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Abstract

Efficient pose estimation finds utility in Augmented Re-

ality (AR) and other computer vision applications such as

autonomous navigation and robotics, to name a few. A

compact and accurate pose estimation methodology is of

paramount importance for on-device inference in such appli-

cations. Our proposed solution 3DPoseLite, estimates pose

of generic objects by utilizing a compact node embedding

representation, unlike computationally expensive multi-view

and point-cloud representations. The neural network out-

puts a 3D pose, taking RGB image and its corresponding

graph (obtained by skeletonizing the 3D meshes [31]) as

inputs. Our approach utilizes node2vec framework to learn

low-dimensional representations for nodes in a graph by op-

timizing a neighborhood preserving objective. We achieve a

space and time reduction by a factor of 11× and 3× respec-

tively, with respect to the state-of-the-art approach, Pose-

FromShape [50], on benchmark Pascal3D dataset [48]. We

also test the performance of our model on unseen data using

Pix3D dataset.

1. Introduction

Augmented Reality (AR) enriches user experience by

blending virtual elements with the real environment that

contains them. Environment-aware AR applications tend

to be more intuitive and user-friendly than the applications

that aren’t, with features such as plane detection and object

registration providing the distinction. In the case of guided

surgeries, medical practitioners can benefit from accurate 3D

model registration. It can allow accurate patient positioning

and instrument positioning for precise drug delivery to the

target with minimal invasion [35].

While most modern augmented reality toolkits, both open

source and commercial, such as Vuforia [5], Metaio (now

with Apple) [4], Wikitude [6], AugmentedPro [2], Diota-

soft [3] and, ARKit [1] provide support for object pose

estimation, their capability and robustness varies and are

typically opaque in terms of underlying algorithms and im-

plementation techniques, and scope for customization [34].

For instance, having a custom registration pipeline allows

users to control the extent of overlap of the 3D model with

the target during the matching procedure in model registra-

tion. In 3D image target registration, the main problem to be

addressed is the accurate 3D pose estimation.

This paper focuses on and aims to provide a novel tech-

nique for efficiently performing object registration, which

is the process of estimating the 3-dimensional pose of a

physical object to accurately overlay digital content such as

annotations, 3D models, and animations for an immersive

user experience. Our method utilizes 3D shape information

along with the RGB images. Existing literature employs 3D

shapes for rigid body objects in the form of meshes, point

clouds or multi-view images [50], [45], [40].

To the best of our knowledge, this is the first work that

employs graph representation generated in an unsupervised

manner from skeletons, to represent 3D shapes for generic

rigid body objects, making our framework category-agnostic.

We repurpose node2vec embedding used mainly in NLP lit-

erature [36] and we leverage these node embeddings in order

to provide light-weight intermediate representations of 3D

models of the object whose pose is to be estimated. We then

make use of a combination of custom and standard Convolu-

tional Neural Networks (CNNs) to match this representation

with the visual scan data of the object.

Our intuition is that 3D shapes capture the underlying

semantic and compositional information of objects, and us-

ing them not only facilitates accurate registration but is also

useful in making the registration category-agnostic. In a real-

world scenario, we need systems that are ready to handle

all kinds of objects. But it is difficult on a human level to

train our models on all possible object categories that ex-

ist. Its the need of the hour to develop methods that don’t

require all object types during training. Consider a robotic

arm that interacts with objects in front of it and places all

of them such that the robot can now see them in the same

orientation i.e., in the same view. Ideally, it should be able

to align all objects seen or unseen into the required orien-

tations. This can be achieved when we strive to make our

models such that they don’t require re-training on seeing new

objects and can make decisions on their own. Introducing
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Figure 1: Abstract Diagram: Our proposed framework, 3DPoseLite aims to estimate pose of an object given an RGB image and

its associated 3D model’s graph representation as input. The task to estimate pose and obtain a registered image as output is

accomplished in a lesser time frame with reduced memory footprint, and with similar accuracy as compared to state-of-the-art

models.

3D shape information along with RGB data has proved to

solve this problem [50]. We claim that the general shape

information of an object can be captured with a few nodes

and need not be a combination of thousands of points on a

point cloud. Moreover, graphs provide concise and easily

computable information as compared to point-clouds and

multi-view [39] [43]. The invariance to rotation, translation

and scaling make graphs an intuitive choice for representing

3D objects. The major contributions of our work are:

1 To the best of our knowledge, our approach,

3DPoseLite, is the first work in pose estimation that em-

ploys unsupervised graph embeddings, ‘node2vec’,

to represent 3D shapes for generic rigid body objects.

2 3DPoseLite utilizes a compact graph representation that

encodes a 3D shape and is able to reduce the memory

footprint and time by 11× and 3× respectively, with

respect to the state-of-the-art for instance, [50].

2. Literature Survey

Pose Estimation is a fundamental problem in AR and com-

puter vision . Commonly used techniques for the process, ex-

tract features from the input 2D-RGB image and match them

with the 3D models and finally align these 3D models with

the target image. Pose Estimation with 3D to 2D correspon-

dences is a Perspective-n-Point (PnP) algorithm [32]. This

algorithm gained a lot of interest among researchers with

usage in many problems [25] [49]. However, the method

suffers from heavy online run-time computation cost and

does not deal with outliers efficiently [17]. Recent studies

show that dealing with outliers is an NP-Hard [11] problem.

The most common mechanism to deal with outliers is to use

PnP with RANdom SAmple Consensus (RANSAC) [18] in

loop.

The method is robust with textured objects but fails in

case of occluded scenes and almost featureless objects. An-

other popular algorithm used for registration in varying fields

of tasks is iterative closest point (ICP) [8] algorithm.While

it has been relatively successful, this method is susceptible

to converging to local minima [10], [49] and, therefore, a

close initial manual alignment is necessary for convergence.

Deformable Part Model (DPM) [16] was also introduced

and found to be very efficient. Though these algorithms are

reported to work quite well, they do not operate in real-time

which is crucial for AR applications.

Recently, CNNs [19], [30] have been shown to outper-

form Deformable Part Model (DPM) [16] based methods for

recognition tasks [21], [12], [28]. While DPMs explicitly

model part appearances and their deformations, the CNN

architecture allows such relations to be captured implicitly

using a hierarchical convolutional structure. Girshick et

al. [22] argue that DPMs could also be thought of as a spe-

cific instantiation of CNNs and therefore training an end-

to-end CNN for the corresponding task should outperform

a method which instead explicitly models part appearances

and relations. Since then, a multitude of work [29], [40],

[45], [20] has been done in development of end-to-end CNN

models to learn correspondence of 3D model to 2D image.

PoseCNN [49] was one of the initial works in this domain

and delivered promising results with images and annotation

data. A few researchers made use of segmentation masks
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instead of annotation data. But these binary masks lacked

texture, color and other relevant information which presents

difficulties in situations where such information is needed

to resolve ambiguities in the mask representation [47]. They

relied heavily on segmentation accuracy and did not do well

with occluded image datasets.

These approaches were category dependent i.e., they

could identify pose only for those objects on which the end-

to-end model has been trained on. Y. Xiao et al. [50] for the

first time introduced a category agnostic model that made use

of 3D shape information along with RGB images to define

pose. The results shown were quite promising in AR. The

model was unfortunately quite complex and heavy as it re-

quired Multi-Views to be generated during training time and

slowed down the performance. Our work tries to resolve this

issue by proposing an approach for a light model which can

be easily used on frugal devices and have improved perfor-

mance in a memory constrained environment. We represent

3D models in form of graphs using node-embeddings [24]

as part of this approach. Graphs have been studied well in

humans [46], [53], [52] but not in rigid body objects. Our ap-

proach is intended to work on hand-held and head-mounted

devices or in particular, where the memory constraints are

obvious. Despite the compact representation, our accuracy

of pose matches the state-of-the-art technique, Pose From

Shape [50].

3. 3DPoseLite

We propose 3DPoseLite, a light-weight pose estimation

approach that utilises 3D shapes (in the form of graphs) and

images to extract deep features using CNN. Refer Figure 3

that details the architecture. Instead of using raw graphs, we

convert them into node embeddings using a semi-supervised

algorithm, node2vec [24] inspired from word embeddings

[37] used in natural language processing literature. The

pose is estimated combining the node embeddings with the

RGB image using a early fusion strategy. Later sub-sections

present details of 3DPoseLite; we provide additional details

on graph representation and node embedding technique, loss

functions, and implementation details.

3.1. Advantages of graph representation

High-resolution 3D shape representations such as Point

Cloud and Multi-View can be highly expensive both in terms

of storage and processing. While these 3D representations

like Pointcloud and Multi-View are needed for tasks like

high-fidelity rendering and 3D printing, other tasks, such as

shape retrieval, only require access to a specific subset of the

shape properties. Such tasks are favored by a compact shape

representation that encodes the key properties for the tasks

at hand in a computationally efficient way [39]. In this re-

gard, a skeleton representation gives a compact and effective

shape abstraction. Ideally, skeletons preserve topological

Figure 2: The figure in the left columns provides visual

illustration of skeletons (in red) generated from CAD models

(in grey). The right column represents their corresponding

graphs. The blue nodes represent the leaf nodes, yellow

denote the non-leaf nodes and edges are represented in red

color. The bottom-most representation is on unseen data

(armadillo object [33])

information and are stable under small deformations and Eu-

clidean transformations. In fact, the usage of skeleton based

graphs to search for similar objects in a database is more

feasible than simply comparing point clouds or thousands of

triangles in a mesh [43].
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Figure 3: Proposed network architecture: 3DPoseLite exploits 2 parallel pipelines: (a) the green block takes graphs as input,

and generates 2D images by extracting slices from compressed representation (obtained via PCA) of node embeddings (via

node2vec algorithm [24]); A vanilla CNN later extracts feature vector of dimension 256 while, (b) the blue block takes RGB

image as input which after preprocessing is fed to a ResNet-18 model for feature extraction of dimension 1024. The features

from pipeline (a) and (b) are fused and passed to a fully connected layer (FCN) and loss estimator for final pose estimation.

3.2. Skeletonization and Graphs

In this regard, we voxelize the meshes of the 3D mod-

els and convert them to skeletons via thinning algorithms

[27] [31]. The algorithm makes use of Prairie-Fire analogy,

wherein the boundary of the object is set on fire and the

skeleton is the loci where the fire fronts meet and quench

each other [9]. These skeletons are transformed to graphs as

shown in Figure 2. As compared to Point Cloud and Multi-

View [39] [43] representations, this concise, informative,

and easily computable graph representation can help reduce

the architecture space consumption. The invariance to rota-

tion, translation and scaling make skeleton-based graphs an

optimum choice of representation for 3D objects [39], [43].

Even though the number of nodes for each graph is variable

(refer supplementary material ). But, this variety is in itself

a significant feature for the graphs. To be put to use for deep

learning models, they need to be processed without any loss

of information. Thus, we generate node embeddings which

help us pass meaningful information to our neural network.

3.3. Node Embedding Generation

A key bottleneck in applying deep learning or machine

learning using graph representation is in transforming the

raw graphs into a representation that is easily interpretable by

downstream prediction/regression algorithms. To solve this

problem, we make use of node embeddings [24]. The objec-

tive function of node embeddings is based on the maximum

likelihood principle. Specifically, given a graph G = (V,E)
with vertices ′V′ and edges ′E′, we want to learn a function

f : V → Rm that maps the vertices to a lower dimensional

Figure 4: Sampling method using BFS and DFS for neigh-

borhood size = 3 nodes (best viewed in color) [Source: [24]]

space of continuous real valued features. The network neigh-

borhood of each node ′V′ is computed through a neighbor-

hood sampling strategy S. The algorithm node2vec [24] tries

to optimize the objective function which works on maximiz-

ing the log-probability of observing network neighbourhoods

conditioned on its feature representation.

Unlike other language processing problems, we need to

define a notion of network neighborhood in order to generate

the network/graph. These neighborhoods can have vastly dif-

ferent structures based on the sampling strategy S. Figure 4

explains the multiple ways to sample neighbourhood of size

= 3 nodes. Breadth First Search (BFS; denoted in red) to

find neighborhood with 1 hop is one of the extreme case,

while Depth First Search (DFS; denoted in blue) is another.

Both are important and thus, node2vec algorithm strategi-

cally interpolates between BFS and DFS using parameters

p and q [24]. A BFS traversal (prioritized by p) captures

the communities while a DFS (prioritized by q) discovers

structural similarities by traversing farther in the network.

We use 6 combinations of (p, q) in our experiments for
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Table 1: Category-wise details on graph nodes and edges

for Pascal3D dataset. We report minimum (min), maximum

(max) and average of all graphs in a category.

Category
No. of Nodes No. of Edges

Min Max Avg Min Max Avg

Aeroplane 32 127 85 34 164 91

Bicycle 69 308 157 76 391 173

Boat 18 103 54 17 110 56

Bottle 2 131 22 1 174 26

Bus 18 53 35 12 62 37

Car 62 391 178 96 587 244

Chair 9 117 43 8 116 47

DTable 2 14 8 1 13 7

MBike 75 770 517 89 973 647

Sofa 14 117 52 15 116 51

Train 23 412 142 20 579 186

TV 2 82 24 1 71 20

augmentation of the node embeddings generated, which

is discussed further in Section 3.6. Graph kernels suffer

from high time complexity and local optimum problem. In-

stead of relying on graph kernels to extract features from

the computed graphs, we rely on node embeddings which

generate much richer information to aid the functioning of

our pipeline. We then convert these embeddings into 2D

image-like structures so that instead of using complex Graph

Cconvolutional Neural Network (GCNNs), a vanilla 2D

CNN can do the job. By this approach, we benefit in terms

of both time and space complexity. A graph kernel that re-

quires computation of similarity between two graphs of size

N performs N(N − 1)/2 operations. The time complexity

of the shortest path graph kernel is O(|V1 |2|V2 |2) for two

graphs (V 1,V 2), where |Vi |is the number of nodes in graph

Vi. Whereas, generating node embeddings using random

walk similarity function [24] has a linear time complexity

O(E) where E is the set of edges in the graph generated.

Converting all these graphs to the same dimension and then

to 2D images on the dataset level is an O(N), N being the

number of graphs in the dataset.

Thus, we represent graphs as image-like structures [44]

in three steps; (1) generation of node-embeddings for the

graph, (2) space compression obtained using PCA and (3)

continuous extraction of 2D slices from the compressed rep-

resentation and generation of 2D histograms for each slice.

Finally, the stack of these 2D histograms is considered as an

image, wherein each histogram makes for a channel. The

variation in number of nodes is also handled via this ap-

proach. The dimensionality of final representation of graph

does not depend on its number of nodes/ size of graph. The

images generated are fed to custom CNN discussed in next

section.

3.4. Feature Extraction and Fusion

We make use of two separate feature extractors; one to

encode the shape and one for RGB image. First, for 2D

histograms that are generated from graphs, we train a 2 layer

CNN (two Convolution2D blocks with Batch Normalization

and ReLU activation function followed by dropout with rate

= 0.2 (determined empirically varying the drop out parame-

ters) to extract 1D feature vector of dimension 256. Second,

for RGB images, we utilize ResNet-18 [26], a standard CNN

model to obtain features (a vector of dimension 1024 ). Later,

in order to make use of both 3D shape and RGB images for

pose estimation we fuse the features from both and con-

catenate in an early fusion scheme [13]. Concatenation of

vectors provide complementary information obtained from

networks and thus help in better pose estimation.

We experimented with many feature fusion techniques

including addition, multiplication and weighted feature fu-

sion. We observed a degradation in performance with these.

The experiments to change ResNet to Dilated ResNet-22

(DRN-D-22) [51] gives an almost similar accuracy. DRNs

are said to preserve spatial information, by removing the

average pool layer in the network. For the histograms, we

experimented with Inception-V1 module [42]. However, it

failed to improve our result and even made the network more

complex which is particularly not desirable as we need a fast

real-time processing to enhance seamless user interaction.

3.5. Loss Estimator

Our network combines the outputs from pose regression

and pose classification i.e., offsets and probabilities respec-

tively. The final loss obtained LCR, is a summation of prob-

abilities and offsets. For classification, we make use of the

standard Cross Entropy Loss LCE and Smooth L1 loss (Hu-

ber Loss) for regression LL1 [50].

The combined flattened feature vector from both image

and graph pipelines is passed to a Fully Connected Network

(FCN) for pose estimation with each layer (1280-800-400-

200) followed by Batch Normalisation, and ReLU activation.

Finally, we obtain the output pose of object with respect to

the RGB image in the reference frame in terms of azimuth

(az), elevation (el), and in-plane rotation (ip) angle. Each

angle φ ∈ {az,el, ip} is divided into b bins uniformly such

that our model outputs l labels ∈ (0,b−1) and δ offsets ∈
[−1,1]. Thus, our training data consists of 3 inputs to the

network (ui, vi, pi), where, ui is input image, vi is input

histogram of 3D model and pi is 3 degrees of freedom (DOF)

pose given in the annotation file. The Euler angles pi are

converted to bin labels l encoded as one-hot vectors and

relative offsets δ within the bins. Loss function LCR we use

is as below:
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Figure 5: Result of pose estimation on airplane on [48]

Dataset

LCR =
N

∑
i=1

∑
φ

LCE(li,φ , probφ (ui,vi))+

LL1(δi,φ ,regφ ,li,φ (ui,vi)) (1)

where probφ (ui,vi)) refer to the predicted probabilities

for parameterised by φ w.r.t. the input image and shape

representation followed and regφ ,li,φ (ui,vi)) correspond to

the regressor predicted offset.

3.6. Data Augmentation

The dataset Pascal3D has 79 CAD models for the RGB

images. This is a small number to train a neural network

and thus we intended to augment these 3D models. We

perform augmentation of both images and graphs in our ap-

proach. For input RGB images, we make use of standard

protocol that includes random jittering of bounding boxes,

horizontal rotation/flips and color jittering. In case of node

embeddings, we use 6 combinations of parameters (p,q) i.e.,

(0.25,4),(0.5,2),(1,1),(1,0.5),(2,0.5),(4,0.25) inspired

by the work done by Tixier et. al [44]. This design con-

siders all the possible random walks and also the community

level features and sub-structural similarity.

3.7. Implementation details

The voxelization, skeletonization and graph retrieval is

performed using [27] [31]. The adjacency matrix and edge

weights are obtained which is fed to node2vec [24] algo-

rithm. Principal Component Analysis (PCA) is performed

on the embeddings and histograms (2D images) are ob-

tained. These histograms and input RGB images are fed

to the CNN architecture as shown in Figure 3. We divide the

entire dataset into train and test as per the protocol followed

by [23], [38], [45]. The train dataset consists of ImageNet-

trainval and Pascal-train images, while the test data contains

2,113 non-occluded and non-truncated objects of the Pascal-

val images (see Sec. 4.1 for additional details on datasets

used).

4. Performance Evaluation

4.1. Dataset

For the purpose of training our pose estimator we use

the state-of-the-art dataset Pascal3D+ [48], which consists

of images with annotations for 12 day-to-day life object

Figure 6: A sample illustration of pose estimation using

3DPoseLite on unseen data, in our case, Armadillo

Figure 7: Pose estimation on Pix3D dataset using

3DPoseLite

categories including aeroplane, bicycle, boat, bottle, bus, car,

chair, dining table, motorbike, sofa, train, and tv-monitor.

The dataset is compilation of training and validation set

images from PASCAL VOC 2012 [15] and ImageNet [14].

The corresponding 3D CAD model is available for each

object.

4.2. Baseline and Evaluation Metrics

Xiao et. al introduced PoseFromShape [50] that employ

random Multi-Views and PointClouds and feed it to a ResNet

model [26] for pose estimation. They claim to achieve ac-

curacy of 82.66% on the Pascal3D dataset as mentioned

earlier. For accuracy on Pascal3D dataset, we regard Pose-

FromShape [50] as the baseline for comparison with our

model which in turn exploits the potential of graphs to repre-

sent 3D shapes effectively. We report our results in terms of

accuracy denoted by Accuracyπ/6 where π/6 is the threshold

value. The estimated pose is within this threshold angle.

4.3. Results And Discussion

We first evaluate our method in case the categories of

tested objects are covered by training data. We use Pascal

3D+ dataset [48], which comprise of the largest variety of

object categories, 3D models and images. We report the

results in Table 3. The baseline [50] we follow leverages

3D model of the object and achieves a clear boost in the

performance with accuracy 82.66%. Following the same

protocol as backbone and introducing graphs in our proposed

method, we achieve a comparable accuracy of 80.18%, with

computation time reduced by 3× approximately and memory

requirement for computation reduced by a factor of 11 as

shown in Table 2. The number of parameters required by

the model for graph feature extraction is 738,112 (15× less

than the baseline) while, earlier for multi-view or pointcloud

it required 11,307,840 parameters. The range and average
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Table 2: Details on computational efficiency, memory footprint, and number of parameters: Note the reduction in inference

time and GPU memory required.

Train Time Test Time GPU Memory Required No. of Parameters

(per instance) (total)

PoseFromShape [50] 112.75 hrs 0.43 sec 8172 MB 23,009,664

3DPoseLite 10.25 hrs 0.15 sec 728 MB 12,439,936

Table 3: Performance Comparison in terms of Accuracyπ/6 on Pascal3D+ [48] dataset. * Not trained on ImageNet data but

trained on ShapeNet Renderings

Algorithm Cat-agnostic ae
ro

cy
cl

e

b
o

at

b
o

tt
le

b
u

s

ca
r

ch
ai

r

d
ta

b
le

m
b

ik
e

so
fa

tr
ai

n

tv m
ea

n

m
ea

n

Accuracyπ/6 MedErr

Tulsiani et. al [45] × 81 77 59 93 98 89 80 62 88 82 80 80 80.75 13.6

Su et. al* [40] × 74 83 52 91 91 88 86 73 78 90 86 92 82 11.7

Mousavian et. al [38] × 78 83 57 93 94 90 80 68 86 82 82 85 81.03 11.1

Grabner et. al [23]
√

80 82 57 90 97 94 72 67 90 80 82 85 81.33 11.5

PoseFromShape [50]
√

81 83 60 93 97 91 79 67 90 90 81 79 82.66 10

3DPoseLite
√

80 82 58 93 96 92 77 57 88 82 80 79 80.18 13.4

number of nodes and edges are reported in Table 1 category-

wise. The number of nodes is significantly less as compared

to point clouds and thus can serve as the reason for the

drop in number of parameters, making our deep learning

model lighter and portable to devices. Note that the accuracy

could be further improved by hyper-parameter tuning on our

approach. These results mostly exceed or are on par with

category-specific approaches discussed [45] [40], [29]. Some

of the models developed [29] make use of select category of

objects instead of entire dataset, making them biased. Even

though underlying idea is competitive, they fail to generalize

on a wide variety of objects in our day-to-day life.

We show the result on an RGB image from the dataset in

Figure 5. The pose estimated is approximately accurate and

subsequently the registration is bound to be accurate owing

to accurate pose estimation. To illustrate the generality on

unseen data, we show a sample on a set of Armadillo images

from Stanford 3D scanning repository [33] on which the

3DPoseLite (our network) is not trained on and our frame-

work tends to learn the underlying structure. The graph

generated (as shown in Figure 2) is meaningfully captures

the significant points including well defined nodes for head,

ears, hands and legs. Adding to it, the pose estimation (as

shown in Figure 6) is quite accurate even when we consider

completely different category of objects (i.e., an animal un-

like rigid body objects). Also, Table 4 and Figure 7 shows

the testing performance comparison of proposed method on

Pix3D dataset [41]. This depicts the robustness of graph

generation procedure that encodes the shape accurately and

also the pipeline developed.

But realizing the scope of improvements, we analyze

some possible failure cases of our method. Situations where

(i) images have multiple objects of similar category; (ii)

objects get occluded (or camouflaged) by background and

are hard to detect; (iii) the pose is such that part of geometry

of object is not visible. In spite of these limitations, the

desirable characteristics make our neural network model

suitable for on-device registration tasks with low latency and

speed-up performance. This is crucial for internal overlays or

3D model registration to an image seamlessly in a resource

constrained environment.

5. Future Work and Conclusion

We have presented a new compact neural network archi-

tecture for deep pose estimation termed 3DPoseLite. We

demonstrated the benefits of this approach in terms of compu-

tational efficiency and, memory footprint, with a negligible

trade-off in accuracy. Our proposed method 3DPoseLite

achieves comparable results to the state-of-the-art on stan-

dard pose estimation datasets. We highlight and demonstrate

that our approach is promising for pose estimation on generic

unseen objects without any re-training and, in some sense,

our approach is unsupervised in nature.

To facilitate the compactness of neural networks, we

make use of node embeddings to represent 3D shapes as
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Table 4: Performance Comparison in terms of Accuracyπ/6. Trained on Pascal3D+ [48] dataset and tested on Pix3D dataset [41]

Algorithm to
o

l

m
is

c

b
ca

se

w
d

ro
b

e

d
es

k

b
ed

ta
b

le

so
fa

ch
ai

r

m
ea

n

Accuracyπ/6

Georgakis et. al [45] - - - - 34.90 50.80 - - 31.20 -

PoseFromShape [50] 10.90 13.10 22.30 6.60 52.00 55.30 35.60 64.60 35.80 32.90

3DPoseLite 8.70 10.00 62.31 57.23 66.45 57.86 39.97 94.05 50.10 45.75

graphs. Instead of passing raw data-driven learning to ex-

tract features and graph kernels which are both costly and

time-consuming, we train our model on relevant features

extracted via a simple 2-layer CNN. We demonstrate it via

benchmarking on standard datasets comprising of rigid body

objects. This work pushes forward the state-of-the-art and

we see the potential of utilizing graphs in pose estimation

for rigid body objects.

In the future, we intend on extending our work to com-

press neural networks via pruning graphs and efficient rep-

resentations in feature extractor modules. For our research

work to see the light of the day in actual pose estimation

problems and internal overlays where a 3D object registra-

tion to a live feed is essential, a compact model is the need

of the hour. We aim to achieve this through additional tech-

niques using off-the-shelf model compression techniques

such as ONNX [7] and TensorFlowLite frameworks which

will aid in the development of real-time applications with a

better user experience for Augmented Reality.
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