
A Deflation based Fast and Robust Preconditioner for Bundle Adjustment

Shrutimoy Das Siddhant Katyan Pawan Kumar

International Institute of Information Technology, Hyderabad

{shrutimoy.das, siddhant.katyan}@research.iiit.ac.in, pawan.kumar@iiit.ac.in

Abstract

The bundle adjustment (BA) problem is formulated as a

non linear least squares problem which, requires the solu-

tion of a linear system. For solving this system, we present

the design and implementation of a fast preconditioned

solver. The proposed preconditioner is based on the de-

flation of the largest eigenvalues of the Hessian. We also

derive an estimate of the condition number of the precon-

ditioned system. Numerical experiments on problems from

the BAL dataset [3] suggest that our solver is the fastest,

sometimes, by a factor of five, when compared to the cur-

rent state-of-the-art solvers for bundle adjustment.

1. Introduction

Bundle adjustment (BA)[25] is one of the most impor-

tant steps in the three dimensional (3D) reconstruction sys-

tems. In recent years, the focus has shifted to develop-

ing 3D reconstruction systems that can handle millions of

images[1, 10, 24]. However, as the size and scale of these

systems increase, BA becomes computationally very expen-

sive. This has led to a renewed interest in developing large

scale bundle adjustment solvers[3, 6, 11, 26, 27].

The BA problem can be formulated as a non-linear least

squares problem, which can be solved using classical opti-

mization algorithms. The most commonly used algorithms

for these problems is the Levenberg-Marquardt (LM) algo-

rithm. Each iteration of the LM algorithm requires solving

a system of equations, which is the most expensive step.

Thus, a lot of research has gone into making this step com-

putationally efficient both in terms of time as well as space

complexity.

In SBA [17], direct methods using dense Cholesky fac-

torization of the reduced camera matrix has been explored.

However, Cholesky factorization has quadratic space com-

plexity, and cubic time complexity in the number of un-

knowns. This makes it inefficient for large scale problems.

Thus, for large problems, the focus has shifted from using

direct linear solvers to iterative linear solvers.

One of the most commonly used iterative solvers used

in recent works is the Conjugate Gradient(CG) method

[3, 6, 7, 11, 26, 27]. The CG based method have a fraction

of the memory usage compared to factorization based meth-

ods. However, the rate of convergence of these methods de-

pend on how well-conditioned the problem is, and the BA

problems are known to be notoriously ill-conditioned with

condition number going up to the order of 1020. To over-

come this problem, a suitable preconditioner is used, where

preconditioner is an approximation to the inverse of the ma-

trix, which is easy to solve with, and cheap to construct.

Using preconditioner often improves the condition number

of the coefficient matrix [23]. Applying a preconditioner

to the CG method results in the Preconditioned Conjugate

Gradients algorithm.

In this paper, we propose a deflation preconditioner that

explicitly removes or ”deflates” the error components corre-

sponding to the largest eigenvalues of the Hessian, We find

that for bundle adjustment, there are very large eigenvec-

tors, that slows down the convergence of an iterative method

such as CG or GMRES [23]. We also show that the condi-

tion number is reduced as a result of deflation, thus pro-

viding an estimate of the condition number. Also, a mod-

ified version of the deflated two-grid [12] is presented. In

the experiments, we show that the proposed solver is bet-

ter than the state-of-the-art solvers implemented in popular

ceres-solver [2]. In some cases, it is up to five times faster.

The memory requirement for the preconditioner is approx-

imately kn, where n is the number of rows of the Hessian

and k is the number of eigenvalues deflated. Hence, it has

the least memory requirement of the existing solvers.

In Section 2, we have a brief discussion on the prob-

lem of bundle adjustment. We also discuss the LM method,

which is used for solving the optimization problem in bun-

dle adjustment. In Section 3, we propose a deflation based

preconditioner for solving the linear system in each iteration

of the LM algorithm. Additionally, we derive some useful

properties of the proposed preconditioner. We explain the

implementation details of the proposed method in Section

4. In Section 5, we discuss the results obtained with the de-

flation preconditioner and compare it with state-of-the-art

solvers. We conclude our paper in Section 6.

1782

2. Bundle Adjustment

Bundle adjustment is the problem of refining a visual re-

construction to produce jointly optimal 3D structure and

viewing parameter (camera pose and/or calibration) esti-

mates. For more details, see Triggs et al. [25]

Let us assume that the parameter vector x for the

3D reconstruction problem has the block structure x =
[y1, · · · , yp, z1, · · · , zq], where y and z correspond to the

point (structure) and camera (viewing) parameters, respec-

tively, such that there are p points and q cameras. Let rk(x),
where k ∈ {1, · · · , q}, be the measurement function of a

3D point in a camera k. Let mk be the observed measure-

ment of a 3D point in camera k. Let fk(x) = rk(x) −mk

be a cost function for the error in the computed measure-

ment, rk(x), and the observed measurement, mk. Define

F (x) = [f1(x), · · · , fq(x)]
T . Then, the objective for the

bundle adjustment problem can be stated as

x∗ = argmin
x

1

2
||F (x)||2. (1)

The objective function (1) is non-linear and is usually

optimized by trust region methods [8], one of which is the

Levenberg-Marquardt algorithm described below.

2.1. Levenberg Marquardt Algorithm

The Levenberg-Marquardt(LM) algorithm [4, 16, 19] is

one of the most commonly used algorithms for solving non-

linear least squares problems. Ceres[2], which is an open-

source C++ library for modelling and solving optimization

problems, implements both an exact step[18], and an inex-

act step [21, 22] variant of the LM algorithm.

Define J = ∂F
∂x

|x=xt
as the Jacobian of F (x) at the cur-

rent iterate xt. The LM algorithm forms an affine approxi-

mation F (xt+∆x) ≈ F (xt)+J∆x, of the objective (1) at

xt in each iteration. The next iterate is then taken to be the

minimizer of ||F (xt +∆x)||22. To penalize choices of xt+1

that may not be in the neighbourhood of xt, a trust penalty

term λt||diag(JTJ)∆x||2, is introduced. The term λt is

the trust parameter which is updated after each LM itera-

tion. Then, the next iterate of the LM algorithm is obtained

as shown below.

xt+1 = xt − (JTJ + λt
diag(JTJ))−1JTF (xt). (2)

The quality of this minimizer is measured by the ratio of

the actual decrease in the objective function to the decrease

in the value of the affine approximation.

Now, from (2), let HLM = JTJ + λtdiag(JTJ) be

the approximated Hessian of F (x) at xt. Also, let g =
JTF (xt) and ∆x = xt+1−xt. Then, rearranging the terms

in equation (2), we have

HLM∆x = −g. (3)

Solving the system of equations in (3) is the most expen-

sive computational step in each iteration of the LM algo-

rithm. In general, for solving small to medium scale prob-

lems, direct linear solvers can be used for (3). However,

these methods are not scalable for large problems. As the

problem size increases, iterative solvers become more effi-

cient, and often the only feasible choice for solving this sys-

tem. By exploiting the special (sparse) structure and prop-

erties of the Hessian in BA problems, we design an efficient

and scalable scheme for solving (3).

2.2. Structure of the Hessian

As mentioned before, suppose the reconstruction prob-

lem consists of p points and q cameras, such that the pa-

rameter vector x has the block structure as mentioned in

the beginning of section 2. Let each point block be of size

s(s = 3 for most problems), and each camera block be of

size c (usually c ∈ {6, · · · , 9}). Given these block sizes, the

Jacobian J can be partitioned into a point part Js and cam-

era part Jc as J = [Js; Jc]. Using this partitioning scheme,

the Hessian HLM can be represented as

HLM =

[

JT
s Js JT

s Jc

JT
c Js JT

c Jc

]

=

[

D LT

L G

]

, (4)

where D ∈ R
ps×ps is a block diagonal matrix with p blocks of

size s × s and G ∈ R
qc×qc is a block diagonal matrix with q

blocks of size c × c. The matrix L ∈ R
qc×ps is a general block

sparse matrix. Then, the system in (3) can be written as a block

structured linear system as

[

D LT

L G

] [

∆xs

∆xc

]

=

[

gs
gc

]

, (5)

where ∆x = [∆xs; ∆xc], with ∆xs and ∆xc corresponding

to point and camera parameter blocks of ∆x, respectively, and

g = [gs; gc] with gs and gc the corresponding point and camera

parameter blocks of g respectively. The structure of a Hessian of

the Ladybug 49 problem from BAL dataset is shown in Figure 1.

2.3. Related Work

The block structured linear system in (5) can be solved either

via direct methods or via iterative methods. In [5], Brown intro-

duced the method of the reduced bundle system, which utilizes the

structure of the linear system (5). In this method, the linear system

is split into a reduced camera system, which involves computing

the Schur complement of HLM , and a reduced structure system.

For solving the reduced camera system, [17] uses a Cholesky fac-

torization of the coefficient matrix of the reduced system, and then

solves the reduced structure system using back-substitution. How-

ever, this method does not scale satisfactorily as the problem size

increases. Thus, a better alternative is to use iterative methods for

these problems.

The most popular iterative method used for solving (5) is the

Conjugate Gradients (CG) method. Since this method requires

only matrix-vector products, it has a much less memory require-

ment compared to direct methods. However, the convergence of

1783

0 0.5 1 1.5 2

nz = 1793475 10
4

0

0.5

1

1.5

2

10
4

Figure 1. The Hessian is of size 23769× 23769 and has 1793475
non zero entries. For this dataset, number of camera parameters,

c = 9. The Ladybug-49 problem has 49 cameras and 7776 3D

features. Thus, the camera submatrix has (9×49 =)441 rows (and

columns), and the structure submatrix has (3 × 7776 =)23328
rows(and columns). Thus, the Hessian has (23328+441 =)23769
rows as well as columns.

these methods depend on how well-conditioned the original prob-

lem is. This has led to recent research for obtaining efficient pre-

conditioners for these methods. In [3], Agarwal et. al. examined

the performance of several classical preconditioners, and their im-

plementation on large scale datasets. In [6], CG is used on the

Jacobian J directly with a preconditioner based on incomplete QR

factorization. The band block diagonal of the Schur complement

of HLM is used as a preconditioner in [27]. In [15], the visibility

information in the scene is used to form block diagonal and block

tridiagonal preconditioners. A generalized subgraph precondition-

ing (GSP) technique based on the combinatorial structure of the

BA problem is explored in [11].

Yet another iterative method, the Generalized Minimal Resid-

ual (GMRES) method, has been used for solving (5). Inspired

from [13], in [9], a preconditioner based on the approximation

of the Schur complement of HLM is explored. Recently, in-

spired from multigrid, another preconditioner based on the two-

grid method has been explored in [12, 14]. A modified version of

the preconditioner proposed in [12] is also compared in the exper-

iments.

The direct methods are usually faster than iterative methods for

small to medium sized problems. However, the iterative methods

become faster and are more memory efficient as the problem sizes

increase. In the following we explore preconditioners suitable for

very large problems.

3. Deflation Preconditioner

In this paper, a purely deflation based preconditioner [20] is

proposed for solving (3). It is motivated by the fact that for bundle

adjustment problems, a few of the largest eigenvalues contribute

to the very high condition numbers typically associated with these

problems. Also, a modified version of the deflated two-grid [12]

is presented. A condition number estimate of the proposed solver

is also presented in this work. In the remainder of this section,

the notations A and HLM will be used interchangeably for the

Hessian.

A good choice for the deflation preconditioner is the Bdef de-

fined in [12], which is given as

B−1

def = PA−1
c R, (6)

where P ∈ R
n×k is prolongation operator and the restriction

operator is defined as R = PT . The prolongation operator is con-

structed by taking the eigenvectors corresponding to the k largest

eigenvalues of A such that λ1 > λ2 > . . . > λk. Also, Ac is the

coarse grid matrix and is defined as

Ac = RAP

= PTAP

=











λ1

λ2

. . .

λk











.

(7)

In [12], Bdef is used with a smoother as a multiplicative com-

bination. It is then used as a preconditioner with GMRES. How-

ever, as the following lemma shows, B−1

def is symmetric semi-

positive definite and rank deficient. Thus, it cannot be used as

a standalone preconditioner. In [12], the Jacobi preconditioner is

used in a multiplicative combination with B−1

def due to which the

resulting preconditioner is nonsingular.

In the following,
〈

x, y
〉

= xT y denotes an inner product on the

vector space R
n, and SPD denotes symmetric positive definite.

Lemma 3.1. Let the given matrix A be SPD. Then, the defla-

tion preconditioner defined in (6) is symmetric and positive semi-

definite. Also, it is rank deficient, i.e., rank(B−1

def ≤ k), where k
is the number of deflated eigenvectors.

Proof. From the construction of A given in (7), it can be seen that

Ac = RAP = PTAP = AT
c , i.e., Ac is symmetric. Now,

(B−1

def)
T = (PA−1

c PT)T = P (A−1
c)TPT = PA−1

c PT =

B−1

def , since Ac is symmetric. Thus, B−1

def is symmetric.

It can be shown that for z ∈ R
k and z 6= 0, Ac is positive

definite

zTAcz =
〈

Acz, z
〉

=
〈

PTAPz, z
〉

=
〈

A(Pz), P z
〉

= yTAy > 0, since y = Pz 6= 0.

(8)

The prolongation operator, P, is full rank, hence, for z 6= 0, we

have Pz 6= 0. Since, Ac is SPD,A−1
c is also SPD.

Now, for x ∈ R
n and x 6= 0,

1784

xTB−1

defx =
〈

B−1

defx, x
〉

=
〈

PA−1
c PTx, x

〉

=
〈

A−1
c (PTx), PTx

〉

.

(9)

Since A is SPD, it has n independent and orthogonal eigenvec-

tors. Now, if x is some eigenvector of A different from the k eigen-

vectors in P, then PTx = 0 even if x 6= 0. Thus, we can atleast

conclude that xTB−1

defx ≥ 0, i.e, B−1

def is positive semi-definite.

Also, rank(PA−1
c PT) ≤ min(rank(P), rank(A−1

c PT)) ≤
k, where k is the rank of P, since all k eigenvectors (which are

columns of P) are linearly independent.

In this paper. a new standalone deflation preconditioner BD is

defined as shown below

BD = I −AP (PTAP)−1PT , (10)

where the columns of P ∈ R
n×k span the deflation space and

I ∈ R
n×n is the identity matrix. It should be noted that the matrix

P in this case is not the prolongation operator used for Bdef .

Lemma 3.2. The preconditioner BD defined in (10) is a projec-

tion matrix, i.e.,

B2
D = BD (11)

Proof.

B2
D

= BDBD

= (I −AP (PTAP)−1PT)(I −AP (PTAP)−1PT)

= I − 2AP (PTAP)−1PT +AP (PTAP)−1PT

= I −AP (PTAP)−1PT

= BD

(12)

Lemma 3.3. For BD defined in (10), the following identity holds

ABT
D = BDA. (13)

Proof.

ABT
D = A(I −AP (PTAP)−1PT)T

= [I −AP (PTAP)−1PT]A

= BDA

(14)

Similar to [12], the columns of P contain the eigenvectors of

A. Thus, rank of P is exactly k, which is much less than n. Given

this definition of P and Ac = PTAP, Ac is SPD, as seen in

Lemma 3.1. Again, the matrix Ac defined with respect to the de-

flation preconditioner has different significance from the coarse

grid matrix defined in (7).

Let the right hand side of the linear system to be solved be b.
Consider the deflated system

BDAx = BDb. (15)

The system (15) can be solved using CG or GMRES to get an

approximate solution x̃. Using the identity given in Lemma 3.3,

this can be written as

ABT
Dx̃ = BDb

⇒BT
Dx̃ = A−1BDb

⇒BT
Dx̃ = A−1(I −AP (PTAP)−1PT)b

⇒BT
Dx̃ = A−1b− P (PTAP)−1PT b

⇒A−1b = PA−1
c PT b+BT

Dx̃

⇒x = PA−1
c PT b+BT

Dx̃.

(16)

Thus, the solution of linear system of the form Ax = b with

the deflation preconditioner BD, is given by

x = PA−1
c PT b+BT

Dx̃. (17)

The algorithm for solving a linear system with the deflated pre-

conditioner BD is given in Algorithm 1.

Algorithm 1 Solving Ax = b with BD as a preconditioner

Input : A, b

Output : x

[1:] Set b̃ = BDb

[2:] Solve BDAx̃ = b̃ using GMRES

[3:] Set x̂ = PA−1
c PT b, where Ac = PTAP

[4:] Set x̄ = BT
Dx̃

[5:] x = x̂+ x̄

Contrary to the typical assumption of deflating eigenvectors

corresponding to the smallest eigenvalues, the eigenvectors cor-

responding to the largest eigenvalues are deflated in this work. As

already seen in previous sections, the matrices related to the BA

problem have some eigenvectors which correspond to very large

eigenvalues and are well spread out. Hence, the largest eigenval-

ues are deflated. An analysis of the largest eigenvalues for a given

matrix is given in Section 5.

For iterative methods, the speed of convergence of the method

depends upon the condition number of the coefficient matrix. The

following theorem shows the condition number bounds on the de-

flation based preconditioned matrix. Assume that the eigenvectors

of A, [v1, v2, . . . , vk, vk+1, . . . , vn] are arranged in increasing or-

der of their corresponding eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn. The

eigenvectors corresponding to the k largest eigenvalues are taken

as the columns of the matrix P, i.e., P = [vn−k+1, . . . , vn]. The

span of these columns form the deflation space. Since, the Hessian

in BA problems is SPD, the eigenvectors vi are orthogonal, i.e,

vTi vj =

{

1, if i = j

0, otherwise
(18)

Given the definition of P, the effective condition number is

defined as

1785

κeff =
λlarge

λsmall

, (19)

where λlarge and λsmall are the largest and smallest non-zero

eigenvalues of A respectively.

Then, the following theorem can be stated.

Theorem 3.1. For the deflation preconditioner BD defined in (10)

with P ∈ R
n×k, the deflation space contains the eigenvectors

corresponding to the k largest eigenvalues of A ∈ R
n×n and the

spectrum of BDA is {λ1, . . . , λn−k, 0, . . . , 0}. Then, the effective

condition number of BDA is

κeff =
λn−k

λ1

(20)

Proof. As mentioned previously,

Ac = PTAP =











λn−k+1

λn−k+2

. . .

λn











.

(21)

For any arbitrary vector vr, which is the rth eigenvector of A,
we have

BDAvr

= (I −APA−1
c PT)Avr

= λrvr −APdiag

(

1

λn−k+1

, . . . ,
1

λn

)

PTλrvr

= λrvr − λr[λn−k+1vn−k+1| . . . |λnvn]







vTn−k+1vr/λn−k+1

...

vTn vr/λn







= λrvr − λr[(v
T
n−k+1vr)vn−k+1 + . . .+ (vTn vr)vn]n×1.

(22)

It can be observed that if vr is not the deflated eigenvector, i.e,

if r < n− k+ 1, the second term is zero due to the orthogonality

of these eigenvectors, as shown in (18). On the other hand, if vr is

one of the deflation vectors, i.e., if n − k + 1 ≤ r ≤ n, then, by

the construction of BD, we have BDAvr = 0. That is

BDAvr =

{

λrvr, for r = 1, . . . , n− k

0, for r = n− k + 1, . . . , n.
(23)

Hence, the effective condition number of BDA is

κeff =
λn−k

λ1

.

4. Implementation

The deflation space, i.e., the span of the columns of P are

the eigenvectors corresponding to the 2 largest eigenvalues of

HLM . These eigenvectors of HLM are computed using the dou-

ble precision Intel MKL routine mkl sparse d ev, which

requires the input matrix to be in CSR format with 1-based index-

ing. As observed before, since the columns of P are the eigen-

vectors of HLM , computing Ac = PTAP is trivial because,

Ac = diag(λ1, λ2) is a diagonal matrix of size 2 × 2. Hence,

any matrix-matrix operations for computing Ac are avoided.

For the LM iterations, the popular Ceres solver [2] is used.

The proposed solver is integrated in the Ceres framework. The

stopping criteria for the LM iterations is either of the following

• The number of iterations exceeds 100, or,

• The termination rule is satisfied

‖HLM∆x+ g‖ ≤ ηt‖g‖ (24)

where t is the LM iteration number and ηt = 10−8.

The upper bound for the total reprojection error is guaranteed

by (24) for all the solvers compared in this paper.

The proposed solver is compared with the following

solvers/preconditioners, which are already available in Ceres.

• Sparse Normal Cholesky (SNC): This solver uses the

Cholesky factorization of HLM for solving (3). It is a di-

rect solver.

• Dense Iterative Schur (DS) : This solver solves the reduced

camera system using CG, and constructs the dense Schur

complement.

• Sparse Iterative Schur (IS) : This solver solves the reduced

camera system using PCG, but using a sparse approximated

Schur complement system. The diagonal blocks of the Schur

complement, termed as SCHUR JACOBI, is used as the pre-

conditioner.

• Sparse Schur (SS) : This solver solves the reduced camera

system by using sparse direct methods on a sparse approxi-

mation of the Schur complement.

In this work, the following solvers, along with GMRES, are

integrated into the Ceres framework:

• Modified Two Grid (MTG): Rather than doing a fill-

reducing reordering of the blocks, as done in SSBA, here the

blocks are selected directly without applying any reordering.

• Deflation (DEF) : This is the method proposed in this paper.

These preconditioners are used with restarted GMRES instead

of CG. This is because for both DEF and MTG, GMRES is more

robust compared to CG. The restart parameter for GMRES is 5.

The stopping criterion for GMRES is either of the following.

• The norm of the relative residual is below 10−2, or,

• The number of iterations exceeds 10.

The GMRES method is implemented using the dfgmres rout-

ing of Intel MKL. All the experiments are performed on a sub-

set of problems from BAL dataset. The number of points in these

problems varies from 65K to 993K. These tests were performed

on a system with Intel Xeon CPU E5-2640 @ 2.40GHz and 20GB

RAM. The details of the problems used for the experiments are

given in Table 1.

1786

Index Dataset #cameras #points #observations HLM size

1 T-257 257 65132 225911 197709× 197709
2 L-1723 1723 156502 678718 485013× 485013
3 D-356 356 226730 1255268 683394× 683394
4 V-1521 1521 939551 4739031 2832342× 2832342
5 V-1638 1638 976803 4956814 2945151× 2945151
6 V-1776 1776 993909 5001859 2997711× 2997711

Table 1. Details of the problems from the BAL dataset used for the experiments. These are prefixed as : L for LadyBug, T for Trafalgar

Square, D for Dubrovnik and V for Venice. The problems are indexed in increasing size of the Hessian.

0 2 4 6 8 11

Eigenvalues

0

0.5

1

1.5

2

2.5

3

M
a
g
n
it
u
d
e

10
4

Figure 2. The 10 largest eigenvalues for the Hessian in Venice problem.

5. Results

In Figure 2, the magnitude of the top 10 eigenvalues of the Hes-

sian resulting from the Venice-1776 problem is shown. It can be

seen that the first two eigenvalues are much larger than the other

eigenvalues. Thus, deflating these two eigenvalues results in a re-

duction of the effective condition number, as proven in Theorem

3.1. The number of eigenvalues to be deflated, k, varies from

problem to problem. For the problems considered in this paper,

it was found that deflating the 2 largest eigenvalues is enough. If

the number of eigenvalues to be deflated is kept small, then there

is a significant gain in setup time as the time taken for comput-

ing the eigenvalues is reduced. Another reason for deflating the

largest eigenvalues instead of the smallest eigenvalues is that com-

puting the smallest eigenvalues takes more time than computing

the largest eigenvalues.

We note that deflating smaller eigenvalues can also reduce the

effective condition number, unfortunately, as shown in right of

Figure 3, time for computing two smallest eigenvalues for the

three problems ranges from 900 seconds to approximately 3000

seconds. Thus, the time for computing smallest eigenvectors does

not amortize the total cost involved with LM iterations that re-

quire multiple linear solves and hence multiple eigenvector com-

putations, thereby providing no benefits compared to other solvers.

However, time for computing largest eigenvectors as shown on the

left of Figure 3, for the three problems ranges from 0.7 seconds

to 3.7 seconds. Hence, deflating largest eigenvectors is not much

costly, and moreover, it helps in attaining overall faster conver-

gence in time compared to existing solvers.

In Table 2, the time taken for each LM iterations using direct

and iterative solvers for the linear system, are compared. It can

be seen that, except for dataset 2, the deflation preconditioner, de-

noted by DEF is the best for all the datasets. In some cases, for

example, for dataset 1, it is almost 4 times faster than the next best

solver, MTG. Similarly, for dataset 4, DEF is almost 5 times faster

than the next best solver, that is SNC. For the largest dataset, V-

1776, DEF is almost 4 times faster than SNC. Also, it can be seen

that the MTG solver is always faster than the TG solver proposed in

[12]. In Figure 4, the bar plot of these time comparisons is shown

for 100 iterations of the LM method.

6. Conclusion and Future Work

In this paper we proposed a deflation preconditioner for the ef-

ficient solution of the linear equations related with the LM method.

To the best of our knowledge, this is the fastest solver proposed

so far, moreover, this is the first time a purely deflation based

solver have been investigated for the bundle adjustment problem.

Given that the problems related to bundle adjustment are often

very ill conditioned, with very high condition number, we estab-

lish that explicit deflation helps in designing efficient solvers for

these problems. In particular, we observed that deflating some of

the largest eigenvectors instead of the smallest ones is beneficial,

as the largest eigenvectors tend to slow down the convergence of

1787

L-1723 T-257 D-356
0

1

2

3

4

T
im

e
 i
n
 s

e
c
o
n
d
s

L-1723 T-257 D-356
0

1000

2000

3000

T
im

e
 i
n
 s

e
c
o
n
d
s

Figure 3. Left: Time for computing two largest eigenvalues Right: Time for computing two smallest eigenvalues.

Index SNC DS IS SS TG MTG DEF

1 0.571 0.339 0.014 0.441 0.327 0.285 0.082

2 9.967 24.038 0.254 0.381 23.971 3.777 > 6.18
3 0.598 0.422 2.356 0.492 0.407 0.396 0.374

4 5.449 15.827 7.515 6.1058 16.12 6.219 0.982

5 2.751 9.078 4.007 2.995 9.085 5.949 1.084

6 3.875 15.043 > 18.00 4.301 14.961 7.262 1.051
Table 2. Average time (in seconds) per iteration of LM with various linear solvers. Here, SNC stands for Sparse Normal Cholesky, DS

stands for Dense Schur, IS stands for Iterative Schur, SS stands for Sparse Schur, TG stands for Two Grid [12], MTG stands for Modified

Two Grid, and DEF stands for the Deflation preconditioner proposed in this work. Also, > indicates that the LM iterations did not converge

within 100 iterations.

Krylov subspace methods like GMRES. We also observe that de-

flating smallest eigenvectors is not feasible because it is too costly

to compute compared to largest. In future, we would like to ex-

plore various deflation strategies to further improve the solver.

7. Acknowledgement

We would like to thank the reviewers for their constructive sug-

gestions that helped improve the paper. This work was done at

IIIT, Hyderabad; we acknowledge the facilities and grants pro-

vided to us that led to this work. We also thank Sameer Agarwal

(Google research) for helpful discussions.

References

[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Si-

mon, Brian Curless, Steven M. Seitz, and Richard Szeliski.

Building rome in a day. Commun. ACM, 54(10):105–112,

Oct. 2011.

[2] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.

[3] Sameer Agarwal, Noah Snavely, Steven M. Seitz, and

Richard Szeliski. Bundle adjustment in the large. In ECCV

2010, pages 29–42, Berlin, Heidelberg, 2010. Springer

Berlin Heidelberg.

[4] S. Boyd and L. Vandenberghe. Introduction to Applied Lin-

ear Algebra - Vectors, Matrices, and Least Squares. Cam-

bridge University Press, 2018.

[5] David C. Brown. The bundle adjustment - progress and

prospects. 1976.

[6] Martin Byröd and Kalle Åström. Conjugate gradient bundle

adjustment. In ECCV 2010, pages 114–127, Berlin, Heidel-

berg, 2010. Springer Berlin Heidelberg.

[7] Martin Byröd and K.J. Åström. Bundle adjustment using

conjugate gradients with multiscale preconditioning. 01

2009.

[8] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L.

Toint. Trust Region Methods. Society for Industrial and Ap-

plied Mathematics, 2000.

[9] Shrutimoy Das, Siddhant Katyan, and Pawan Kumar. Do-

main decomposition based preconditioned solver for bundle

adjustment. In NCVPRIPG, 2019.

[10] Jan-Michael Frahm, Pierre Fite-Georgel, David Gallup, Tim

Johnson, Rahul Raguram, Changchang Wu, Yi-Hung Jen,

Enrique Dunn, Brian Clipp, Svetlana Lazebnik, and Marc

Pollefeys. Building rome on a cloudless day. In ECCV 2010,

pages 368–381, Berlin, Heidelberg, 2010. Springer Berlin

Heidelberg.

[11] Yong-Dian Jian, Doru C. Balcan, and Frank Dellaert. Gen-

eralized subgraph preconditioners for large-scale bundle ad-

justment. In Outdoor and Large-Scale Real-World Scene

Analysis, pages 131–150, Berlin, Heidelberg, 2012. Springer

Berlin Heidelberg.

[12] Siddhant Katyan, Shrutimoy Das, and Pawan Kumar. Two-

grid preconditioned solver for bundle adjustment. In WACV

2020, New York, NY, USA, 2020. IEEE.

[13] Pawan Kumar. Purely algebraic domain decomposition

methods for the incompressible navier-stokes equations,

2011.

[14] Pawan Kumar. Aggregation based on graph matching and in-

exact coarse grid solve for algebraic two grid. International

Journal of Computer Mathematics, 91(5):1061–1081, 2014.

[15] Avanish Kushal. Visibility based preconditioning for bundle

adjustment. In CVPR 2012 Proceedings, CVPR ’12, pages

1442–1449, Washington, DC, USA, 2012. IEEE Computer

Society.

1788

1 2 3 4 5 6

Dataset Index

0

500

1000

1500

2000

2500
T

o
ta

l
ti
m

e
 f
o
r

1
0
0
 L

M
 i
te

ra
ti
o
n
s
(s

e
c
s
)

SNC

DS

IS

SS

TG

MTG

DEF

Figure 4. Bar plot of time comparisons for various solvers. Note that for dataset 2, the LM iterations do not converge using DEF solver, and

for dataset 6, the LM iterations do converge using IS solver. Here, SNC stands for Sparse Normal Cholesky, DS stands for Dense Schur,

IS stands for Iterative Schur, SS stands for Sparse Schur, TG stands for Two Grid [12], MTG stands for Modified Two Grid, and DEF stands

for the Deflation preconditioner proposed in this work.

[16] Kenneth Levenberg. A method for the solution of certain

non-linear problems in least squares. Quarterly of Applied

Mathematics, 2(2):164–168, 1944.

[17] Manolis I. A. Lourakis and Antonis A. Argyros. Sba: A

software package for generic sparse bundle adjustment. ACM

Trans. Math. Softw., 36(1):2:1–2:30, Mar. 2009.

[18] Kaj Madsen, Hans Nielsen, and O Tingleff. Methods for non-

linear least squares problems (2nd ed.). page 60, 01 2004.

[19] Donald W. Marquardt. An algorithm for least-squares esti-

mation of nonlinear parameters. Journal of the Society for

Industrial and Applied Mathematics, 11(2):431–441, 1963.

[20] R. Nabben and C. Vuik. A comparison of deflation

and the balancing preconditioner. SIAM J. Sci. Comput.,

27(5):1742–1759, Nov. 2005.

[21] Stephen G. Nash and Ariela Sofer. Assessing a search direc-

tion within a truncated-newton method. Operations Research

Letters, 9(4):219 – 221, 1990.

[22] Jorge Nocedal and Stephen J. Wright. Numerical Optimiza-

tion. Springer, New York, NY, USA, second edition, 2006.

[23] Yousef. Saad. Iterative Methods for Sparse Linear Systems.

SIAM, second edition, 2003.

[24] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Mod-

eling the world from internet photo collections. International

Journal of Computer Vision, 80(2):189–210, Nov 2008.

[25] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and

Andrew W. Fitzgibbon. Bundle adjustment — a modern syn-

thesis. In Vision Algorithms: Theory and Practice, pages
298–372, Berlin, Heidelberg, 2000. Springer Berlin Heidel-

berg.

[26] C. Wu, S. Agarwal, B. Curless, and S.M. Seitz. Multicore

bundle adjustment. In CVPR 2011, pages 3057–3064, June

2011.

[27] Y.Jeong, D.Nister, D.Steedly, R. Szeliski, and I.Kweon.

Pushing the envelope of modern methods for bundle adjust-

ment. IEEE TPAMI, 34(8):1605–1617, Aug 2012.

1789

