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Abstract

Human-Object Interaction detection from a video clip

can be considered as a special case of video-based Visual-

Relationship Detection wherein the subject must be a hu-

man. Specifically, it involves detecting the humans and

objects in the clip as well as the interactions between

them. Conventionally, the problem has been formulated as a

space-time graph inference problem over the video clip fea-

tures. In this work, we explore alternate spatial approaches

for detecting Human-Object Interactions. We consider a

hierarchical setup that decouples spatial and temporal as-

pects of the problem and analyse the impacts of a variety

of design choices for the spatial networks. Particularly,

to capture spatial relationships in the scene, we analyze

the effectiveness of the traditionally used Graph Convolu-

tional Networks against Convolutional Networks and Cap-

sule Networks. Unlike current approaches, we avoid using

ground truth data like depth maps or 3D human pose dur-

ing inference, thus increasing generalization across non-

RGBD datasets as well. We demonstrate a comprehensive

analysis of the exploration, both quantitatively and quali-

tatively, while achieving state-of-the-art results in human-

object interaction detection (88.9% and 92.6%) and antic-

ipation tasks of CAD-120 and competitive results on im-

age based HOI detection in V-COCO dataset, setting a new

benchmark for visual features based approaches.

1. Introduction

Visually understanding a scene as depicted in an image

or video is one of the fundamental problems of Computer

Vision. It builds on top of existing sub-problems like ob-

ject detection, activity recognition, saliency estimation, etc.

Humans are, arguably, one of the most important entities to

understand. As such, understanding human activities and

the way humans interact with the surrounding environment

becomes a crucial and interesting problem to solve. In this

work, we investigate this problem of identifying Human-

Object Interactions from videos. Given a video stream, the

goal is to identify the objects interacting with the humans

while also estimating the kind of interaction, eg., holding

the cup, placing the bowl, moving the furniture, etc. The

availability of such information can be crucial in higher or-

der tasks, such as human-motion prediction, scene genera-

tion, etc. Furthermore, such information has the potential

to facilitate downstream applications such as unmanned su-

permarkets, surgery documentation, robotics, etc.

In this work, we investigate the possible solutions to

the HOI-from-video problems, with special focus on spa-

tial model design - the relative ordering of the subjects and

objects in the scene and its effects on interaction detec-

tion. There have been a significant number of works that

model the spatial relationships in the form of Graphs. The

subjects, object and relationships, typically act as nodes

while the edges correspond to the potentials indicating the

strengths of associations. The graphs may be processed us-

ing message-passing alorithms [21] or Graph Convolutional

Networks [47, 38] (GCNs). As an alternative, CNNs have

also been used for spatial models in prior works [52] with

the model being fed the object/human regions as inputs.

Recently, Capsule Networks [11, 43, 42], with multiple

variations, have been proposed as models capable of inher-

ently being able to reason about the spatial information in

the scene. Furthermore, past works have demonstrated their

ability to learn the part-to-whole relationships in the scene

without having to memorize the same from thousands of

data points. We hypothesize that this ability makes Cap-

sule Networks a potentially suitable spatial network to cap-

ture the relationships between the objects and humans in the

video effectively.

There has been a significant amount of research on HOI

with images [56, 38, 26, 52, 18], thanks to the availability

of V-COCO [13] and HICO [2] datasets. However, learning

human-object interactions within videos is challenging and

relatively less explored owing to multiple reasons. Firstly, it

requires the model to account for the changing orientations

of objects in the scene with respect to the humans. This

makes it difficult to extend the image-based approaches that

use the RoI features of the union of human and object to

the video setting. Secondly, the unavailability of large scale
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Figure 1. Illustration of human-object interaction detection in video (CAD-120) setting

video datasets (except CAD-120 [20]) makes it difficult to

train an HOI model that is generic, and performs well for

in-the-wild videos. Finally, the interaction definitions tend

to become confusing when defined for a video, e.g., placing

vs. moving vs. reaching, opening a jar vs. closing a jar,

etc. In spite of these challenges, videos allow for exploiting

temporal visual cues that are, otherwise, absent in images.

Most existing methods are designed to work in either

the image setting [56, 26, 52], or the video setting [21, 16]

but not both. Recently, Qi et. al. [38] proposed a graph-

parsing based method that caters to both the settings. While

the method indeed achieves state-of-the art results in video

setting, it does so by using carefully designed and pre-

computed hand-crafted features such as SIFT [36] trans-

forms, object centroids, 3D poses, object depths, etc., which

were originally proposed in [20]. It is worth noting that

these features were derived from the ground-truth data pro-

vided in the CAD-120 dataset. Thus, it is expected that us-

ing ground-truth based features for estimating HOI would

not allow the method to perform equally well on in-the-wild

videos because such features may either not be available

(3D pose) or may be noisy and inconsistent across frames

(object bounding boxes, centroids, etc.).

With these caveats in mind, we work on a hybrid ap-

proach that argues about the spatio-temporal relationships

between the humans and the objects at multiple levels of hi-

erarchy. The method is designed to infer from videos and

does not rely on hand-crafted features. We use pure visual

features derived from a re-trainable off-the-shelf network to

represent the inputs to the network and demonstrate strong

performance on the CAD-120 dataset. Specifically, we use

a two-level architecture which, i) performs spatial embed-

ding extraction from the video and learns temporal reason-

ing functions at the frame level, followed by ii) a segment

level temporal network which learns inter-segment tempo-

ral cues from previous segments, for regressing the human

subactivities and object affordances. This choice of using

de-coupled networks for spatial and temporal modeling al-

lows us to experiment with two spatial models: Capsule

Networks and Graph Convolutional Networks. Both the

networks have the potential to argue about complex spatial

relationships, when provided with suitable inputs. The tem-

poral functions rely on sequence models such as RNNs and

LSTMs which are designed to learn the temporal relation-

ships between human-object pairs across the video.

Despite not using the ground truth based pre-computed

features and in spite of the small amount of data avail-

able for training from videos, our visual input based model

achieves state-of-the-art performance on subactivity, affor-

dance detection tasks, setting a strong baseline for the future

of such methods. When used with the segment level pre-

computed features, the segment-level temporal model of

our proposal performs at par with the state-of-the-art meth-

ods. Finally, despite being designed for video-based tasks,

our method also demonstrates competitive performance on

the V-COCO dataset that corresponds to the image setting.

In the supplementary material, we qualitatively illustrate

the improved performance of our trained models, vis-a-vis

state-of-the-art spatio-temporal model [38] on several ‘in-

the-wild’ videos and images. As anticipated, use of ground-

truth based features does not help [38] generalize to settings

that are significantly different from the training data.

In summary, we make three contributions in this paper:

First, we propose a generalizable, multi-level method for

identifying Human-Object Interactions from videos. Sec-

ond, We analyze multiple architectures for modeling the

spatial relationships between the objects and the humans in

the scene. Third, we show how our method naturally lends

itself to static, image-based settings.

2. Related Work

A key element of scene understanding is human per-

ception and human cognition. Human perception involves

inferring the physical attributes about the humans such

as in the case of detection [7, 60, 54, 41], pose recogni-

tion [33, 6, 30, 12, 51, 5], shape identification [17, 34],

clothing recognition [35, 25], etc.. On the other hand,

human cognition seeks to reason about the finer details

relating to human behaviour [40, 31], human activ-

ity [8, 58, 29, 32, 59], human-object visual relationship

detection [45, 39, 48, 28, 50, 44], and human-object inter-

actions [49, 38, 52, 45, 39, 48, 28, 50, 44]. Human-Object

Interaction detection has been a well researched problem.
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In this section, we discuss the existing literature from two

broad viewpoints: static (images) and dynamic (videos).

HOI from images: A significant amount of

work [58, 15, 57, 8] in this area pre-dates the deep

learning advent. However, deep learning based meth-

ods [46, 1, 61, 3, 14, 53, 10, 37], bolstered by the

availability of large amounts of in-the-wild training

data [13, 2] have lead to significantly improved per-

formance in HOI detection. Among such methods, Li

et. al. [26] proposed to learn the knowledge about the

interactiveness between the humans and object categories

from HOI datasets and use this knowledge as a prior while

performing HOI detection. Several methods have attempted

to leverage the human pose information in their pipelines.

Wan et. al. [52] propose a pose-aware network architecture

that employs a multi-level feature strategy. Likewise, Xu

et. al. [55] use the human pose features in conjunction

with the gaze estimates to discover human intentions,

which are then used for HOI detection. Since the HOI

problem is well-suited for graph-based representations,

Graph Convolutional Networks have been regularly used to

model the interactions. In this line of work, Xu et. al. [56]

propose to deal with long-tail HOI categories by modeling

underlying regularities among verbs and objects. They

do so by constructing a knowledge graph and enforcing

similarity of graph embeddings derived from a GCN with

visual feature embeddings derived from a CNN using a

triplet-loss. Qi et. al. [38] propose GPNN, a method

that uses an iterative message passing framework on a

parse graph comprising of verbs and objects as nodes.

Our work is inspired by graph based methods in that we

represent humans and objects as graph nodes and learn

their interactions based on the image-based node features.

HOI from Video: The HOI labels predicted in this task

are typically indicative of an activity spanning over a period

of time. Therefore, utilizing temporal cues in a video

setting is naturally expected to provide important insights

on the interactions and thereby benefit the HOI detection.

Albeit less, there have also been significant contributions

towards research on HOI detection in videos, mostly on the

CAD-120 dataset. Koppula et. al. [20] proposed the dataset

and introduced an MRF base formulation for handling

spatio-temporal requirements. The authors hand-crafted a

set of features for humans (pose, displacement of joints,

etc.) and objects (3D centroids, transforms of SIFT matches

between adjacent frames, etc). Instead of being used at

the frame-level, these features, put together, represented

a video segment as a whole. Since then, most existing

methods (deep learning and traditional methods alike) work

on the same segment level features. Qi et. al. [38] extend

their GPNN method for videos and construct a parse graph

for every video segment using the segment level features to

initialize the node and edge features in their parse graph.

Likewise, Jain et. al. [16] design a spatio-temporal graph

for performing structured predictions on a video consisting

of multiple segments. Kopulla et. al. [21] present ATCRF -

a CRF based approach that models anticipatory trajectories

of objects and humans.

While there have been remarkable improvements over

the years, we submit that there are two major areas for

improvement. Firstly, avoiding the usage of such hand-

crafted features, since the above approaches limit the scope

for in-the-wild HOI detections. More often than not, the

3D poses or 3D centroids of objects (used as features) are

either not available or are too erroneously estimated to

be simply plugged into a model trained on hand-crafted

features. Secondly, all the existing methods model temporal

relations only between multiple segments of a video. This

may be, partly, because the hand-crafted features discussed

above are defined for a segment as a whole. We believe that

there is scope for exploring temporal cues even at a more

fine-grained level, viz., frame-level. Using image-based

features facilitates the same.

We, therefore, propose an approach to model HOI rele-

vant spatial-structures from every frame of a segment and

further design a temporal aggregation regime using these

frame level structures. Again, such aggregation strategies

have proved to be extremely effective for problems such as

image labelling [23], entity-linking [24, 22] and text clas-

sification [4]. Deep-learning based computer vision mod-

els have enough representation power to be able to extract

meaningful visual features from images or videos. Thus,

our primary intent is to construct a model which can effec-

tively learn hierarchical HOI embeddings at a fine-grained

frame level as well as at a coarser segment level, using only

visual attributes, and set a new baseline for human-object

interaction detection in videos.

3. Our Approach

In this section, we present our approach for HOI detec-

tion on video. The HOI information in the videos is dealt

with at two levels of granularity. The first, and the coarser,

granularity corresponds to viewing the video as a sequence

of segments, with each segment representing an atomic in-

teraction. For example, a video may include a sequence

of segments such as: reaching for a jar, opening the jar,

and placing the jar back. The second, and finer, granularity

corresponds to dissecting each segment into its constituent

frames. Lastly, the visual features at the frame level provide

crucial spatial cues about the possible interactions. Our ar-

chitecture leverages these constructs and is outlined in Fig-

ure 2.
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Figure 2. Overall pipeline of our network. Given an input video segment with T frames and bounding box coordinates of the humans

and objects in every frame, we (a) first extract the visual features from ResNet-50. (b) These features are then processed in a per-frame

fashion by a Spatial Subnet. (c) The graph structure is disentangled and temporal cues between frames in a segment are learnt from spatial

features. (d) The frame-wise features are summarised into segment embeddings using attention mechanism and refined using inter-segment

relations, to regress the human subactivities and object affordances. Best viewed in colour and/or digitally with zoom.

3.1. The Proposed Learning Framework

Given an input video I = {I1, I2, . . . , IT } consisting

of T frames such that the video includes a single human

and N objects, our task is to regress human subactivities

(placing, opening, etc.), H = {H0, H1, . . . , HM} for the

human and object affordances (placable, openable etc.),

O = {O0,0, O0,1, . . . , ON,M} for each of the N objects

and M segments in the video. To this end, we propose a

pipeline consisting of three stages: (i) the spatial subnet, (ii)

the frame-level temporal subnet, and (iii) the segment-level

temporal subnet.

The spatial subnet feeds on an input frame It and learns

a set of embeddings φt ∈ R
Demb for each human and

θn,t ∈ R
Demb for each object. These per-frame, spatial

embeddings are then fed to the frame-level temporal subnet

that churns out the corresponding spatio-temporal embed-

dings, Φt ∈ R
Demb and Θn,t ∈ R

Demb , while also provid-

ing initial estimates of Hm and On,m, where m corresponds

to the segment index, and n corresponds to the object index.

The frame-level spatio-temporal embeddings are then con-

solidated for each segment using an attention mechanism

to produce AΦ
m and AΘ

n,m, and passed on to segment-level

temporal subnet that produces the final outputs for the sub-

activity and affordance estimates.

Traditionally, previous works have derived spatial fea-

tures not from the raw images, but from the ground-truth

data like depth of the objects, pose of the human and ob-

jects, etc. It is easy to see that such a construction prohibits

its use on any video for which depth information is unavail-

able. In this work, we do not use the depth-based features

and only rely on RGB inputs. Next, we now elaborate on

each step of the pipeline.

3.2. Spatial Subnet

As just discussed, the sole job of the spatial subnet is to

learn features relevant to the spatial ordering of the objects

and the human. Formally, the Spatial Subnet, S transforms

the features corresponding to the tth frame as φt = S(xv,t)
if v is a human node and θt = S(xv,t) if v corresponds to an

object node. At the end of the Spatial Subnet, the network

produces an intermediate feature set in R
T×(N+1)×Demb

space. To this end, we investigate three variants of the spa-

tial subnet based on their ability to effectively model the

spatial relationships.
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Figure 3. Architecture of Capsule Spatial Subnet. The object and

human features, derived from primary and secondary capsules,

are concatenated with the features of the global hull Igh (yellow

bbox). The subnet outputs spatial embeddings which are then pro-

cessed by the temporal subnet.

Capsule Network: Capsule Networks [11, 43] have

been proposed as an alternative to conventional CNNs for

inherently reasoning about the spatial organization and ro-

tation invariance of the scenes without having to memorize

the same across a large dataset. This, arguably, fits in the

requirements of an ideal spatial subnet. To this end, we pro-

pose a variant which uses capsule networks for spatial sub-

net. The schema of the Capsule Spatial Subnet is described

in Fig. 3. For each object O (and human) in frame t, the

capsule net is subjected to two inputs: the object (or human)

bounding box RoI features Io,t, and features of the global

hull Igh,t. The global hull is the super-bounding-box that

includes the human and all the objects. This design choice

is motivated by the requirement that network must be pro-

vided with enough image context. We do the same for the

human node. The input features are extracted by passing the

corresponding image crops through a ResNet network upto

the third last layer.

The network consists of a primary capsule layer fol-

lowed by a secondary capsule layer. The first layer creates

capsules out of the visual features individually, before the

global hull features are appended. At this point, the global

hull features and features from human/object hulls are ap-

pended in the following way. The human node capsules

input for the final layer are concatenation of human RoI fea-

tures and global hull RoI features. The object node capsules

are concatenation of object RoI features, human RoI fea-

tures and features from human-object hull. We use a 1×1

conv layer to preprocess the ResNet features of dimension

1024×14×14 into embeddings of dimension 256×14×14.

These embeddings are individually converted into primary

capsules. Routing is done on these capsules to produce sec-

ondary capsules. The final layer of capsules are flattened

and passed through a linear layer to get the output of di-

mension 1024. We perform capsule routing using the Vari-

ational Bayes Routing algorithm [42].

ConvNets: A direct substitute of the proposed Capsule

Network architecture in Fig.3 is by drop-in replacement of

the capsule layers in the netwok by convolutional layers.

Specifically, we subject the incoming image features corre-

Figure 4. Architecture of GCN Spatial Subnet. Each block aug-

ments the adjacency matrix by a learnable correction, B, and a

data-dependent course-correction, C. A residual connection is

added to facilitate faster training of the model

sponding to objects, humans and the global hull to multi-

ple convolutional layers which are then fused together, fol-

lowed by more convolutional layers. The embedding size,

Demb, remains the same.

Graph Convolutional Network: The spatial subnet

can also be modeled by a Graph Convolutional Network

(GCN) which lends itself naturally to the task at hand.

We define the graph G = (V, E), where the nodes V =
{1, 2, . . . , N + 1} correspond to N objects and one human

and E = (p, q) ∈ V × V .

We extract the node features xv,t ∈ R
Din corresponding

to the vth node (human/object) of the tth frame by feeding

the corresponding image crop Iv,t to an off-the-shelf feature

extractor F . Formally, xv,t = F (Iv,t). The edge weights

are initialized to be 1 for human-object edges and 0 for

the rest. The adjacency matrix is dynamically learnt while

training the Spatial Subnet. Unlike Capsule Networks, a

major challenge in GCN based formulation is to account

for variability in the number of nodes across segments in

a video. For example, a video may include the following

segments: picking a bowl (1 object), moving the bowl (1

object), putting the bowl in the microwave (2 objects). Typ-

ically, this number varies from two nodes to six nodes.

To alleviate this issue, the network is designed to learn

course-corrections to the adjacency matrix. As depicted in

Figure 4, every graph-convolution layer is followed by an

update of the adjacency matrix which involves addition of

the following two refinement components to the base ad-

jacency matrix A. The first is a learnable additive matrix,

B, that is learnt during the training process. The second is a

data-driven additive matrix, C, that is estimated uniquely for

every input. Note, that this formulation has overlaps with a

parallel proposal in [47]. However, unlike [47], we do not

operate in time dimension at the GCN level.

3.3. Frame­level Temporal Subnet

Once the per-frame spatial features for the graph are ex-

tracted, (in the case of video data such as CAD-120) we pro-

cess the graph features in time dimension, thus providing a

feature-panorama of the entire segment. As discussed ear-
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lier, temporal reasoning occurs in two granularities - frame

level and segment level. It is at this stage that we dis-

integrate the graph structure of the network and construct

individual feature sets for each node, aggregated over time.

These frame-level embeddings are subjected to a bidirec-

tional Recurrent Neural Network (RNN) which produces

two outputs for every frame:

For human nodes, given the input embeddings φt ∈
R

T×N×Demb , the frame-level bidirectional-RNN outputs

the estimates of human subactivity, Hm,t, and updates the

recurrent embedding, Φt ∈ R
Demb for frame t in segment

m. Note, that while the learnt embeddings are further fed

into the segment-level subnet, we also use them to clas-

sify subactivities and affordances for each frame to facilitate

stronger supervision. For object nodes, we concatenate

human node features along with the object node features

and feed it to the frame-level RNN which outputs the esti-

mates of object affordances On,m,t and updates the corre-

sponding recurrent embeddings, Θn,t ∈ R
Demb

The aggregated activity and affordance classification

scores at frame level are computed by taking a summation

of the sequential frame-wise scores output by the RNN. For-

mally, the frame-level subactivity prediction can be written

as: Hm = softmax(
∑

t Hm,t)
Loss Functions: Both the classifiers are subjected to

standard Cross-Entropy losses Lh and Lo corresponding

to human subactivities and object affordances, respectively.

The overall loss is a weighted sum of the two losses and can

be written as:

L = Lh + λLo

3.4. Segment­level Temporal Subnet

The previous subnet learns intra-segment temporal rela-

tions, but does not utilize the temporal information from

the previous segments of the video, thus lacking wider con-

text. The segment-level subnet learns inter-segment tempo-

ral cues by leveraging the context from previous segments

of the video. We use another RNN to model these relations.

Attention Mechanism: The input to the segment-level

RNN is a sequence of embeddings, AΦ
m, corresponding to

each segment for human nodes. We extract AΦ
m by sub-

jecting the frame-level embeddings, Φm,t to an attention

network that produces a single embedding for a segment.

Formally, AΦ
m =

∑
t at ∗ Φm,t, where at are the attention

weights produced by a Multi-Layered Perceptron (MLP).

Similar construction follows for the derivation of AΘ
m.

The summarized sequence of segment embeddings is fi-

nally processed by an RNN, to leverage temporal depen-

dencies from the previous segments for predicting human

subactivity and object affordances for the current segment.

We use the same loss functions for classifiers at both

frame-level and segment-level.

Table 1. A comparison of our approach with the existing methods.

Note that unlike ours, all the methods that we compare with have

been trained using hand-crafted features

F1 Score in %

Method Sub-activity Affordance

ATCRF [21] 80.4 81.5

S-RNN [16] 83.2 88.7

S-RNN (multi-task) [16] 82.4 91.1

GPNN [38] 88.9 88.8

Ours with Capsule Net 88.8 84.2

Ours with GCN 88.9 92.6

3.5. Implementation Details

We now discuss implementation details from two van-

tage points: model and training.

Model: Since the number of frames in a video segment

may vary significantly, we uniformly sample a fixed num-

ber of frames, T, from the segment (for our experiments

on CAD-120 dataset, we use T=20). We extract the RoI

crops from each frame and reshape them to a fixed size of

224 × 224 × 3 (input dimension for ResNet). For our ex-

periments, we use a pre-trained ResNet-50 backbone, which

produces 2048 dimensional embeddings (for the GCN), and

14 × 14 × 1024 dimensional embeddings (for the Capsu-

leNet) for each node. In order to incorporate the informa-

tion on positioning of humans and objects, we append nor-

malized bounding box coordinates of human/objects to their

respective visual node features. In the frame-level temporal

subnet, we use a two-layered bidirectional RNN and three-

layered unidirectional RNN network in the segment-level

temporal subnet.

Training: We use the PyTorch deep learning framework

for implementation. During training, we set λ = 2 for the

overall loss. We use the Adam [19] optimizer with initial

learning rate of 2× 10−5, learning rate decay factor of 0.8,

and decay step size of 10 epochs. We train the network

for a total of 300 epochs on Nvidia RTX 2080Ti GPU. We

performed a hyper-parameter sweep to empirically obtain

these configurations. Capsule Pooling [9] is performed for

the CapsuleNet to be able to train it on a single GPU. The

entire model is trained in two steps. Firstly, the model up to

frame-level temporal subnet is trained by aggregating clas-

sification scores from the T frames of the segment. Finally,

the entire model is trained in an end-to-end fashion, after

initializing the parameters from the pre-trained frame-level

model.

4. Experiments

We evaluate our model for the task of Human-Object In-

teraction detection on two datasets, viz., i) CAD-120 [20]

,and ii) V-COCO [13].

CAD-120 The CAD-120 dataset is a video dataset with
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120 RGB-D videos of 4 subjects performing 10 daily indoor

activities (e.g., making cereal, microwaving food). Each

activity is a sequence of video segments involving finer-

level activities. In each video segment, the human is an-

notated with an activity label from a set of 10 sub-activity

classes (e.g., reaching, pouring) and each object is anno-

tated with an affordance label from a set of 12 affordance

classes (e.g., pourable, movable). The frame-length of each

segment ranges from 22 to a little over 150 frames.

The metrics used for evaluating on the human-object in-

teraction tasks of CAD-120 dataset are: i) sub-activity F1-

score, and ii) object affordance F1-score computed for hu-

man sub-activity and object affordance classification.

V-COCO Crafted as a subset of the MS-COCO [27]

dataset, V-COCO is an image dataset that provides annota-

tions of Action labels for edges between human and object.

There are 26 action classes.

4.1. Evaluation on the CAD­120 dataset:

Figure 5. Confusion matrices for human-object interaction detec-

tion setting – (i), (ii) – and anticipation setting – (iii), (iv) – on

CAD120 dataset. It is worth noting that most of the confusion oc-

curs in visually similar categories, e.g. closing vs. reaching and

opening vs. moving

We evaluate the performance of our model at both frame-

level and segment-level, using both variants of spatial sub-

net. We tabulate the results of our approach in Table 1.

As the numbers suggest, we achieve state-of-the-art per-

formance with sub-activity detection F1 score of 88.9 and

affordance detection F1 score of 92.6 with GCN and 88.8

and 84.2 for subactivity and affordance detection tasks with

Capsule spatial net. This suggests that out of the two vari-

ants of spatial subnet, GCN module performs better than

Capsules. We believe the reason to be the ability of graphs

to better model the cases of multiple object scenarios in the

scene. This comes from the fact that while the GCN, by

construction, deals with multiple nodes (and objects), the

same is not true for a vanilla Capsule network. The only

context that the capsule receives is the global hull of the

objects and human, which is not distinctive enough for the

cases when there are more than one objects. This hypothe-

ses is mildly corroborated by our results in V-COCO dataset

wherein the Capsule networks perform better than GCN,

possibly because every human deals with a single object

most of the times.

Confusion Matrix: The confusion matrices for both de-

tection and anticipation tasks using the GCN spatial net are

displayed at Figure 5. Every row of a confusion matrix indi-

cates the prediction distribution of various node samples of

that ground truth class. From the confusion matrix for affor-

dance detection, it is evident that most of the false predic-

tions of object nodes are due to misinterpretation of object

as stationary.

4.2. Evaluation on V­COCO dataset

Although our method is designed to leverage temporal

cues within a video setting, we test our method on V-COCO

dataset by setting T = 1. We observe the role mAP score

of 47.26 while using Capsule spatial subnetwork for spatial

learning, and role mAP of 38.28 using Spatial GCN, which,

although not close to the state-of-the-art method [52] (52.0),

achieves reasonable performance without bells and whis-

tles. Moreover, we achieve a better performance using cap-

sule networks for spatial learning than using a spatial graph

convolution network. This might be attributed to the differ-

ent formulations of HOI for CAD120 and V-COCO. HOI

detection in V-COCO is done separately for each human-

object pair, which implies that there are only two nodes,

one for object and the other for human. This setting bene-

fits the learning process of capsule networks, and is not well

suited for graph convolutions, as there are very few nodes

in the graph modeling. Finally, the ConvNet variant of the

Capsule architecture achieves a role mAP of 44.8 compared

to 47.26 of Capsule Nets.

4.3. Qualitative Evaluation

We provide some qualitative evaluation of our method

using GCN spatial net on CAD-120 dataset in Figure 1. Fig-

ure 6 demonstrates some positive and negative cases of de-

tection of edge action labels of human-object pairs for test

images on V-COCO. The reader is referred to supplemen-

tary material for in-the-wild results on videos.
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Table 2. Ablation experiments of the impact of design choices on subactivity and object affordance detection. Seg-RNN refers to segment-

level RNN and vanilla GCN refers to GCN without adjacency matrix refinement.

Experiment Human Subactivity Object Affordance

Ours w/o spatial model 61.5 78.6

Ours w/o seg-RNN with MLP for frame-level temporal learning 84.1 85.0

Ours w/o seg-RNN w/o appending human node features to object nodes 85.2 84.6

Ours w/o seg-RNN 85.9 88.6

Seg-RNN on hand-crafted features 85.3 91.6

Ours with Capsules 88.8 84.2

Ours with GCN 88.9 92.6

Figure 6. Detections of human-object action labels in test images

of VCOCO. We report our failure cases on the last two images

(bottom right). The rest are correct predictions.

4.4. Ablation Study

We now discuss the contributions of various components

to the performance and their relevance to HOI detection.

Role of Spatial Models in Spatial Subnet: To verify

the effectiveness of spatial graph convolution module, we

designed an experiment where the image features from the

backbone are directly passed to the frame-level model. We

observed a significant degradation in performance in the ab-

sence of spatial model.

Role of human node features in affordance predic-

tion: In the temporal subnet, we concatenate human node

features along with object node features for the frame and

segment level RNNs. We observed significant improvement

in performance on object affordance detection (88.6% vs

84.6%) due to human node features. This improvement can

be attributed to the high correlation between the human sub-

activity and affordances of active objects (objects which are

not stationary).

Role of RNN in frame-level temporal subnet: As

a baseline for classification at frame-level subnet, we ex-

perimented with alternative temporal aggregation models.

Specifically, we built an MLP network to obtain classifica-

tion scores from spatial features concatenated across tem-

poral dimension for each node separately. However, due to

higher parameter count in MLP network, the model is prone

to over-fitting, and thereby has a lower performance, as is

evident from Table 2.

Role of segment-level temporal learning: Even

though subactivity and affordance labels are predicted

for every single segment, there are significant inter-

dependencies between the activity in a segment and activi-

ties in previous segments. Using a temporal sequence pro-

cessing network like an RNN after the frame-level aggre-

gation step leverages these inter-segment dependencies and

achieves a significant improvement in performance as com-

pared to prediction at frame-level temporal subnet.

Evaluating the feature learning process: To measure

the effectiveness of the hierarchical learning mechanism,

we design an experiment where we feed the hand-crafted,

segment-level features to segment-level RNN, instead of the

visual embeddings learnt by the attention mechanism. The

learnt visual features achieve a better performance than the

hand crafted features, particularly for the more difficult case

of human subactivity detection (85.3% vs 88.9%), thereby

justifying the effectiveness of the proposed method in cap-

turing the spatio-temporal relations from RGB video data.

5. Conclusion

In this paper, we investigated the spatial modeling

approaches for identifying Human-Object Interaction in

videos. We followed a two-step pipeline that decouples spa-

tial modeling from temporal reasoning. We explore the us-

age of capsule networks, convnets and graph convolutions

for spatial relation learning. Our approach is easily extend-

able to other videos for the task of HOI, where depth in-

formation and 3D pose information is not available. Our

approach sets a new benchmark for Human-Object Interac-

tion detection in videos with visual information.
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