3.976 4.061

Table 3: Mean absolute errors of Euler angles and vectors on BIWI. 70% of the data is used for training and the remaining

30% is for testing. Values in () are converted from the other side.

open sourced, we cite their MAE results claimed by the au-

thors in our tables for reference.

Facial landmark based approach 3DDFA [37] tries to fit

a dense 3D model to an RGB image through a Cascaded

CNN architecture. The alignment framework applies to

large poses up to 90 degrees. Hopenet [23] proposes a fine-

grained structure by combining classification loss and re-

gression loss to predict the head pose in a more robust way.

Quatnet [10] uses quaternions labeling data for training the

model to avoid the ambiguity of Euler angle representation.

FSA-Net [32] proposes a network which combines a stage-

wise regression scheme and a feature grouping module for

learning aggregated the spatial features. [11] proposes to

use two stage method which treats classification and regres-

sion separately and averages top-k outputs as pose regres-

sion subtask.

4.4. Experiment Results

Table 1 and 2 show the results of our proposed TriNet

and other methods tested on AFLW2000 and BIWI datasets

respectively. All of them are trained on the 300W-LP

dataset. Since TriNet predicts three orthonormal vectors,

its Euler angle results are obtained through the conversion

from the rotation matrix constructed of these three vectors.

As the tables demonstrate, deep learning based

landmark-free approaches (FSA-Net, Hopenet and TriNet)

outperform landmark based methods (3DDFA and Dlib) on

both AFLW2000 and BIWI datasets. In Table 1, we can find

that if measured by MAE, FSA-Net surpasses the Hopenet

by a large margin. However, their MAEV results are close.

Even though Quatnet achieves the best MAE results, we

are unable to replicate the MAEV results since it is not

open-source. Meanwhile, as shown in Table 2, Our pro-

posed method achieves the best result under both MAE and
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Figure 6: MAE on AFLW2000 using landmark-free methods. All trained on 300W-LP.
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Figure 7: MAEV on AFLW2000 using landmark-free methods. All trained on 300W-LP.

training set 300W-LP

testing set AFLW2000 BIWI

component 1 - Attention mapping - Attention mapping

component 2 - orthogonality - orthogonality - orthogonality - orthogonality

component 3 - Capsule - Capsule - Capsule - Capsule - Capsule - Capsule - Capsule - Capsule

MAE 5.120 4.977 4.979 4.951 4.883 4.740 4.866 4.669 4.390 4.280 4.298 4.165 4.175 4.022 4.204 3.972

MAEV 6.487 6.181 6.306 6.274 6.167 6.058 6.157 5.989 6.450 6.360 6.255 6.186 6.256 5.871 6.280 5.864

Table 4: Ablation study for different feature mapping methods (with/ without attention mapping) and loss items (with/ without

orthogonality loss) and capsule network (with/without capsule network). Trained on 300W-LP.

training set BIWI (train)

testing set BIWI (test)

component 1 - Attention mapping

component 2 - orthogonality - orthogonality

component 3 - Capsule - Capsule - Capsule - Capsule

MAE 3.422 2.978 3.333 2.835 2.840 2.826 2.843 2.801

MAEV 4.920 4.185 4.791 4.069 4.162 4.142 4.118 4.061

Table 5: Ablation study for different feature mapping methods (with/ without attention mapping) and loss items (with/ without

orthogonality loss) and capsule network (with/without capsule network). Trained on BIWI.

MAEV when tested on BIWI dataset.

Table 3 shows the experiment results of 3-fold cross val-

idation on BIWI dataset using different methods. In this

scenario, we only compare our proposed method with other

RGB-based ones. We compare both the MAE and MAEV

results and our proposed TriNet achieves the best perfor-

mance.
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training set 300W-LP BIWI (train)

testing set AFLW2000 BIWI BIWI (test)

Uniform prediction - X - X - X

MAE 4.669 4.953 3.972 4.500 2.801 3.302

MAEV 5.989 6.245 5.864 6.764 4.061 4.862

Table 6: Ablation study for using a uniform prediction module.

Figure 8: Comparison of pose estimation results on

AFLW2000 profile images. All trained on 300W-LP.

4.5. Error Analysis

We conduct the error analysis of three landmark-free

methods (FSA-Net, Hopenet and TriNet) on AFLW2000

dataset. The Euler angles’ range of [−99◦, 99◦] are equally

divided to intervals that span 33◦. The results are shown in

Fig. 6 and Fig. 7.

The first thing worth noting is that prediction error of

MAEV increases much more slowly than MAE as absolute

values of pose angles increase. MAE can achieve about 60◦

for large pitch and roll angles while MAEV has only around

30◦. This conforms to our findings in section 1 that MAE

fails to measure performance at large pose angles.

We use Fig. 8 to further illustrate the reason. Since gim-

bal lock causes ambiguity issue to Euler angles, many re-

searchers limit the yaw angle in the range of (−90◦, 90◦)
to ensure the representation of rotation is unique. How-

ever, this brings in a new issue. Assume the rotation is in

the order of pitch (γ), yaw (β) and roll (α) and denoted

by (α, β, γ). As yaw exceeds the boundary ±90◦, it will

cause significant change in pitch and roll angles. For ex-

ample, assume a person with head pose of (10◦, 89◦, 15◦).
If he increases the yaw angle by 3◦, this causes no observ-

able difference in image. However, the annotation becomes

(−170◦, 88◦,−165◦) since yaw angle is not allowed to sur-

pass 90◦. This explains why similar profile images have

very different Euler angle labels. As a result, Euler angle

based network models hardly learn anything from such pro-

file images. Fig. 8 verifies its validity. It shows the pre-

diction results of different methods on profile images from

AFLW2000. FSA-Net and Hopenet have very arbitrary re-

sults whereas our TriNet has accurate predictions. This fig-

ure also shows the problem of MAE. By comparing the

MAE and MAEV results of TriNet (4th row), we can con-

clude that MAE cannot measure performance of networks

on profile images.

The second noticeable thing is that the yaw angle error

distribution is different from those of pitch and roll. As the

absolute values of ground truth angles grow, the MAEV of

yaw grows much more slowly compared with pitch and roll.

We attribute this to their different distributions in the 300W-

LP dataset.Data samples have their yaw angles evenly dis-

tributed across [−99◦,+99◦] whereas 93% pitch and 90%
roll angles concentrate in the range of [−33◦,+33◦]. Short-

age of training data for large pitch and roll angles makes

their performances worse than the yaw angle.

4.6. Ablation Study

In this section, we conduct ablation studies to analyze

how each network component will affect the model perfor-

mance on different testing sets. We include feature map-

ping methods, loss item, and capsule module as three test-

ing components. Table 4 and 5 report both the MAE and

MAEV results. We observe the best results on all the test-

ing sets when combining all these three modules. In addi-

tion, in prediction module, we experiment the influence of

uniform sampling. In other words, we use (9, 9, 9) as the

dimensions of three output vectors from capsule network

instead of (81, 27, 9). Table 6 shows non-uniform sampling

can achieve better results.

5. Conclusion

In this paper, we put forward a new vector-based annota-

tion and a new metric MAEV. They can solve the disconti-

nuity issues caused by Euler angles. By the combination of

new vector representation and our TriNet, we achieve state-

of-the-art performance on the task of head pose estimation.
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