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Abstract

Images recorded during the lifetime of computer vision

based systems undergo a wide range of illumination and en-

vironmental conditions affecting the reliability of previously

trained machine learning models. Image normalization is

hence a valuable preprocessing component to enhance the

models’ robustness. To this end, we introduce a new strat-

egy for the cost function formulation of encoder-decoder

networks to average out all the unimportant information in

the input images (e.g. environmental features and illumina-

tion changes) to focus on the reconstruction of the salient

features (e.g. class instances). Our method exploits the

availability of identical sceneries under different illumina-

tion and environmental conditions for which we formulate a

partially impossible reconstruction target: the input image

will not convey enough information to reconstruct the target

in its entirety. Its applicability is assessed on three publicly

available datasets. We combine the triplet loss as a regular-

izer in the latent space representation and a nearest neigh-

bour search to improve the generalization to unseen illumi-

nations and class instances. The importance of the afore-

mentioned post-processing is highlighted on an automotive

application. To this end, we release a synthetic dataset

of sceneries from three different passenger compartments

where each scenery is rendered under ten different illumina-

tion and environmental conditions: https:// sviro.kl.dfki.de

1. Introduction

Recording a sufficient amount of images to train and

evaluate computer vision algorithms is usually a time

consuming and expensive challenge. This is aggravated

when the acquisition of images under various lightning and

weather conditions needs to be considered as well. Notwith-

standing the aforementioned data collection challenges, the
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Figure 1: Results for the introduced partially impossible

cost function. The input to the encoder-decoder model (first

row) is transformed such that illumination and environmen-

tal features are averaged out and removed (second row).

performance of many machine learning algorithms suffer

from changing illumination or environmental conditions,

e.g. SLAM [10], place recognition [21], localization and

classification [19], semantic segmentation [1], 3D human

pose estimation [23] and facial expression recognition [24].

Since it is impracticable to wait for different weather con-

ditions, day times and seasons to record images under as

many variations as possible, it would be beneficial to train

machine learning models to become invariant with respect

to illumination and the exterior environment. Particularly

for safety critical applications, as is common in the automo-

tive industry, it would be of interest to reduce the amount of

different illumination conditions necessary to guarantee re-

liable inference of machine learning models. Improvements

on the aforementioned invariances would reduce the amount

of mileage and images needed to be recorded and hence re-

duce the financial risk and time investment while improving

the overall robustness of the deployed system.
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We aim to transform the input image by removing il-

lumination and environmental features instead of comput-

ing more robust and invariant feature descriptors like SIFT

[17] or enforcing illumination invariance in deep neural net-

works through data augmentation. We achieve this by ex-

ploiting the availability of sceneries under different illu-

mination and/or environmental conditions. We will intro-

duce a partially impossible reconstruction loss in Section

3.1 which enforces similarity in the latent space of encoder-

decoder models implicitly, in opposition to an explicit con-

straint [2, 31]. In contrast to shadow removal [29, 22] or

relighting [28, 30], our method removes all the illumination

and environmental features together. Our method is nei-

ther limited to a specific application where prior knowledge,

e.g. about faces [30, 26], needs to be included, nor does it

need shadow and shadow-free image pairs [29, 22] to de-

fine a ground truth target. We highlight its applicability on

multiple datasets and provide evidence for the usefulness of

collecting images under these more challenging conditions.

Example results on multiple datasets are shown in Fig. 1.

In this work, we focus on the automotive application of

occupant classification in the vehicle interior rear bench to

demonstrate our proposed method’s applicability. To this

end, we release a synthetic dataset for occupant classifica-

tion in three vehicle interiors where each scenery is ren-

dered under ten different illumination and environmental

conditions. We will demonstrate the benefits of combining

an encoder-decoder based approach for illumination and en-

vironmental feature removal together with a triplet loss reg-

ularizer in the latent space. The latter improves the nearest

neighbour search on test samples and hence the reliability

and generalization to unseen samples. We quantitatively as-

sess this improvement based on the classification accuracy.

Our key contributions can be summarized as follows:

• We introduce a partially impossible reconstruction cost

function in encoder-decoder models to remove illumi-

nation and environmental features,

• We highlight the importance of a triplet loss regular-

izer in the latent space of encoder-decoder models to

improve generalization to unseen sceneries,

• We release the SVIRO-Illumination dataset, which

contains 1500 sceneries (once with people only and

once with child and infant seats) from three vehicle

interiors, where each scene is rendered under 10 dif-

ferent illumination and environmental conditions.

2. Related Work

Datasets: Recording identical, or similar, sceneries under

different lightning or environmental conditions is a chal-

lenging task. Large scale datasets for identical sceneries

under different lightning conditions are currently scarce.

The Deep Portrait Relighting Dataset [32] is based on the

CelebA-HQ [14] dataset and contains human faces un-

der different illumination conditions. However, the re-

illumination has been added synthetically. Regarding the

latter constraint, we instead used the Extended Yale Face

Database B [8], which is a dataset of real human faces

with real illumination changes. While cross-seasons corre-

spondence datasets prepared according to [16] and based on

RobotCar [18] and CMU Visual Localization [4] could po-

tentially be used for our investigation, the correspondences

are usually not exact enough to have an identical scene

under different conditions. Moreover, dominantly visible

changing vehicles on the streets induce a large difference in

the images. Alternative datasets such as St. Lucia Multi-

ple Times of Day [9] and Nordland [21] suffer from simi-

lar problems. However, these datasets stem from the image

correspondence search, place recognition and SLAM com-

munity. We adopt the Webcam Clip Art [15] to include a

dataset for the exterior environment with changing seasons

and day times instead. The latter contains webcam images

of outdoor regions from different places all over the world.

Consistency in latent space: Existing encoder-decoder

based methods try to represent the information from mul-

tiple domains [2] or real-synthetic image-pairs [31] identi-

cally in the latent space by enforcing some similarity con-

straints, e.g. the latent vectors should be close together.

However, these approaches often force networks to recon-

struct some (or all) of the images correctly in the decoder

part. Forcing an encoder-decoder to represent two images

(e.g. same scenery, but different lightning) identically in the

latent space, yet simultaneously forcing it to reconstruct

both input images correctly implies an impossibility: The

decoder cannot reconstruct two different images using the

same latent space. Antelmi et al. [2] adopted a differ-

ent encoder-decoder for each domain, but as illumination

changes are continuous and not discrete, we cannot have a

separate encoder or decoder for each possible illumination.

Shadow removal and relighting: Recent advances in por-

trait shadow manipulation [30] try to remove shadows cast

by external objects and to soften shadows cast by the facial

features of the subjects. While the proposed method can

generalize to images taken in the wild, it has problems for

detailed shadows and it assumes that shadows either belong

to foreign or facial features. Most importantly, it assumes

facial images as input and exploits the detection of facial

landmarks and their symmetries to remove the shadows.

Other shadow removal methods [29, 22] are limited to sim-

pler images. The backgrounds and illumination are usually

quite uniform and they contain a single connected shadow.

Moreover, the availability of shadow and shadow-free im-

age pairs provides the means of a well defined ground truth.

However, this is is not possible for more complex scenes

and illumination conditions for which a ground truth is not
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available or even impossible to define. Image relighting

[28, 32] could potentially be used to change the illumina-

tion of an image to some uniform illumination. However, as

noted in [28, 30] relighting struggles with foreign or harsh

shadows. While it is possible to fit a face to a reference

image [26], this option is limited to facial images as well.

3. Method

We will introduce our proposed partially impossible cost

function for encoder-decoder networks to exploit the avail-

ability of identical sceneries under different lightning con-

ditions. We will suggest to extend our method by applying

a triplet loss regularizer in the latent space to improve gen-

eralization. This induces some useful properties such that

more robust and reliable results on unseen test samples can

be achieved by adopting the nearest neighbour search.

3.1. Partially impossible reconstruction loss

Our proposed partially impossible reconstruction cost

function can be applied to any encoder-decoder neural net-

work architecture. Instead of considering the standard au-

toencoder reconstruction loss defined as the difference be-

tween the input image and the decoder reconstruction, we

formulate an alternative reconstruction loss based on the de-

coder reconstruction and a new variation of the input image.

Let X be the set of all training images and xk be the

kth scene of the training data. For each scene we have n

images, where each image represents the same scene under

different lightning and/or environmental conditions. We de-

note by x
j
k the jth image out of the n images for scene k.

Hence, the training data can be expressed as x
j
k ∈ X for

k ∈ [0, N ] and j ∈ [0, n], where N is the total number of

unique scenes. Moreover, x
j
k ∈ xk for j ∈ [0, n]. Denote

by Xm ⊂ X a subset containing m number of sceneries

from all the sceneries available in the training data. During

training, the batches iterate over the xk and for each xk we

randomly select a, b ∈ [0, n], a 6= b to get xa
k, x

b
k ∈ xk.

Finally, xa
k is considered input to the encoder-decoder net-

work and xb
k is considered as the target for the reconstruc-

tion loss. The aforementioned method is illustrated in Fig.

2. The reconstruction loss can hence be formulated as

LR(Xm; θ, φ) =

m
∑

k=0

r
(

hθ(gφ(x
a
k)), x

b
k

)

, (1)

where gφ is the encoder and hθ the decoder. The recon-

struction loss r(·, ·) is computed between the reconstruction

of the input image xa
k and an image of the same scene un-

der different environmental conditions xb
k. In this work, we

consider for the reconstruction loss the structural similarity

index (SSIM) [5]: r(a, b) = 1− SSIM(a, b), but alternative

image comparison functions can be considered as well.

Figure 2: For each scenery xk, we randomly select two im-

ages xa
k and xb

k under different lightning and environmental

conditions. One is considered as input xa
k to the encoder,

the other one as target image xb
k for the reconstruction.

Our cost function formulation implies a partially impos-

sible task to solve. The input image xa
k does not convey

enough information to perfectly reconstruct the same scene

under different environmental conditions xb
k in its entirety.

While xa
k contains, usually, all the information of the ob-

jects in the scene, it does not contain any information about

the illumination or environmental condition of xb
k. How-

ever, both images are similar enough such that the encoder-

decoder model can learn to focus on what is important, i.e.

the salient features (e.g. people). Consequently, the only

possibility for the neural network to minimize the loss is to

focus on the objects in the scene which remain constant and

neglect all the lightning and environment information, be-

cause the input images do not include information on how

to handle it correctly. This implies that the neural network

implicitly learns to focus the reconstruction on the people,

objects and vehicle interior and to average out all the other

information which changes between the similar scenes, e.g.

the illumination and environment. This can be observed

in Fig. 5 where we compare the reconstruction of simi-

lar sceneries after training: all background information and

lightning conditions has either been removed or replaced by

constant values. The encoder learns to remove the illumina-

tion information. The decoder is light invariant and cannot

produce different illuminations, since the information has

already been removed in the latent space representation.

Our proposed method is not limited to having the same

scenery under different illumination conditions. One could

use different augmentation transformations on the same in-

put image xk to form xa
k and xb

k and hence create the im-

ages on the fly. Alternatively, one could apply a reverse

denoising approach where only xb
k is augmented and xa

k is

the clean input image. See Fig. S1 in the supplementary

material for an example for both approaches.

3.2. Triplet loss and nearest neighbour search

While the aforementioned method works well on the

training data, generalizing to unseen test images remains

a challenging task if no additional precautions are taken.
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The illumination is still removed from test samples, but the

reconstruction of the objects of interest can be less stable.

As training data is limited, the encoder-decoder network is

mostly used as a compression method instead of a genera-

tive model. Consequently, generalizing to unseen variations

cannot trivially be achieved. Example of failures are plotted

in Fig. 6 and Fig. 10: it can be observed, that the applica-

tion on test images can cause blurry reconstructions. It turns

out that the blurry reconstruction is in fact a blurry version

of the reconstruction of its nearest neighbour in the latent

space (or a combination of several nearest neighbours). An

example of a comparison of the five nearest neighbours for

several encoder-decoder models is shown in Fig. 9.

Consequently, instead of reconstructing the encoded test

sample, it is more beneficial to reconstruct its nearest neigh-

bour. However, applying nearest neighbour search in the

latent space of a vanilla autoencoders (AE) or variational

autoencoders (VAE) will not provide robust results. This is

due to the fact that there is no guarantee that the learned la-

tent space representation follows an L2 metric [3]. As the

nearest neighbour search is (usually) based on the L2 norm,

the latter will hence not always work reliably.

To this end, we incorporated a triplet loss [13] in the la-

tent space of the encoder-decoder model (TAE) instead. Us-

ing the same notations, the triplet loss can be defined as

LT (Xm;φ) =

m
∑

k=0

max
(

0,
∥

∥gφ(x
a,a
k )− gφ(x

a,p
k1

)
∥

∥

2

−
∥

∥gφ(x
a,a
k )− gφ(x

a,n
k2

)
∥

∥

2

+ α
)

,

(2)

where x
a,a
k is the anchor using scenery k, x

a,p
k1

is the pos-

itive sample using a different scenery k1 and x
a,n
k2

is the

negative sample using another scenery k2. An illustration

of the nearest neighbour inference is given in Fig. 3 and

for the triplet loss in Fig. S2. The triplet loss acts as a reg-

ularizer and due to its definition, it will also induce an L2

norm in the latent space [20, 6, 3]. This effect is highlighted

in Fig. 9, where we compare the nearest neighbours of the

AE, VAE and TAE. To take full advantage of the triplet se-

lection, we also modified the reconstruction loss (1) such

that it is computed for each of the triplet samples:

LR(Xm; θ, φ) =

m
∑

k=0

r
(

hθ(gφ(x
a,a
k )), xb,a

k

)

+ r
(

hθ(gφ(x
a,p
k1

)), xb,p
k1

)

+ r
(

hθ(gφ(x
a,n
k2

)), xb,n
k2

)

,

(3)

where we take for each input image x
a,·
·

a different random

output image x
b,·
·

. Consequently, the total loss is defined as

L(Xm; θ, φ) = LR(Xm; θ, φ) + LT (Xm;φ). (4)

Figure 3: During inference, we choose the nearest neigh-

bour (red arrow) of the latent space vector of the input image

(blue cross) from all the training latent space vectors (gray

crosses). This vector can be used to reconstruct a clean im-

age or as classification prediction by using its label.

Figure 4: Example scenery from SVIRO-Illumination. The

same scenery under eight (out of ten) different illumination

and external environments. Left seat: adult passenger, mid-

dle seat:empty and right seat: infant seat with a baby.

4. Experiments

We will present an analysis of the aforementioned

properties, problems and improvements on the SVIRO-

Illumination dataset to highlight the benefit of our design

choices. We will present results on two additional publicly

available datasets to show the applicability of our proposed

cost function to other problem formulations as well.

4.1. Training details

We center-cropped the images to the smallest image di-

mension and then resized it to a size of 224x224. We used

a batch size of 16, trained our models for 1000 epochs and

did not perform any data augmentation. We used the Adam

optimizer and a learning rate of 0.0001. Image similarity

between target image and reconstruction was computed us-

ing SSIM [5]. We used a latent space of dimension 16. The

model architecture is detailed in Table S1 in the supplemen-

tary material: it uses the VGG-11 architecture [27] for the

encoder part and reverses the layers together with nearest

neighbour up-sampling for the decoder part. However, our

proposed cost function is not limited to the model’s archi-

tecture choice. We used PyTorch 1.6, torchvision 0.7 and

pytorch-msssim 2.0 [11] for all our experiments.

4.2. SVIRO­Illumination

Based on the recently released SVIRO dataset [7], we

created additional images for three new vehicle interiors.

For each vehicle, we randomly generated 250 training and

250 test scenes where each scenery was rendered under 10
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different illumination and environmental conditions. We

created two versions: one containing only people and a sec-

ond one including additionally occupied child and infant

seats. We used 10 different exterior environments (HDR im-

ages rotated randomly around the vehicles), 14 (or 8) human

models, 6 (or 4) children and 3 babies respectively for the

training and test split. The four infant and two child seats

have the same geometry for each split, but they use differ-

ent textures. Consequently, the models need to generalize

to new illumination conditions, humans and textures. There

are four possible classes for each seat position (empty, in-

fant seat, child seat and adult) leading to a total of 43 = 64
classes for the whole image. Examples are shown in Fig. 4

and Fig. S3-S5 in the supplementary material.

4.2.1 Reconstruction results

For the triplet loss sampling, we chose the positive sample

to be of the same class as the anchor image (but from a dif-

ferent scenery) and the negative sample to differ only on one

seat (i.e. change only the class on a single seat w.r.t. the an-

chor image). Images of three empty seats do no contain any

information which could mislead the network, so to make it

more challenging, we did not use them as negative samples.

After training, the encoder-decoder model learned to re-

move all the illumination and environmental information

from the training images. See Fig. 5 for an example on

how images from the same scenery, but under different il-

lumination, are transformed. Sometimes, test samples are

not reconstructed reliably. However, due to the triplet con-

straint and nearest neighbour search, we can preserve the

correct classes and reconstruct a clean image: see Fig. 6

for an example. The reconstruction of the test image latent

vector produces a blurry person, which is usually a combi-

nation of several nearest neighbours. The reliability of the

class preservations is investigated in Section 4.2.3 based on

the classification accuracy. We want to emphasize that the

model is not learning to focus the reconstruction to a single

training image for each scenery. In Fig. 7 we searched for

the closest and furthest (w.r.t. SSIM) input images of the

selected scenery w.r.t to the reconstruction of the first input

image. Moreover, we selected the reconstruction of all in-

put images which is furthest away from the first one to get

an idea about the variability of the reconstructions inside a

single scenery. While the reconstructions are stable for all

images of a scenery, it can be observed that the reconstruc-

tions are far from all training images. Hence, the model

did not learn to focus the reconstruction to a single training

sample, but instead learned to remove all the unimportant

information from the input image. The shape and features

of the salient objects are preserved as long as their position

remains constant in each image, e.g. see Fig. 11 for vehicles

being removed if not contained in each image. The texture
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Figure 5: The encoder-decoder model transforms the input

images of a same scenery (first row) into a cleaned version

(second row) by removing all illumination and environment

information (see the background through the window)

In
p

u
t

R
ec

o
n

N
N

-R
ec

o
n

Figure 6: The test image (first row) cannot be reconstructed

perfectly (second row). However, choosing the nearest

neighbour in the latent space and reconstructing the latter

leads to a class preserving reconstruction (third row).

First recon Max recon Closest input Furthest input

Figure 7: The reconstruction of the first scenery input image

(first recon) is compared against the furthest reconstruction

of all scenery input images (max recon). First recon is also

used to determine the closest and furthest scenery input im-

ages. The encoder-decoder model does not learn to focus

the reconstruction to a training sample.

of the salient objects is uniformly lit and smoothed out.

4.2.2 AE vs. VAE vs. TAE

For visualization purposes, we trained a vanilla autoen-

coder (AE), variational autoencoder (VAE) and triplet au-

toencoder (TAE) on the SVIRO-Illumination dataset with

people and empty seats only. For simplicity of visualiza-
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(a) Autoencoder (b) Variational Autoencoder (c) Triplet Autoencoder

Figure 8: Comparison of training data latent space distributions for different regularizers in the latent space of encoder-

decoder models. Different colors represent different classes. For each seat position, we either have 0 (empty) or 3 (adult)

such that an image is a composition of three labels, e.g. for 3-0-3 an adult is sitting left and right. Some classes are under-

represented and some samples are clustered close together: those are identical sceneries under different lightning conditions.

tion, we chose a latent space dimension of 2 for the model

definition. After training, we computed the latent space rep-

resentation for all training samples and plotted the resulting

distributions in Fig. 8. The triplet based encoder-decoder

model separates and clusters the classes best. Some small

clusters are due to under-represented classes, for which the

model clusters images from the same scenery under differ-

ent illuminations together. The AE uses a large range of

possible values in the latent space and both the AE and VAE

contain wrong classes inside other clusters. The test distri-

bution is plotted in Fig. S6 in the supplementary material

and highlights the additional benefit of the TAE for poten-

tial outlier detection. Moreover, we show in Fig. S7 and

Fig. S8 that a 2-dimensional principal component analysis

and T-SNE projection of a 16-dimensional latent space pro-

vides even further benefits when a TAE is used. The same

models were trained with a latent space dimension of 16 in-

cluding occupied child and infant seats. The classification

results obtained by nearest neighbour search are compared

against several other models in Section 4.2.3. The TAE out-

performs the other encoder-decoder models w.r.t. accuracy.

We needed to adjust the weight in the loss for the KL

divergence (regularizer w.r.t. Gaussian prior) to β = 0.001
for training the VAE and prevent mode collapses. This is

due to the background of the vehicle interior which is dom-

inant in all training samples and remains similar.

It is important to note that the comparison between AE,

VAE and TAE is not entirely fair, because the latter implic-

itly uses labels during the positive and negative sample se-

lection. Nevertheless, for the problem formulations at hand,

it is beneficial to collect the classification labels considering

the additional advantage of the induced L2 norm in the la-

tent space and improved classification accuracy.

4.2.3 Classification results

We further compared the classification accuracy of our pro-

posed method together with the nearest neighbour search

against vanilla classification models when the same train-

ing data is being used. This way, we can quantitatively es-

timate the reliability of our proposed method against com-

monly used models. To this end, we trained baseline clas-

sification models (ResNet-50 [12], VGG-11 [27] and Mo-

bileNet V2 [25]) as pre-defined in torchvision on SVIRO-

Illumination. For each epoch, we randomly selected one

x
j
k ∈ X for each scenery xk. The classification models

were either trained for 1000 epochs or we performed early

stopping with a 80:20 split on the training data. We further

fine-tuned pre-trained models for 1000 epochs. The triplet

based autoencoder model is being trained exactly as before.

During inference, we take the label of the nearest training

sample as the classification prediction. The random seeds

of all libraries were fixed for all experiments and cuDNN

was used in deterministic mode. Each setup was repeated 5

times with 5 different (but the same ones across all setups)

seeds. Moreover, the experiments are repeated for all three

vehicle interiors. The mean classification accuracy over all

5 runs together with the variance is reported in Table 1. Our

proposed method significantly outperforms vanilla classifi-

cation models trained from scratch and the models’ perfor-

mances undergo a much smaller variance. Moreover, our

proposed method outperforms fine-tuned pre-trained classi-

fication models, despite the advantage of the pre-training of

these models. Additionally, we trained the encoder-decoder

models using the vanilla reconstruction error between input

and reconstruction, but using the nearest neighbour search

as a prediction. Again, including our proposed reconstruc-

tion loss improves the models’ performance significantly.

1464



Input Recon 1st 2nd 3rd 4th 5th

(a) Autoencoder

(b) Variational Autoencoder

(c) Triplet Autoencoder

Figure 9: Comparison of the reconstruction of the 5 nearest

neighbours (columns 3 to 7) for different encoder-decoder

latent spaces (a), (b) and (c). The reconstruction (second

column) of the test sample (first column) is also reported.

The triplet regularization is by far the most reliable and con-

sistent one across all 5 neighbours. Notice the class changes

across neighbours for the AE and VAE models.

4.3. Extended Yale Face Database B

The Extended Yale Face Database B [8] contains images

of 28 human subjects under 9 poses. For each pose and

human subject, the same image is recorded under 64 illumi-

nation conditions. We considered the full-size image ver-

sion instead of the cropped one and used 25 human subjects

for training and 3 for the testing. We removed some of the

extreme dark (no face visible) illumination conditions. Ex-

ample images from the dataset are plotted in Fig. 10.

For the triplet sampling we chose as a positive sample an

image with the same head pose and for the negative sample

an image with a different head pose. We report qualitative

results of a trained model in Fig. 10. The model is able

Table 1: Mean accuracy and variance over 5 repeated

training runs on each of the three vehicle interiors. F

= fine-tuned pre-trained model, ES=early stopping with

80:20 split, NS=no early stopping and V=vanilla recon-

struction loss. Our proposed reconstruction loss improves

the encoder-decoder vanilla version and with the nearest

neighbour search outperforms all other models significantly.

Vehicle

Model Cayenne Kodiaq Kona

MobileNet-ES 62.9 ± 3.1 71.8 ± 4.3 73.0 ± 0.8

VGG11-ES 64.4 ± 35 74.0 ± 19 75.5 ± 5.7

ResNet50-ES 72.3 ± 3.7 77.9 ± 35 76.6 ± 9.9

MobileNet-NS 72.7 ± 3.8 77.0 ± 4.1 77.4 ± 2.2

VGG11-NS 74.1 ± 5.8 71.2 ± 14 78.4 ± 2.6

ResNet50-NS 76.2 ± 18 83.1 ± 1.1 82.0 ± 3.2

MobileNet-F 85.8 ± 2.0 90.6 ± 1.2 88.6 ± 0.6

VGG11-F 90.5 ± 2.0 90.3 ± 1.2 89.2 ± 0.9

ResNet50-F 87.9 ± 2.0 89.7 ± 6.1 88.5 ± 1.0

AE-V 74.1 ± 0.7 80.1 ± 1.8 73.3 ± 0.9

VAE-V 73.4 ± 1.3 79.5 ± 0.6 73.0 ± 0.9

TAE-V 90.8 ± 0.3 91.7 ± 0.2 89.9 ± 0.6

AE (ours) 86.8 ± 0.3 86.7 ± 1.5 86.7 ± 0.9

VAE (ours) 81.4 ± 0.5 86.6 ± 0.9 85.9 ± 0.8

TAE (ours) 92.4 ± 1.5 93.5 ± 0.9 93.0 ± 0.3

to remove lightning and shadows from the training images,

but the vanilla reconstruction on test samples can be blurry.

We are not using the center cropped variant of the dataset,

which makes the task more complicated, because the head

is not necessarily at the same position for different human

subjects. Nevertheless, the model is able to provide a near-

est neighbour with a similar head pose and head position.

4.4. Webcam Clip Art

The Webcam Clip Art [15] dataset consists of images

from 54 webcams from places all over the world. The im-

ages are recorded continuously such that a same scenery is

available for different day times, seasons and weather con-

ditions. For each of the 54 regions, we selected randomly

100 sceneries. Example images are provided in Fig. 11.

For the triplet sampling, we chose as positive sample an

image from the same location and for the negative sam-

ple an image from a different location. Each landscape
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Figure 10: Examples for Extended Yale Face Database B.

All the illumination information is removed from the train-

ing samples (first row) to form the reconstruction (second

row). The test samples (third row) cannot always be recon-

structed reliably (fourth row). However, by reconstructing

the nearest neighbour (fifth row) the head pose and position

of the head can be preserved and the illumination removed.

In
p

u
t

R
ec

o
n

Figure 11: Examples for the Webcam Clip Art dataset.

The encoder-decoder model removes the environmental fea-

tures from the images (first row) to form the output images

(second row). Vehicles and people are removed from the

scenery and skies, rivers and beaches are smoothed out.

and building arrangement undergoes unique shadow, illu-

mination and reflection properties. The generalization to

unknown places under unknown illumination conditions is

thus too demanding to be deduced from a single input im-

age. Hence, we do not provide a test evaluation and report

results on training samples only in Fig. 11. The model re-

moves the illumination variations and shadows from the im-

ages. Moreover, rivers, oceans and skies as well as beaches

are smoothed out. Most of the people and cars are removed

and replaced by the actual background of the scenery.

5. Limitations

Our proposed method works well on the training data,

which can be sufficient for some applications, e.g. when

a fixed dataset is available on which some post-processing

needs to be done only. Since the generalization to test im-

ages can be achieved by a nearest neighbour search, the

latter will only be useful for a subset of machine learning

tasks. Our method preserves the classes for a given prob-

lem formulation, which will be fine for classification and

object detection. Although our method preserves even head

poses (e.g. Fig. 10) when it is dominantly present in the

training images, our approach will likely not preserve com-

plex human poses (e.g. Fig. 6) or detailed facial landmarks,

because the body poses and key features are not necessar-

ily preserved by the nearest neighbour search. Future work

should try to incorporate constraints such that the poses and

landmarks of test samples are preserved as well.

In practise, it will be challenging to record identical

sceneries under different lightning conditions. However,

as the Extended Yale Face Database B [8] and Webcam

Clip Art [15] dataset have shown, it is also feasible. Since

we have highlighted the benefit of the acquisition of said

datasets, the investment of recording under similar condi-

tions in practise can be worth for some applications. We

believe that future work will develop possibilities to facili-

tate the data acquisition process. Moreover, the possibility

to incorporate images taken for the same scene, but in less

perfect conditions, should be explored (e.g. Fig. S1).

6. Conclusion

Our results show the benefit of recording identical

sceneries under different lightning and environmental con-

ditions such that unwanted features can be remove by a par-

tially impossible reconstruction loss function: without the

need for a ground truth target image. Our method works

well for classification and post-processing tasks due to an

enhanced nearest neighbour search induced by a triplet loss

regularization in the latent space of an encoder-decoder net-

work. We demonstrated the universal applicability of our

proposed method, as long as the correct data (i.e. same

scenery under different conditions) is available, on three dif-

ferent tasks and datasets. Moreover, our proposed method

improves classification accuracy significantly compared to

standard encoder-decoder and classification models, even

when the latter was a fine-tuned pre-trained model.
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