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Figure 1. Examples of MEVA data, showing an approximately synchronized view in four data modalities. Left-to-right:a 4x3 montage of
RGB and thermal IR cameras; GPS locations of about 90 actors overlaid on five minutes of GPS tracks; a cropped view from a UAV.

Abstract

We present the Multiview Extended Video with Activities

(MEVA) dataset[6], a new and very-large-scale dataset for

human activity recognition. Existing security datasets ei-

ther focus on activity counts by aggregating public video

disseminated due to its content, which typically excludes

same-scene background video, or they achieve persistence

by observing public areas and thus cannot control for activ-

ity content. Our dataset is over 9300 hours of untrimmed,

continuous video, scripted to include diverse, simultaneous

activities, along with spontaneous background activity. We

have annotated 144 hours for 37 activity types, marking

bounding boxes of actors and props. Our collection ob-

served approximately 100 actors performing scripted sce-

narios and spontaneous background activity over a three-

week period at access-controled venue, collecting in mul-

tiple modalities with overlapping and non-overlapping in-

door and outdoor viewpoints. The resulting data includes

video from 38 RGB and thermal IR cameras, 42 hours of

UAV footage, as well as GPS locations for the actors. 122

hours of annotation are sequestered in support of the NIST

Activity in Extended Video (ActEV) challenge; the other 22

hours of annotation and the corresponding video are avail-

able on our website, along with an additional 306 hours of

ground camera data, 4.6 hours of UAV data, and 9.6 hours

of GPS logs. Additional derived data includes camera mod-

els geo-registering the outdoor cameras and a dense 3D

point cloud model of the outdoor scene. The data was col-

lected with IRB oversight and approval and released under

a CC-BY-4.0 license.
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1. Introduction

It has been estimated that in 2019, 180 million security

cameras were shipped worldwide [9], while the attention

span of a human camera operator has been estimated at only

20 minutes [5, 3]. The gap between the massive volume of

data available and the scarce capacity of human analysts has

been closed, but not eliminated, by the rapid advancement

of computer vision techniques, particularly deep-learning

based methods. Fundamental progress is often spurred by

datasets such as ImageNet [15] and MS COCO [8] for ob-

ject recognition and MOT16 [10] and Caltech Pedestrian [2]

for pedestrian detection and tracking.

However, as discussed in Section 2, datasets for action

recognition typically do not address many of the needs of

the public safety community. Datasets such as AVA [4],

Moments in Time [11], and YouTube-8m [1] present videos

which are short, high-resolution, and temporally and spa-

tially centered on the activities of interest. Rigorous re-

search and evaluation of activity detection in public safety

and security video data requires a dataset with realistic spa-

tial and temporal scope, yet containing sufficient instances

of relevant activities. In support of evaluations such as

the NIST Activities in Extended Video (ActEV) [12], we

designed the MEVA dataset to explicitly capture video of

large groups of people conducting scripted activities in re-

alistic settings in multiple camera views, both indoor and

outdoor. We defined 37 activity types, shown in Figure 2,

ranging from simple, atomic single-actor instances to com-

plex, multi-actor activities. Our fundamental resources

included approximately one hundred actors on-site at an

access-controlled facility with indoor and outdoor venues

for a total of around three weeks, recorded by 38 ground-

level cameras and two UAVs. Additionally, actors were

provided with GPS loggers. We conducted extensive pre-

collect planning, including a pilot collection exercise, to

develop the appropriate level of actor direction required to

maximize instances of our 37 activity types while maintain-

ing realism and avoiding actor fatigue.

The final dataset contains over 9300 hours of ground-

camera video, 42 hours of UAV video, and over three mil-

lion GPS trackpoints. In support of the ActEV evaluation,

we have annotated 144 hours of this video for the 37 activity

types. While most of this data is sequestered for ActEV, we

have released 328 hours of ground-camera data, 4.6 hours of

UAV data, and 22 hours of annotations via the MEVA web-

site. The dataset design and collection underwent rigorous

IRB oversight, with all actors signing consent forms. The

data is fully releasable under a Creative Commons Attribu-

tion 4.0 (CC-BY-4.0) license, and we believe represents by

far the largest dataset of its kind available to the research

community.

Figure 1 shows a sample of data available from the

MEVA website, approximately synchronized in time, col-

lected during a footrace scenario. The left side shows a

montage of 12 of the 29 released RGB and thermal IR cam-

eras, illustrating the diversity in locations, settings (indoors

and outdoors), as well as overlapping viewpoints. The mid-

dle illustration plots approximately 90 GPS locations on a

background image. The right image is a crop from UAV

footage.

The paper is organized as follows. Sections 2 places our

work in context with similar efforts. Section 3 discusses

how we designed the dataset to maximize realism and ac-

tivity counts. Section 4 describes our annotation process.

Section 5 briefly describes the ActEV leaderboard results

on MEVA.

2. Prior Work

We distinguish ”focused” activity recognition datasets

such as [4, 11, 1], which typically contain single, short ac-

tivities, from security-style video, which is typically long-

duration and ranges from long stretches of low or no ac-

tivity to busy periods with high counts of overlapping ac-

tivities. Figure 3 shows how MEVA advances the state of

the art along several security dataset factors, notably: dura-

tion, number of persistent fields of view (both overlapping

and singular), modalities (EO, thermal IR, UAV, hand-held

cameras, and GPS loggers), and annotated hours. The UCF-

Crime dataset [17] presents real incidents from real security

cameras, but only from a single viewpoint at the point of ac-

tivity; little or no background data is available. The VIRAT

Video Dataset [13] contains both scripted and spontaneous

activities, but without overlapping viewpoints. The Duke

MTMC dataset [14] presents security-style video from mul-

tiple viewpoints, but with only spontaneous, unscripted ac-

tivity.

3. Dataset Design

The MEVA dataset was designed to capture human ac-

tivities, both spontaneous and scripted, in an environment

as close as possible to that encountered by deployed CCTV

systems in the real world. The dataset was designed to

be realistic, natural and challenging for security and public

safety video research in terms of its resolution, background

clutter, visual diversity, and activity content. As discussed

in Section 3.1, the data is fully releasable under a Creative

Commons Attribution 4.0 (CC-BY-4.0) license, facilitated

by a detailed human subjects research plan. Activity diver-

sity was achieved through pre-collect scripting for scenarios

and activity types (Section-3.2), and collected via an ambi-

tious camera plan with 38 ground-level cameras and two

UAVs (Section-3.3). Scene diversity was accomplished by

scripting scenarios to occur at different times of day and

year to create variations in environmental conditions, and

directing demographically diverse actors to perform activi-
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person abandons package * hand interacts with person person reads document vehicle picks up person
person carries heavy object person interacts with laptop person rides bicycle vehicle reverses
person closes facility door person loads vehicle person puts down object vehicle starts
person closes trunk person transfers object person sits down vehicle stops
person closes vehicle door person opens facility door person stands up vehicle turns left
person embraces person person opens trunk person talks on phone vehicle turns right
person enters scene through structure person opens vehicle door person texts on phone vehicle makes u turn
person enters vehicle person talks to person person steals object *
person exits scene through structure person picks up object person unloads vehicle
person exits vehicle person purchases vehicle drops off person

Figure 2. List of the 37 activities defined and annotated in MEVA. Activities marked with an asterisk are threat-based activities.

VIRAT [13] UCF-101 Untrimmed [16] Duke MTMC [14] UCF-Crimes [17] MEVA

Number of activity types 23 101 - 13 37

Range of samples per type 10-1500 90-170 - 50-150 5-750 (1200)

Incidental objects and activities yes no yes yes yes

Natural background behavior yes no yes yes yes

Tight bounding boxes yes no no no yes

Max resolution 1920x1080 320x240 1920x1080 320x240 1920x1080

Sensor modalities 1 1 1 2 5

Security yes no yes yes yes

Number of FOV 17 unique-per-clip 8 unique-per-clip 28

Overlapping FOV no no yes no yes

Indoor & outdoor no yes no yes yes

Availability direct reference retracted direct direct

Clip length 2-3 minutes 1-71 seconds - 4 minutes 5 minutes

Dataset duration (hours) 29 26.6 10 128 9300 / 144

Figure 3. Comparison of characteristics of activity and security datasets to MEVA. The reported range of activity counts per type is only

for MEVA released data while the average number of samples in parenthesis includes both released and sequestered annotations. The 5

sensor modalities included in the MEVA dataset are static EO, UAV EO, Thermal IR, Handheld or Body-Worn Cameras (BWC), and GPS.

There are 28 unique FOV with additional FOVs offered by drone, handheld and BWC footage. The overall duration of video collected as

part of MEVA is 9300 hours while 144 hours were annotated.

Figure 4. Site map with released cameras and approximate fields-

of-view. Indoor cameras are blue circles; triangles are outdoor

cameras. Red are co-located EO/IR; blue is fixed-focal-length;

green is PTZ in stationary mode; purple is PTZ in patrol mode.

Pink fields of view are outdoors; yellow are indoors.

ties in multiple locations with varied natural behaviors. The

ground-camera plan includes a variety of camera types, in-

door and outdoor viewpoints, and overlapping and singu-

lar fields of view. Realism was enhanced by scripting to

include naturally occurring activity instances, frequent in-

cidental moving objects and background activities, as dis-

cussed in Section-3.2. Finally, the quantity of data col-

lected was enabled by planning for a multi-week data col-

lection effort to allow for a large set of activity types with a

large number of instances per activity class as discussed in

Section-3.3.

3.1. Releasability

A critical requirement for the MEVA dataset is broad re-

leasablility to the research community. Possible restrictions

include prevention of commercial use, which discourages

commercial companies from using the dataset for research

or collaborating on teams which do use the dataset. Another

restriction is when data containing human activity is col-

lected without oversight of an Institutional Review Board

(IRB) or collected outside of its initially IRB-approved con-

ditions. While the data may address other needs of the re-
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search community, lack of proper IRB oversight or partici-

pant consent can render the data unusable, wasting signifi-

cant resources in the collection and curation process.

The MEVA dataset was carefully crafted to avoid such

restrictions to maximize its value to the research commu-

nity. The data collection effort was overseen by an IRB to

ensure that the data collected would be usable. We wrote

a human subjects research protocol and informed consent

documents that detailed the collection process, what types

of data would be collected, how the data will be released

and may be used, and the risks and benefits to anyone con-

senting to participate in the study. The informed consent

document was provided to prospective participants in ad-

vance and reviewed in an informed consent briefing session

prior to beginning the data collection. Included in the pro-

tocol and consent briefing was a sample license that may

be used for the data, a CC-BY 4.0, to make it fully clear

the intent and potential future use of the data. The consent

presentation was followed by small group discussions and

question/answer periods to thoroughly address and answer

any participant concerns prior to them consenting to par-

ticipate the research. Once the individuals who voluntarily

chose to participate signed the consent forms, we were able

to begin the data collection process.

To further ensure broad releasability of the data, the col-

lection occurred at an access-controlled facility to minimize

non-participating individuals entering the fields of view of

the cameras and appearing in the data.

3.2. Scripting

To guarantee collection of minimum activity instance

counts, ensure diversity in the data, and produce the most

realistic video data, MEVA data was collected for both

scripted and unscripted activities. The scripting challenges

for the data collection effort can broadly be broken down

into two categories: (1) scripting for satisfying program re-

quirements such as quantity and diversity, and (2) scripting

for realism in activity behavior.

It was critical to design the data collection to represent a

variety of realistic scenarios in ground-based security video

collection. We determined seven overarching scenarios of

interest to the public safety community. For example a

footrace with multiple phases including registration, partici-

pant arrival, race and cleanup. The scenarios were collected

over a period of three weeks on different days and at differ-

ent times of days to capture video variations due to weather

and lighting. At the extreme, two sub-collects in March and

May produced dramatic contrast in weather from snow to

extreme heat, and thus diversity in natural human behav-

ior (e.g., clustering together in the cold) and wardrobe (i.e.,

jackets in the winter and t-shirts in the summer).

Scripted into these scenarios were 37 primitive, complex

and threat-based human activity types to ensure minimum

Figure 5. Two approximately synchronized views from the gym.

instance counts useful to the program; these are listed in

Figure 2. These activities were scripted to be performed by

actors with different age, sex and ethnicity as allowed by

the actor pool. Activities involving vehicles or props were

specifically scripted to rotate the vehicle pool and theatrical

property. Scripted activities occurred across various scenar-

ios and at multiple locations in the facility. Activities were

scripted in overlapping and singular fields of view, indoor

and outdoor cameras, and various camera types (e.g., sta-

tionary EO and IR, roaming EO). Activities were scripted

to be performed by the same individual in different, singu-

lar cameras with the goal of associating the same individual

across different cameras. This is relevant when a central

activity is detected involving a subject, and then a derived

complex activity is to detect other individuals that meet with

the original subject of interest. Scenarios also included con-

fusers for the scripted activity types to add value for per-

former evaluation in the final dataset. Figure 5 shows two

approximately synchronized views from the gym.

Though scenarios had an overarching theme, multiple it-

erations of the same scenario (called takes) were designed to

produce visibly distinct but comparable results by varying

the parameters described above. Additionally, actor den-

sity at various location in the facility and traffic flow were

modified to produce differences in subsequent takes of the

same scenario. Scripting the scenarios and activities in this

level of detail guaranteed the diversity and quantity of data
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satisfied program requirements.

To address the second broad goal, we hired professional

actors to act scenarios in a natural manner to create an

equivalent challenge for computer vision event detectors,

as if the events occurred in real-life scenarios without act-

ing. The actors were divided into squads which each had a

squad lead in charge of managing a group of 5-8 individu-

als. The squads were designed, grouped and shuffled to pro-

duce variations in demographics, behaviors and inter-actor

behaviors. Each squad was given a direction card which

provided information on timing and locations for activities

to be performed, and group behavior such as social group-

ings within the squad. By giving the squad lead the ability

to designate roles within the group, natural social dynam-

ics, such as those observed in married couples or families,

were preserved and increased the realism of the collected

data. The squad lead was responsible for assigning roles to

the actors, managing vehicle and prop assignment, provid-

ing feedback to individual actors for corrections on activity

behavior, and reporting descriptions of complex or threat-

based activities for use in expediting later annotation.

We found that providing scripting at the squad rather

than individual level produced the most realistic actor be-

havior. When actor behavior was scripted on the individ-

ual level at high temporal and spatial resolution, the actors,

overwhelmed by the details, focused on achieving all ac-

tivities at the specified time and location rather than per-

forming activities that were natural in appearance. Using

a small pilot collect of data, we were able to determine

which activities occurred naturally in the data collection

without direction (e.g., person opens door). Taking this

into account when scripting, lower instances of these ac-

tivities were scripted and a mix of scripted and unscripted

occurrences were collected. On the other hand, rare and

threat-based activities needed to be specifically scripted to

ensure minimum counts of these activities were achieved

and later located for annotation. However, allowing the ac-

tors to have artistic licence with how to accomplish activi-

ties, especially complex activities, produced more a natural

and diverse dataset. Actor familiarity with the scripted sce-

nario also increased realism. Most scenarios varied in time

from 15 minutes to 1 hour. Multiple takes could be run con-

secutively with minor modifications to scripted behaviors

and activity instances, and minimal reset time (5 to 10 min-

utes) to efficiently produce varied instances of a scenario

and communicate modifications to the squad leads.

In addition to activity-focused scripting, scene-level be-

haviors also needed to be scripted to ensure realism. For

example, train and bus arrival schedules were designed to

reflect public transit schedules scaled for the population de-

picted by our actors. Vehicle traffic was scripted to have

ebbs and flows associated with similar patterns to real-world

versions scripted scenarios. For example, an increase in ve-

Figure 6. Enrollment photos were taken daily of all actors, with

(a) and without (b) outerwear, from the front and back. Photos

included actor numbers, which correspond to their unique GPS

logger number for reidentification purposes.

hicles dropping off people at the bus station just prior to a

bus’s scheduled arrival. Driving routes, vehicles and drivers

were shuffled to provide variations between different sce-

narios and takes. Again, these tasks were assigned at the

squad level and managed by squad leads.

In addition to scripted scenarios, periods of completely

unscripted data were collected with the aim of collecting

naturally occurring common activities with no actor direc-

tion. We also took advantage of unscripted data to inter-

ject threat-based and rare activities to capture undirected

response by casual observers. These unscripted times were

naturally occurring and added value to reset times between

scenario takes.

3.3. Collection

The MEVA video dataset was collected over a total

of three weeks at the Muscatatuck Urban Training Center

(MUTC) with a team of over 100 actors and 10 researchers.

MUTC is an access-controlled facility run by the Indiana

National Guard that offers a globally unique, urban operat-

ing environment. The real and operational physical infras-

tructure, including curbed roads and used buildings, set it

apart from other access-controlled facilities for collecting

realistic video data.

The camera infrastructure included commercial-off-the-

shelf EO cameras; thermal IR cameras as part of several IR-

EO pairs; two DJI Inspire 1 v2 drones, and a range of video

and still images from handheld cameras used by the actors.

The fields of view, both overlapping and non-overlapping,

capture person and vehicle activities in indoor and outdoor

settings.

Onsite staging and actor instruction also improved the

realism in scenes for the MEVA scenario collection. Areas

were staged with props, such as signs, tables, chairs, and

trashcans, to provide scenario-specific context necessary to

increase the natural appearance and usefulness of the area to

both actors and recording cameras. Additionally, areas were
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Figure 7. The actor in the purple jacket, actor 544 in Figure 6, is

visible in multiple cameras during the scenario. Her height is (a)

301 pixels, (b) 118 pixels, (c ) 176 pixels, and (d) 89 pixels in each

of the respective fields of view.

staged to look similar but distinct between different scenar-

ios to add diversity to the dataset collected. For example,

the foyer of one building was converted into an operational

cafe where the actors were able to grab drinks and snacks

during scripted or unscripted camera time.

Actors were selected to provide a diverse pool of individ-

uals in background, ethnicity and gender. As part of our iter-

ative process to receive and incorporate feedback, all actors

attended briefings in which camera fields of view and com-

mon issues (e.g., erratic driving or aimless walking) were

discussed in a group setting, raising awareness of key fac-

tors required to collaboratively produce realistic behaviors

in video. Squad leads also held smaller briefings, providing

feedback to the scripting team and receiving instructions to

pass to their squad members. During morning briefings,

all actors and MEVA team members were registered with

a unique identifying number matched to their GPS logger

unit and wardrobe enrollment photograph(s) as shown in

Figure 6. The photos, paired with the GPS logs, enable

reidentification of individual actors across fields of view in

a single scenario, as seen in Figure 7. Each day before film-

ing, squad leads were given direction cards to assign roles

to their actors and inform prop distribution, then data col-

lection was performed. Shorter scenario takes of less than

1 hour were performed in rapid succession with only mi-

nor modifications relayed during a brief reset. One day

short-scenario data collection would contain between 4 and

8 takes; for longer scenarios of approximately 8 hours, the

scenario would be repeated across multiple sequential days.

Direction and course correction was provided by both di-

rectly interjecting a MEVA team member into the scenario

for a brief interval or incorporating actor briefings naturally

into the scenario schedule.

The final dataset contains 9,303 hours of ground-camera

video (both EO and thermal IR), 42 hours of UAV footage,

and 46 hours from hand-held and body-worn cameras. Ad-

ditionally we collected over 2.7 million GPS trackpoints

from 108 unique loggers.

4. Annotation

Annotating a large video dataset requires balancing qual-

ity and cost. Annotating for testing and evaluation, as is

the case for MEVA, must prioritize the quality of ground

truth annotations, as any evaluation will only be as reliable

as the ground truth derived from the annotations. Ground

truth annotations must minimize missed and incorrect ac-

tivities to reduce the potential for penalizing correct de-

tections, strictly adhere to activity definitions, and address

corner cases to reduce ambiguity in scoring. We annotated

MEVA by first localizing spatio-temporal activities and then

creating bounding boxes for objects involved in the activity.

We optimized a multi-step process for quality and cost: (1)

an annotation step to identify the temporal bounds for activ-

ities and objects involved, (2) an audit step by experts to en-

sure completeness and accuracy of the activity annotations,

(3) a crowdsourced method for bounding box track creation

for objects, and (4) a custom interface for rapid remedia-

tion of corner cases by experts, with automated checks for

common human errors between each of these steps.

4.1. Activity Annotation

We annotated MEVA through a sequential process of ac-

tivity identification by a trained, dedicated team of third-

party annotators, followed by a quality control audit from

an internal team of MEVA experts intimately involved in

defining the activities. The initial activity identification step

detects all MEVA activities in a 5 minute video clip, spec-

ifying the start and end times for each activity, and identi-

fying the initial and final location for each actor or object

involved. The subsequent audit step catches any missed or
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Figure 8. Half an hour of activities overlaid on a background im-

age. 112 activities, 17 types, ranging from 1 to 14 instances.

incorrectly labeled activity instances, and confirms strict ad-

herence to MEVA definitions.

Ambiguity in activity definitions is a fundamental anno-

tation challenge. To minimize this, we define activities very

explicitly and require that events are always annotated on

pixel evidence and not human interpretation. We developed

detailed annotation guidelines for each activity, including

definition of the start and end times for an activity, and the

actors and objects involved. Definitions also include exten-

sive discussion of corner cases.

We explored several methods to increase annotation ef-

ficiency and quality, including completely crowdsourced

methods on Amazon Mechanical Turk (AMT) and a solely

in-house team of experts. The optimized annotation process

used a team of third-party annotators dedicated to MEVA

annotation to lower the overall cost and supply surge capac-

ity via dynamic team scaling while still guaranteeing quality

results. After comparing the results of multiple annotators

performing activity annotation in parallel and combined re-

sults in a post-processing step with annotating in series with

a quality assurance step, serial annotation was selected to

enable efficiently annotating a larger dataset.

Annotation consistency is essential to providing high-

quality ground truth annotations. When using a diverse

team of annotators, it was essential to have a clear set

of guidelines and iterative definition modifications to in-

clude corner cases to ensure annotator agreement across

the team. Additionally, we found that project-specific train-

ing, including effective use of the annotation tools, in-depth

discussion of definitions including examples, and iterative

feedback on annotation quality produced improvements in

annotation quality and speed. Finally, a quality audit from

an internal team of MEVA annotators was used to guarantee

no missed or incorrect instances. We observed a 3-fold in-

crease in audit efficiency over a two month period of work-

ing in a tight feedback loop with these procedures and a

project-dedicated team of annotators.

4.2. Track Annotation

Once activities and participating objects were identi-

fied by MEVA experts, objects were tracked with bounding

boxes for the duration of their involvement in the activity.

The annotation of bounding boxes was primarily conducted

through crowdsourced annotation on AMT, via an iterative

process of bounding box creation and quality review.

In the first step of bounding box refinement, videos were

broken up into segments that corresponded to a single activ-

ity annotation. An AMT task was created for each activity,

displaying a set of start and end boxes with linearly interpo-

lated boxes on intervening frames for all objects involved in

the activity. Workers were instructed to complete the tracks

by annotating bounding boxes for the interpolated frames

which were as tight as possible around the object; for ex-

ample, all the visible limbs of a person should be in the

bounding box while minimizing ”buffer” pixels. These two

characteristics are required in the MEVA dataset to ensure

that high-quality activity examples with minimal irrelevant

pixels are provided for testing and evaluation. These traits

were enforced by using other AMT annotators to assess the

quality of the resulting tracks.

In the quality review step, the bounding box annotations

were shown to several AMT workers who were asked to

evaluate them as acceptable according our guidelines. If

agreement was achieved between the AMT workers, then

the results were considered acceptable and complete; oth-

erwise, a new AMT task would be created for bounding

box refinement. The results of the next round of refine-

ment would be provided for quality review, and the pro-

cess would repeat until acceptable annotations were pro-

duced or a threshold number of iterations were performed.

If the threshold number of iterations were performed, the

clips would be vetted and edited manually as needed by an

MEVA auditor. The percentage of activities requiring ex-

pert intervention was less than 5%. Specialized web in-

terfaces were developed for each of these tasks to allow

workers (AMT or in-house) to easily provide the necessary

results. In order to eliminate most systematic low quality

jobs, annotations were sampled and workers were allowed

to continue based on quality.

Figure 9 illustrates bounding box annotations for tracks

from a variety of activities and fields of view that demon-

strate the quality produced by our track annotation proce-

dure. Box size varied dramatically due to the scale varia-

tion in the video, with a mean area of 13559±23799. An-

notations span 5 track types (person, vehicle, other, bag,

and bicycle) with a distribution of 90.71%, 4.5%, 4.51%,

0.15%, and 0.05%, respectively. As part of quality control,

we compared MEVA annotations against high-confidence

performer false alarms from the ActEV evaluation; our false

negative rate (i.e., confirmed missed instances to total activ-

ity count in reviewed clips) is less than 0.6% .
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Figure 9. Examples of activities and tracks from diverse fields of

view. The font size in each images is consistent, indicating varying

scale of the annotations.

Figure 10. Visualization of the fine-grained 3D point cloud model

of the collection site.

Additional Data In addition to the annotations, we

have provided supplemental data such as camera models

for the camera models which register into a common geo-

referenced coordinate system. We have also provided a 3D

model of the outdoor component of the collection site, pro-

vided as a PLY file and visualized in Figure 10.

5. Baseline Activity Detection Results

The NIST ActEV challenge [12] is using the MEVA

dataset for its ongoing Sequestered Data Leaderboard

(SDL). The ActEV challenge defines three tasks: Activ-

ity Detection (AD) with no spatial localization in the video,

Activity and Object Detection (AOD) where the activity and

participating objects are spatially localized within a frame

but not necessarily correlated across frames, and Activity

/ Object Detection and Tracking (AODT), which extends

AOD to establish real-world activity and object identity

across frames. The current leaderboard is for AD, scored

using Probability of Miss (pMiss), the proportion of activ-

Figure 11. The NIST ActEV leaderboard as of 9 Nov 2020, com-

puted on MEVA data. Better performance is lower and to the left.

ities which were not detected for at least one second, vs.

Time-based False Alarm (TFA), the proportion of time the

system detected an activity when there was none. Figure 11

shows results current at time of writing for nine teams plus

a baseline implementation [7] based on RC3D [18]. As

the scores indicate, the MEVA dataset is very difficult com-

pared to related datasets, presenting abundant opportunities

for innovation and advancement in activity detection, track-

ing, re-identification and other problems.

6. Conclusion

We have presented the MEVA dataset, a large-scale, re-

alistic video dataset containing annotation of a diverse set

of visual activity types. The MEVA video dataset surpasses

existing activity detection datasets in hours of video, num-

ber of cameras providing overlapping and singular fields

of view, variety of sensor modalities, and broad releasabil-

ity. The dataset also provides a substantial 144 hours of

evaluation-quality activity annotations of scripted and nat-

urally occurring activities. We believe that with these traits

the MEVA dataset will stimulate diverse research within the

computer vision community. The MEVA dataset is avail-

able at: http://mevadata.org.
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