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Abstract

Feature fusion, the combination of features from differ-

ent layers or branches, is an omnipresent part of modern

network architectures. It is often implemented via simple

operations, such as summation or concatenation, but this

might not be the best choice. In this work, we propose a uni-

form and general scheme, namely attentional feature fusion,

which is applicable for most common scenarios, including

feature fusion induced by short and long skip connections

as well as within Inception layers. To better fuse features

of inconsistent semantics and scales, we propose a multi-

scale channel attention module, which addresses issues that

arise when fusing features given at different scales. We also

demonstrate that the initial integration of feature maps can

become a bottleneck and that this issue can be alleviated

by adding another level of attention, which we refer to as

iterative attentional feature fusion. With fewer layers or pa-

rameters, our models outperform state-of-the-art networks

on both CIFAR-100 and ImageNet datasets, which suggests

that more sophisticated attention mechanisms for feature

fusion hold great potential to consistently yield better re-

sults compared to their direct counterparts. Our codes and

trained models are available online1.

1. Introduction

Convolutional neural networks (CNNs) have seen a sig-

nificant improvement of the representation power by going

deeper [11], going wider [36, 47], increasing cardinality

[45], and refining features dynamically [14], corresponding

to advances in many computer vision tasks.

Apart from these strategies, in this paper, we inves-

tigate a different component of the network, feature fu-

sion, to further boost the representation power of CNNs.

Whether explicit or implicit, intentional or unintentional,

feature fusion is omnipresent for modern network architec-

1https://github.com/YimianDai/open-aff

tures and has been studied extensively in the previous lit-

erature [36, 34, 11, 28, 21]. For instance, in the Inception-

Net family [36, 37, 35], the outputs of filters with multiple

sizes on the same level are fused to handle the large varia-

tion of object size. In Residual Networks (ResNet) [11, 12]

and its follow-ups [47, 45], the identity mapping features

and residual learning features are fused as the output via

short skip connections, enabling the training of very deep

networks. In Feature Pyramid Networks (FPN) [21] and

U-Net [28], low-level features and high-level features are

fused via long skip connections to obtain high-resolution

and semantically strong features, which are vital for seman-

tic segmentation and object detection. However, despite its

prevalence in modern networks, most works on feature fu-

sion focus on constructing sophisticated pathways to com-

bine features in different kernels, groups, or layers. The

feature fusion method has rarely been addressed and is usu-

ally implemented via simple operations such as addition or

concatenation, which merely offer a fixed linear aggrega-

tion of feature maps and are entirely unaware of whether

this combination is suitable for specific objects.

Recently, Selective Kernel Networks (SKNet) [19] and

ResNeSt [48] have been proposed to render dynamic

weighted averaging of features from multiple kernels or

groups in the same layer based on the global channel atten-

tion mechanism [14]. Although such attention-based meth-

ods present nonlinear approaches for feature fusion, they

still suffer from the following shortcomings:

1. Limited scenarios: SKNet and ResNeSt only focus on

the soft feature selection in the same layer, whereas the

cross-layer fusion in skip connections has not been ad-

dressed, leaving their schemes quite heuristic. Despite

having different scenarios, all kinds of feature fusion

implementations face the same challenge, in essence,

that is, how to integrate features of different scales for

better performance. A module that can overcome the

semantic inconsistency and effectively integrate fea-

tures of different scales should be able to consistently
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improve the quality of fused features in various net-

work scenarios. However, so far, there is still a lack of

a generalized approach that can unify different feature

fusion scenarios in a consistent manner.

2. Unsophisticated initial integration: To feed the re-

ceived features into the attention module, SKNet intro-

duces another phase of feature fusion in an involuntary

but inevitable way, which we call initial integration

and is implemented by addition. Therefore, besides

the design of the attention module, as its input, the

initial integration approach also has a large impact on

the quality of fusion weights. Considering the features

may have a large inconsistency on the scale and seman-

tic level, an unsophisticated initial integration strategy

ignoring this issue can be a bottleneck.

3. Biased context aggregation scale: The fusion weights

in SKNet and ResNeSt are generated via the global

channel attention mechanism [14], which is preferred

for information that distributes more globally. How-

ever, objects in the image can have an extremely large

variation in size. Numerous studies have emphasized

this issue that arises when designing CNNs, i.e., that

the receptive fields of predictors should match the ob-

ject scale range [49, 31, 32, 20]. Therefore, merely ag-

gregating contextual information on a global scale is

too biased and weakens the features of small objects.

This gives rise to the question if a network can dy-

namically and adaptively fuse the received features in

a contextual scale-aware way.

Motivated by the above observations, we present the at-

tentional feature fusion (AFF) module, trying to answer the

question of how a unified approach for all kinds of feature

fusion scenarios should be and address the problems of con-

textual aggregation and initial integration. The AFF frame-

work generalizes the attention-based feature fusion from the

same-layer scenario to cross-layer scenarios including short

and long skip connections, and even the initial integration

inside AFF itself. It provides a universal and consistent way

to improve the performance of various networks, e.g., In-

ceptionNet, ResNet, ResNeXt [45], and FPN, by simply re-

placing existing feature fusion operators with the proposed

AFF module. Moreover, the AFF framework supports to

gradually refine the initial integration, namely the input of

the fusion weight generator, by iteratively integrating the

received features with another AFF module, which we refer

to as iterative attentional feature fusion (iAFF).

To alleviate the problems arising from scale variation and

small objects, we advocate the idea that attention modules

should also aggregate contextual information from different

receptive fields for objects of different scales. More specif-

ically, we propose the Multi-Scale Channel Attention Mod-

ule (MS-CAM), a simple yet effective scheme to remedy the

feature inconsistency across different scales for attentional

feature fusion. Our key observation is that scale is not an is-

sue exclusive to the spatial attention, and the channel atten-

tion can also have scales other than the global by varying the

spatial pooling size. By aggregating the multi-scale context

information along the channel dimension, MS-CAM can si-

multaneously emphasize large objects that distribute more

globally and highlight small objects that distribute more lo-

cally, facilitating the network to recognize and detect ob-

jects under extreme scale variation.

2. Related Work

2.1. Multi­scale Attention Mechanism

The scale variation of objects is one of the key challenges

in computer vision. To remedy this issue, an intuitive way

is to leverage multi-scale image pyramids [27, 2], in which

objects are recognized at multiple scales and the predictions

are combined using non-maximum suppression. The other

line of effort aims to exploit the inherent multi-scale, hierar-

chical feature pyramid of CNNs to approximate image pyra-

mids, in which features from multiple layers are fused to

obtain semantic features with high resolutions [10, 28, 21].

The attention mechanism in deep learning, which mim-

ics the human visual attention mechanism [4, 7], is origi-

nally developed on a global scale. For example, the matrix

multiplication in self-attention draws global dependencies

of each word in a sentence [39] or each pixel in an image

[6, 42, 1]. The Squeeze-and-Excitation Networks (SENet)

squeeze global spatial information into a channel descrip-

tor to capture channel-wise dependencies [14]. Recently,

researchers start to take into account the scale issue of at-

tention mechanisms. Similar to the above-mentioned ap-

proaches handling scale variation in CNNs, multi-scale at-

tention mechanisms are achieved by either feeding multi-

scale features into an attention module or combining fea-

ture contexts of multiple scales inside an attention module.

In the first type, the features at multiple scales or their con-

catenated result are fed into the attention module to generate

multi-scale attention maps, while the scale of feature con-

text aggregation inside the attention module remains single

[2, 3, 43, 5, 33, 38]. The second type, which is also re-

ferred to as multi-scale spatial attention, aggregates feature

contexts by convolutional kernels of different sizes [18] or

from a pyramid [18, 41] inside the attention module .

The proposed MS-CAM follows the idea of ParseNet

[23] with combining local and global features in CNNs and

the idea of spatial attention with aggregating multi-scale

feature contexts inside the attention module, but differ in at

least two important aspects: 1) MS-CAM puts forward the

scale issue in channel attention and is achieved by point-

wise convolution rather than kernels of different sizes. 2)

instead of in the backbone network, MS-CAM aggregates

local and global feature contexts inside the channel atten-
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tion module. To the best of our knowledge, the multi-scale

channel attention has never been discussed before.

2.2. Skip Connections in Deep Learning

Skip connection has been an essential component in

modern convolutional networks. Short skip connections,

namely the identity mapping shortcuts added inside Resid-

ual blocks, provide an alternative path for the gradient to

flow without interruption during backpropagation [11, 45,

47]. Long skip connections help the network to obtain se-

mantic features with high resolutions by bridging features

of finer details from lower layers and high-level semantic

features of coarse resolutions [15, 21, 28, 24]. Despite be-

ing used to combine features in various pathways [8], the fu-

sion of connected features is usually implemented via addi-

tion or concatenation, which allocate the features with fixed

weights regardless of the variance of contents. Recently,

a few attention-based methods, e.g., Global Attention Up-

sample (GAU) [18] and Skip Attention (SA) [46], have been

proposed to use high-level features as guidance to modulate

the low-level features in long skip connections. However,

the fusion weights for the modulated features are still fixed.

To the best of our knowledge, it is the Highway Net-

works that first introduced a selection mechanism in short

skip connections [34]. To some extent, the attentional skip

connections proposed in this paper can be viewed as its

follow-up, but differs in the three points: 1) Highway Net-

works employ a simple fully connected layer that can only

generate a scalar fusion weight, while our proposed MS-

CAM generates fusion weights as the same size of feature

maps, enabling dynamic soft selections in an element-wise

way. 2) Highway Networks only use one input feature to

generate weight, while our AFF module is aware of both

features. 3) We point out the importance of initial feature

integration and the iAFF module is proposed as a solution.

3. Multi-scale Channel Attention

3.1. Revisiting Channel Attention in SENet

Given an intermediate feature X ∈ R
C×H×W with C

channels and feature maps of size H ×W , the channel at-

tention weights w ∈ R
C in SENet can be computed as

w = σ (g(X)) = σ (B (W2δ (B (W1(g(X)))))) , (1)

where g(X) ∈ R
C denotes the global feature context and

g(X) = 1
H×W

∑H

i=1

∑W

j=1 X[:,i,j] is the global average

pooling (GAP). δ denotes the Rectified Linear Unit (ReLU)

[25], and B denotes the Batch Normalization (BN) [16]. σ

is the Sigmoid function. This is achieved by a bottleneck

with two fully connected (FC) layers, where W1 ∈ R
C

r
×C

is a dimension reduction layer, and W2 ∈ R
C×

C

r is a di-

mension increasing layer. r is the channel reduction ratio.

We can see that the channel attention squeezes each fea-

ture map of size H ×W into a scalar. This extreme coarse

descriptor prefers to emphasize large objects that distribute

globally and can potentially wipe out most of the image

signal present in a small object. However, detecting very

small objects stands out as the key performance bottleneck

of state-of-the-art networks [32]. For example, the diffi-

culty of COCO is largely due to the fact that most object

instances are smaller than 1% of the image area [22, 31].

Therefore, global channel attention might not be the best

choice. Multi-scale feature contexts should be aggregated

inside the attention module to alleviate the problems arising

from scale variation and small object instances.

3.2. Aggregating Local and Global Contexts

In this part, we depict the proposed multi-scale chan-

nel attention module (MS-CAM) in detail. The key idea

is that the channel attention can be implemented in multiple

scales by varying the spatial pooling size. To maintain it as

lightweight as possible, we merely add the local context to

the global context inside the attention module. We choose

the point-wise convolution (PWConv) as the local channel

context aggregator, which only exploits point-wise channel

interactions for each spatial position. To save parameters,

the local channel context L(X) ∈ R
C×H×W is computed

via a bottleneck structure as follows:

L(X) = B (PWConv2 (δ (B (PWConv1(X))))) (2)

The kernel sizes of PWConv1 and PWConv2 are C
r
×C×

1 × 1 and PWConv2 is C × C
r
× 1 × 1, respectively. It

is noteworthy that L(X) has the same shape as the input

feature, which can preserve and highlight the subtle details

in the low-level features. Given the global channel context

g(X) and local channel context L(X), the refined feature

X′ ∈ R
C×H×W by MS-CAM can be obtained as follows:

X′ = X⊗M(X) = X⊗ σ (L(X)⊕ g(X)) , (3)

where M(X) ∈ R
C×H×W denotes the attentional weights

generated by MS-CAM. ⊕ denotes the broadcasting addi-

tion and ⊗ denotes the element-wise multiplication.

X

C×1×1

BN

C×H×W

BN

X′

MS-CAM

C×H×W

C×1×1

BN
C

r
×1×1 BN

C

r
×H×W

C×H×W

GlobalAvgPooling

Point-wise Conv Point-wise Conv

ReLU ReLU

Point-wise Conv Point-wise Conv
⊕

Sigmoid
⊗

Figure 1: Illustration of the proposed MS-CAM
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4. Attentional Feature Fusion

4.1. Unification of Feature Fusion Scenarios

Given two feature maps X,Y ∈ R
C×H×W , by default,

we assume Y is the feature map with a larger receptive field.

More specifically,

1. same-layer scenario: X is the output of a 3× 3 kernel

and Y is the output of a 5× 5 kernel in InceptionNet;

2. short skip connection scenario: X is the identity map-

ping, and Y is the learned residual in a ResNet block;

3. long skip connection scenario: X is the low-level fea-

ture map, and Y is the high-level semantic feature map

in a feature pyramid.

Based on the multi-scale channel attention module M, At-

tentional Feature Fusion (AFF) can be expressed as

Z = M(X ⊎Y)⊗X+ (1−M(X ⊎Y))⊗Y, (4)

where Z ∈ R
C×H×W is the fused feature, and ⊎ denotes

the initial feature integration. In this subsection, for the

sake of simplicity, we choose the element-wise summation

as initial integration. The AFF is illustrated in Fig. 2(a),

where the dashed line denotes 1 − M(X ⊎ Y). It should

be noted that the fusion weights M(X⊎Y) consists of real

numbers between 0 and 1, so are the 1−M(X⊎Y), which

enable the network to conduct a soft selection or weighted

averaging between X and Y.

X Y

Z

AFF

C×H×W C×H×W

⊕

MS-CAM
⊗ ⊗

⊕

(a) AFF

X Y

Z

iAFF

C×H×W C×H×W

C×H×W C×H×W

⊕

MS-CAM
⊗ ⊗

⊕

MS-CAM
⊗ ⊗

⊕

(b) iAFF

Figure 2: Illustration of the proposed AFF and iAFF

We summarize different formulations of feature fusion

in deep networks in Table 1. G denotes the global atten-

tion mechanism. Although there are many implementation

differences among multiple approaches for various feature

fusion scenarios, once being abstracted into mathematical

forms, these differences in details disappear. Therefore, it

is possible to unify these feature fusion scenarios with a

carefully designed approach, thereby improving the perfor-

mance of all networks by replacing original fusion opera-

tions with this unified approach.

From Table 1, it can be further seen that apart from the

implementation of the weight generation module G, the

state-of-the-art fusion schemes mainly differ in two crucial

points: (a) the context-awareness level. Linear approaches

like addition and concatenation are entirely contextual un-

aware. Feature refinement and modulation are non-linear,

Conv 3× 3 Conv 5× 5

AFF

X

Z

(a) AFF-Inception module

Residual

AFF

X

Z

(b) AFF-ResBlock

Input Stem Stage-1 Stage-2 Stage-3

AFFAFFSoftmaxOutput

(c) AFF-FPN

Figure 3: The schema of the proposed AFF-Inception mod-

ule, AFF-ResBlock, and AFF-FPN. The blue and red lines

denote channel expansion and upsampling, respectively.

but only partially aware of the input feature maps. In most

cases, they only exploit the high-level feature map. Fully

context-aware approaches utilize both input feature maps

for guidance at the cost of raising the initial integration is-

sue. (b) Refinement vs modulation vs selection. The sum

of weights applied to two feature maps in soft selection ap-

proaches are bound to 1, while this is not the case for re-

finement and modulation.

4.2. Iterative Attentional Feature Fusion

Unlike partially context-aware approaches [18], fully

context-aware methods have an inevitable issue, namely

how to initially integrate input features. As the input of

the attention module, the initial integration quality may pro-

foundly affect final fusion weights. Since it is still a feature

fusion problem, an intuitive way is to have another attention

module to fuse input features. We call this two-stage ap-

proach iterative Attentional Feature Fusion (iAFF), which

is illustrated in Fig. 2(b). Then, the initial integration X⊎Y

in Eq. (4) can be reformulated as

X ⊎Y = M(X+Y)⊗X+ (1−M(X+Y))⊗Y (5)

4.3. Examples: InceptionNet, ResNet, and FPN

To validate the proposed AFF/iAFF as a uniform and

general scheme, we choose ResNet, FPN, and Inception-

Net as examples for the most common scenarios: short and

long skip connections as well as the same layer fusion. It

is straightforward to apply AFF/iAFF to existing networks

by replacing the original addition or concatenation. Specif-

ically, we replace the concatenation in the InceptionNet

module as well as the addition in ResNet block (ResBlock)

and FPN to obtain the attentional networks, which we call

AFF-Inception module, AFF-ResBlock, and AFF-FPN, re-

spectively. This replacement and the schemes of our pro-

posed architectures are shown in Fig. 3. The iAFF is a par-

ticular case of AFF, so it does not need another illustration.

3563



Table 1: A brief overview of different feature fusion strategies in deep networks.

Context-aware Type Formulation Scenario & Reference Example

None
Addition X+Y Short Skip [11, 12], Long Skip [24, 21] ResNet, FPN

Concatenation WAX:,i,j +WBY:,i,j Same Layer [36], Long Skip [28, 15] InceptionNet, U-Net

Partially

Refinement X+G(Y)⊗Y Short Skip [14, 13, 44, 26] SENet

Modulation G(Y)⊗X+Y Long Skip [18] GAU

Soft Selection G(X)⊗X+ (1−G(X))⊗Y Short Skip [34] Highway Networks

Fully

Modulation G(X,Y)⊗X+Y Long Skip [46] SA

Soft Selection
G(X+Y)⊗X+ (1−G(X+Y))⊗Y Same Layer [19, 48] SKNet

M(X ⊎Y)⊗X+ (1−M(X ⊎Y))⊗Y Same Layer, Short Skip, Long Skip ours

5. Experiments

For experimental evaluation, we resort to the following

benchmark datasets: CIFAR-100 [17] and ImageNet [29]

for image classification in the same-layer InceptionNet and

short-skip connection ResNet scenarios as well as StopSign

(a subset of COCO dataset [22]) for semantic segmentation

in the long-skip connection FPN scenario. The detailed set-

tings are listed in Table 2. b is the ResBlock number in

each stage used to scale the network by depth. Note that

our CIFAR-100 experiments classify images into 20 super-

classes, not 100 classes. It is a default setting of the CI-

FAR100 class in MXNet/Gluon. We didn’t notice it until a

bug issue in our github repo at the camera ready day. How-

ever, since all the CIFAR-100 experiments are conducted

on the same class number, our conclusion drawn from the

experiment results still hold. For more implementation de-

tails, please see the supplementary material and our code.

5.1. Ablation Study

5.1.1 Impact of Multi-Scale Context Aggregation

To study the impact of multi-scale context aggregation,

in Fig. 4, we construct two ablation modules “Global +

Global” and “Local + Local”, in which the scales of the two

contextual aggregation branches are set as the same, either

global or local. The proposed AFF is dubbed as “Global +

Local” here. All of them have the same parameter number.

The only difference is their context aggregation scale.

Table 3 presents their comparison on CIFAR-100, Ima-

geNet, and StopSign on various host networks. It can be

seen that the multi-scale contextual aggregation (Global +

Local) outperforms single-scale ones in all settings. The re-

sults suggest that the multi-scale feature context is vital for

the attentional feature fusion.

5.1.2 Impact of Feature Integration Type

Further, we investigate which feature fusion strategy is the

best in Table 1. For fairness, we re-implement these ap-

proaches based on the proposed MS-CAM for attention

weights. Since MS-CAM are different from their original

attention modules, we add a prefix of ”MS-” to these newly

X Y

C×1×1

BN

C×1×1

BN

Z

Global + Global

C×1×1 C×1×1

BN
C

r
×1×1 BN

C

r
×1×1

C×1×1

⊕

GlobalAvgPooling GlobalAvgPooling

Point-wise Conv Point-wise Conv

ReLU ReLU

Point-wise Conv Point-wise Conv
⊕

Sigmoid
⊗ ⊗

⊕

C×H×W C×H×W

X Y

C×H×W

BN

C×H×W

BN

Z

Local + Local

BN
C

r
×H×W BN

C

r
×H×W

C×H×W

⊕

Point-wise Conv Point-wise Conv

ReLU ReLU

Point-wise Conv Point-wise Conv
⊕

Sigmoid
⊗ ⊗

⊕

C×H×W C×H×W

Figure 4: Architectures for the ablation study on the impact

of contextual aggregation scale.

implemented schemes. To keep the parameter budget the

same, here the channel reduction ratio r in MS-GAU, MS-

SE, MS-SA, and AFF is 2, while r in iAFF is 4.

Y

Z

MS-GAU

X

MS-CAM
⊗

⊕

(a) MS-GAU

Y

Z

MS-SE

X

MS-CAM
⊗

⊕

(b) MS-SE

Y

Z

MS-SA

X
⊕

MS-CAM
⊗

⊕

(c) MS-SA

Figure 5: Architectures for ablation study on the impact of

feature integration strategies

Table 4 provides the comparison results in three scenar-

ios, from which it can be seen that: 1) compared to the lin-

ear approach, namely addition and concatenation, the non-

linear fusion strategy with attention mechanism always of-

fers better performance; 2) our fully context-aware and se-

lective strategy is slightly but consistently better than the

others, suggesting that it should be preferred for multiple

feature integration; 3) the proposed iAFF approach is sig-

nificantly better than the rest in most cases. The results

strongly demonstrate our hypothesis that the early integra-

tion quality has a large impact on the attentional feature fu-
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Table 2: Experimental settings for the networks integrated with the proposed AFF/iAFF.

Task Dataset Host Network
Fusing

Scenario
r Epochs

Batch

Size
Optimizer

Learning

Rate

Learning

Rate Mode
Initialization

Image

Classification

CIFAR-100

Inception-ResNet-20-b Same Layer 4 400 128 Nesterov 0.2 Step, γ = 0.1 Kaiming

ResNet-20-b Short Skip 4 400 128 Nesterov 0.2 Step, γ = 0.1 Kaiming

ResNeXt-38-32x4d Short Skip 16 400 128 Nesterov 0.2 Step, γ = 0.1 Xavier

ImageNet ResNet-50 Short Skip 16 160 128 Nesterov 0.075 Cosine Kaiming

Semantic

Segmentation
StopSign ResNet-20-b + FPN Long Skip 4 300 32 AdaGrad 0.01 Poly Kaiming

Table 3: Comparison of contextual aggregation scales in attentional feature fusion given the same parameter budget. The

results suggest that a mix of scales should always be preferred inside the channel attention module.

Aggregation Scale
InceptionNet on CIFAR-100 ResNet on CIFAR-100 ResNet + FPN on StopSign ResNet on

ImageNet
b = 1 b = 2 b = 3 b = 4 b = 1 b = 2 b = 3 b = 4 b = 1 b = 2 b = 3 b = 4

Global + Global 0.735 0.766 0.775 0.789 0.754 0.796 0.811 0.821 0.911 0.923 0.936 0.939 0.777

Local + Local 0.746 0.771 0.785 0.787 0.754 0.794 0.808 0.814 0.895 0.919 0.921 0.924 0.780

Global + Local 0.756 0.784 0.794 0.801 0.763 0.804 0.816 0.826 0.924 0.935 0.939 0.944 0.784

Table 4: Comparison of context-aware level and feature integration strategy in feature fusion given the same parameter

budget. The results suggest that a fully context-aware and selective strategy should always be preferred for feature fusion. If

no problem in optimization, we should adopt the iterative attentional feature fusion without hesitation for better performance.

Fusion Type Context Strategy
InceptionNet (Same Layer) ResNet (Short Skip) ResNet + FPN (Long Skip)

b = 1 b = 2 b = 3 b = 4 b = 1 b = 2 b = 3 b = 4 b = 1 b = 2 b = 3 b = 4

Add None \ 0.720 0.753 0.771 0.782 0.740 0.786 0.797 0.808 0.895 0.920 0.925 0.928

Concatenation None \ 0.725 0.749 0.772 0.779 0.742 0.782 0.793 0.798 0.897 0.909 0.925 0.939

MS-GAU Partially Modulation 0.751 0.774 0.788 0.795 0.766 0.803 0.815 0.819 0.917 0.926 0.937 0.941

MS-SENet Partially Refinement 0.752 0.780 0.790 0.798 0.765 0.799 0.814 0.820 0.915 0.929 0.940 0.940

MS-SA Fully Modulation 0.756 0.779 0.790 0.798 0.761 0.801 0.814 0.822 0.920 0.932 0.938 0.941

AFF (ours) Fully Selection 0.756 0.784 0.794 0.801 0.763 0.804 0.816 0.826 0.924 0.935 0.939 0.944

iAFF (ours) Fully Selection 0.774 0.801 0.808 0.814 0.772 0.807 0.822 / 0.927 0.938 0.945 0.953

sion, and another level of attentional feature fusion can fur-

ther improve the performance. However, this improvement

may be obtained at the cost of increasing the difficulty in

optimization. We notice that when the network depth in-

creases as b changes from 3 to 4, the performance of iAFF-

ResNet did not improve but degraded.

5.1.3 Impact on Localization and Small Objects

To study the impact of the proposed MS-CAM on object

localization and small object recognition, we apply Grad-

CAM [30] to ResNet-50, SENet-50, and AFF-ResNet-50

for the visualization results of images from the ImageNet

dataset, which are illustrated in Fig. 6. Given a specific

class, Grad-CAM results show the network’s attended re-

gions clearly. Here, we show the heatmaps of the predicted

class, and the wrongly predicted image is denoted with the

symbol ✖. The predicted class names and their softmax

scores are also shown at the bottom of heatmaps.

From the upper part of Fig. 6, it can be seen clearly that

the attended regions of the AFF-ResNet-50 highly overlap

with the labeled objects, which shows that it learns well to

localize objects and exploit the features in object regions.

On the contrary, the localization capacity of the baseline

ResNet-50 is relatively poor, misplacing the center of at-

tended regions in many cases. Although SENet-50 are able

to locate the true objects, the attended regions are over-

large including many background components. It is because

SENet-50 only utilizes the global channel attention, which

is biased to the context of a global scale, whereas the pro-

posed MS-CAM also aggregates the local channel context,

which helps the network to attend the objects with fewer

background clutters and is also beneficial to the small ob-

ject recognition. In the bottom half of Fig. 6, we can clearly

see that AFF-ResNet-50 can predict correctly on the small-

scale objects, while ResNet-50 fails in most cases.

5.2. Comparison with State­of­the­Art Networks

To show that the network performance can be improved

by replacing original fusion operations with the proposed
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Input
image

Backpack Basketball Bathing Cap Bee Goldfish Koala Screwdriver Volleyball

ResNet

Backpack P=0.55 Basketball P=0.91 Bathing Cap P=0.82 Bee P=0.77 Goldfish P=0.84 Koala P=0.80 Screwdriver P=0.58 Volleyball P=0.97

SENet

Backpack P=0.81 Basketball P=0.91 Bathing Cap P=0.93 Bee P=0.97 Goldfish P=0.77 Koala P=0.88 Screwdriver P=0.84 Volleyball P=0.87

AFF +
ResNet

Backpack P=0.87 Basketball P=0.95 Bathing Cap P=0.87 Bee P=0.87 Goldfish P=0.85 Koala P=0.93 Screwdriver P=0.82 Volleyball P=0.92

Input
image

Ant Chain Saw Hamster iPod Lipstick Plastic Bag Scorpion Tick

ResNet

✖ Ladybug ✖ Chain Saw P=0.58 ✖ Rabbit ✖ iPod P=0.69 Lipstick P=0.54 ✖ Rabbit ✖ ✖ Tick ✖ Tick P=0.72

SENet

✖ Ladybug ✖ Chain Saw P=0.95 Hamster P=0.51 iPod P=0.91 Lipstick P=0.92 Plastic Bag P=0.67 Scorpion P=0.81 Tick P=0.76

AFF +
ResNet

Ant P=0.35 Chain Saw P=0.87 Hamster P=0.55 iPod P=0.93 Lipstick P=0.76 Plastic Bag P=0.38 Scorpion P=0.83 Tick P=0.88

Figure 6: Network visualization with Grad-CAM. The comparison results suggest that the proposed MS-CAM is beneficial

to the object localization and small object recognition.

attentional feature fusion, we compare the AFF and iAFF

modules with other attention modules based on the same

host networks in different feature fusion scenarios. Fig. 7

illustrates the comparison results with a gradual increase in

network depth for all networks. It can be seen that: 1) Com-

paring SKNet / SENet / GAU-FPN with AFF-InceptionNet

/ AFF-ResNet / AFF-FPN, we can see that our AFF or iAFF

integrated networks are better in all scenarios, which shows

that our (iterative) attentional feature fusion approach not

only has superior performance, but a good generality. We
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Figure 7: Compassion with baseline and other state-of-the-art networks with a gradual increase of network depth.

believe the improved performance comes from the proposed

multi-scale channel contextual aggregation inside the atten-

tion module. 2) Comparing the performance of iAFF-based

networks with AFF-based networks, it should be noted that

the proposed iterative attentional feature fusion scheme can

further improve the performance. 3) By replacing the sim-

ple addition or concatenation with the proposed AFF or

iAFF module, we can get a more efficient network. For ex-

ample, in Fig. 7(b), iAFF-ResNet (b = 2) achieves similar

performance with the baseline ResNet (b = 4), while only

54% of the parameters were required.

Last, we validate the performance of AFF/iAFF based

networks with state-of-the-art networks on ImageNet. The

results are listed in Table 5. The results show that the

proposed AFF/iAFF based networks can improve per-

formance over the state-of-the-art networks under much

smaller parameter budgets. Remarkably, on ImageNet, the

proposed iAFF-ResNet-50 outperforms Gather-Excite-θ+-

ResNet-101 [13] by 0.3% with only 60% parameters. These

results indicate that the feature fusion in short skip con-

nections matters a lot for ResNet and ResNeXt. Instead of

blindly increasing the depth of the network, we should pay

more attention to the quality of feature fusion.

Table 5: Comparison on ImageNet

Architecture top-1 err. Params

ResNet-101 [11] 23.2 42.5 M

Efficient-Channel-Attention-Net-101 [40] 21.4 42.5 M

Attention-Augmented-ResNet-101 [1] 21.3 45.4 M

SENet-101 [14] 20.9 49.4 M

Gather-Excite-θ+-ResNet-101 [13] 20.7 58.4 M

Local-Importance-Pooling-ResNet-101 [9] 20.7 42.9 M

AFF-ResNet-50 (ours) 20.9 30.3 M

AFF-ResNeXt-50-32x4d (ours) 20.8 29.9 M

iAFF-ResNet-50 (ours) 20.4 35.1 M

iAFF-ResNeXt-50-32x4d (ours) 20.2 34.7 M

6. Conclusion

We generalize the concept of attention mechanisms as a

selective and dynamic type of feature fusion to most scenar-

ios, namely the same layer, short skip, and long skip con-

nections as well as information integration inside the atten-

tion mechanism. To overcome the semantic and scale incon-

sistency issue among input features, we propose the multi-

scale channel attention module, which adds local channel

contexts to the global channel-wise statistics. Further, we

point out that the initial integration of received features is

a bottleneck in attention-based feature fusion, and it can be

alleviated by adding another level of attention that we call

iterative attentional feature fusion. We conducted detailed

ablation studies to empirically verify the individual impact

of the context-aware level, the feature integration type, and

the contextual aggregation scales of our proposed attention

mechanism. Experimental results on both the CIFAR-100

and the ImageNet dataset show that our models outperform

state-of-the-art networks with fewer layers or parameters

per network, which suggests that one should pay attention

to the feature fusion in deep neural networks and that more

sophisticated attention mechanisms for feature fusion hold

the potential to consistently yield better results.
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