
Auxiliary Tasks for Efficient Learning of Point-Goal Navigation

Saurabh Satish Desai

desaisau@oregonstate.edu

Oregon State University

Stefan Lee

leestef@oregonstate.edu

Oregon State University

Abstract

Top-performing approaches to embodied AI tasks like

point-goal navigation often rely on training agents via re-

inforcement learning over tens of millions (or even billions)

of experiential steps – learning neural agents that map di-

rectly from visual observations to actions. In this work, we

question whether these extreme training durations are nec-

essary or if they are simply due to the difficulty of learning

visual representations purely from task reward. We examine

the task of point-goal navigation in photorealistic environ-

ments and introduce three auxiliary tasks that encourage

learned representations to capture key elements of the task

– local scene geometry, transition dynamics of the environ-

ment, and progress towards the goal. Importantly, these can

be evaluated independent of task performance and provide

strong supervision for representation learning. Our auxil-

iary tasks are simple to implement and rely on supervision

already present in simulators commonly used for point-goal

navigation. Applying our auxiliary losses to agents from

prior works, we observe a >4× improvement in sample ef-

ficiency – in 17 million steps, our augmented agents outper-

forms state-of-the-art agents trained for 72 million steps.

1. Introduction

There has been a recent surge of research activity on em-

bodied agents operating in simulated, photorealistic envi-

ronments – navigating to point-goals [1, 2, 5, 13, 9], fol-

lowing instructions [6, 17], and exploring to answer ques-

tions [25] based on visual observations. Training agents

for these tasks is primarily done through large-scale rein-

forcement learning [26] leveraging high-throughput simu-

lators [21]. These techniques learn neural agents that map

visual observations directly to actions based solely on task

reward. Taking point-goal navigation as an example, the

state-of-the-art reinforcement learning approach (DD-PPO

[26]) achieves near perfect performance on unseen environ-

ments. This is achieved at the cost of 2.5 billion simula-

tor steps during training (or approximately 80 years of real-

Figure 1. Learning to navigate from visual inputs is challeng-

ing. Agents must learn useful visual representations from task-

feedback alone. In this work, we introduce auxiliary tasks that

significantly improve the sample efficiency of training point-goal

navigation agents. In the validation performance plot above, our

agents achieve an SPL of 0.68 in 17 million steps which takes DD-

PPO almost 72 million – a ×4 improvement in sample efficiency.

world experience). In this work, we question whether this

scale of experience is necessary or a costly side effect of an

impoverished setting for visual representation learning.

We consider the setting of point-goal navigation as de-

fined in [2]. In this task, an agent is spawned at a random

location in a never-before-seen environment and must navi-

gate to a goal location specified in relative coordinates. The

agent has no access to a map of the environment and must

take actions based on its visual observations and pose infor-

mation alone. Starting from a randomly initialized network,

training a competent agent requires overcoming two inter-

connected problems – learning to represent observations in

a useful way and learning to use these representations to

make correct decisions. In some sense, this is a chicken-

and-egg problem. Without a strong task-relevant represen-

tation of observations it is difficult to take correct actions.

Without positive reinforcement from the environment for

correct actions, it is difficult to learn a strong task-relevant

representation of observations.

This challenge is a result of only drawing representation

supervision from task performance (i.e. scalar rewards for

717



navigation success); however, simulated environments are

awash in representation-related signals that could be used to

provide auxiliary supervision. Simulators provide multiple

sensing modalities (e.g. RGB, depth, semantic segmenta-

tions); the agent’s own actions reveal important information

about environment dynamics (e.g. agents collide with ob-

stacles); and intermediate task-level supervision is easy to

compute (e.g. distance to goal). In this work, we consider

three auxiliary tasks that draw on these signals to guide rep-

resentation learning. Specifically, we consider:

– Depth Prediction – predicting coarse estimates of pixel-

wise depth given the visual observation. This encour-

ages capturing local scene geometry – key information

to avoid collisions. This is especially important for

agents that lack depth as an input. Such ‘RGB’ agents

have historically learned slower and performed worse

than their depth-equipped counterparts [21, 26].

– Inverse Dynamics – predicting an action taken between

two sequential observations. This encourages represen-

tations to encode information about transition dynamics

of the environment at the current state.

– Remaining Path Length Prediction – predicting the

geodesic (or shortest-navigable-path) distance to the

goal from the current location. Doing so accurately re-

quires reasoning about long-range navigability. For ex-

ample, a goal that is 8 meters away likely requires a com-

plex path (and thus high geodesic distance) if the agent

is in an interior room like a bedroom, but a relatively

simpler path if the agent were in a hallway.

We implement each as a small auxiliary network that takes

intermediate representations from the agent as input. Task

loss is then used to guide these representations in training.

We find each of these tasks significantly improves the

sample efficiency of our point-goal navigators. Building

off agents from [21], our auxiliary-augmented agents per-

form as well or better in 15 million steps than the baseline

models at 75 million – a 5× reduction in the amount of re-

quired experience to reach the same performance! We also

observe a 4× speed up over the state-of-the-art DD-PPO

algorithm which uses more complex models and a decen-

tralized distributed training regime. This suggests that the

extreme training regimes in point-goal navigation may not

be necessary if auxiliary supervision is provided.

Contributions. To summarize our contributions, we:

– Introduce three auxiliary tasks to improve representation

learning in point-goal navigation agents.

– Provide extensive experiments on agents with different

auxiliary losses and input modalities. Including multi-

ple runs to report mean and confidence intervals – train-

ing over 30 agents to 25 million steps of experience to

provide comprehensive comparisons.

– Our auxiliary task-augmented agents provide signifi-

cant gains in sample efficiency – achieving the same or

greater performance as the baseline agents in ∼5x fewer

steps. Further, we observe 4x improvement over state-

of-the-art architectures (see Fig. 1).

2. Related work

Auxiliary Tasks in Reinforcement Learning. Poor sample

efficiency is a common problem for reinforcement learn-

ing – especially for model-free agents like those commonly

used for pixel-to-action tasks like point-goal navigation. As

such, prior work has explored applying auxiliary tasks to

boost training efficiency and improve performance. In [14],

Jaderberg et al. introduced a suite of unsupervised auxiliary

tasks for an RL agent in Atari games and simple maze en-

vironments. These unsupervised objectives do not leverage

additional signals provided by the simulator – in contrast,

our auxiliary losses include predicting additional observa-

tion modalities (RGB→Depth) and aspects of the task itself

(remaining path length).

Recent work has also examined auxiliary tasks to pro-

mote ‘curiosity’, improving the exploration abilities of

agents. [20] does this by providing intrinsic reward to

agents for taking actions which lead to predictable changes

in the observation encoding. [20] learns to encode these ob-

servations via an inverse dynamics task like ours; however,

their inverse dynamics model is separate from the agent

and is just used to compute intrinsic ‘curiosity’ rewards.

As such, they do not use this as an auxiliary loss for the

agent’s observation representation. There are also a num-

ber of works focusing on forward-prediction as a means to

learn representation encoders [12, 11, 19]. A common chal-

lenge in these frameworks is how to determine the quality

of future predictions, a task made even more complex in the

perceptually rich environments we consider here.

Most relevant to our auxiliary tasks is the work of [18]

which studied two auxiliary tasks for navigation in simple

3D maze environments – depth prediction and loop closure

detection. As we are not operating in maze-like environ-

ments, we do not consider the loop closure tasks. We adapt

[18]’s depth prediction task to our setting – significantly al-

tering the architecture to fit the needs of our more visually

complex setting. We compare against the original structure

as a baseline and significantly outperform it.

Point-Goal Navigation. The point-goal navigation task is a

fundamental embodied AI problem on which other complex

tasks can be built. As such, it has received significant atten-

tion as interest in embodied tasks has grown [21, 22, 8, 26,

2, 1]. A variety of approaches have been proposed includ-

ing those with strong inductive biases from simultaneous-

localization-and-mapping research [8] to methods that draw

purely from deep reinforcement learning [21, 26]. [26]

demonstrates near-perfect performance on this task by train-

ing a neural architecture for over 2.5 billion steps of expe-

rience – amounting to over 80 years of continuously ex-

718



𝜙𝜙(𝐼𝐼𝑡𝑡)
GRU

𝐼𝐼𝑡𝑡

ℎ𝑡𝑡−1
𝑎𝑎𝑡𝑡 𝑣𝑣𝑡𝑡

C
N

N 𝑂𝑂𝑡𝑡
28x28x32

512

ℎ𝑡𝑡
512

Action Value

Goal

𝐼𝐼𝑡𝑡

ℎ𝑡𝑡

Visual Observation

𝑔𝑔𝑡𝑡
Quantized Depth Prediction Inverse Dynamics

ℒ𝐼𝐼𝐼𝐼𝐼𝐼
𝑓𝑓Inv

�𝑎𝑎𝑡𝑡

516
𝜙𝜙(𝐼𝐼𝑡𝑡) 𝑔𝑔𝑡𝑡 𝑔𝑔𝑡𝑡+1

𝑎𝑎𝑡𝑡
Predicted

Action Taken

Actual Agent

Action Taken

Remaining Path 

Length Prediction

𝑓𝑓d
ℒ𝐷𝐷�𝐷𝐷𝑡𝑡

𝑂𝑂𝑡𝑡
28x28x32 512

Predicted

Quantized Depth
Actual Depth

𝑓𝑓Geo
𝜙𝜙(𝐼𝐼𝑡𝑡) 𝑔𝑔𝑡𝑡

514

ℒ𝐺𝐺𝐺𝐺𝐺𝐺�̂�𝑑𝑔𝑔𝐺𝐺𝐺𝐺 𝑑𝑑𝑔𝑔𝐺𝐺𝐺𝐺
Predicted Geodesic

Distance to Goal

Actual Geodesic

Distance to Goal

Auxiliary Tasks

2

Spatial Features

𝐷𝐷𝑡𝑡

Figure 2. Our agent architecture (left) includes a simple convolutional observation encoder and a GRU-based recurrent policy. We consider

three auxiliary tasks (right) – depth prediction, inverse dynamics, and remaining path length prediction – based on representations from

the policy. Gradients for auxiliary task losses are propagated to corresponding agent modules, providing additional supervision to learned

representation.

ploring simulated environments. We focus instead on im-

proving sample efficiency for these agents. Similar in goal,

[22] studies the use of pretrained mid-level representations

as input signals for point-goal navigators – demonstrating

improvements in sample efficiency. In contrast, we do not

assume access to relevant pretrained encoders and instead

seek to train a model from scratch efficiently.

3. Auxiliary Tasks for Point-Goal Navigation

Learning to control agents from visual perception presents

a chicken-and-egg problem in difficult reinforcement learn-

ing settings. Making effective policy decisions requires be-

ing able to encode observations in a way that is useful to de-

cision making; however, getting positive feedback from the

environment to guide the learning of those representations

requires a strong policy – or more often, luck and a moun-

tain of experience. In this work, we leverage information

from the training environment to provide auxiliary super-

vision to these representations to shortcut this dependency.

We consider three auxiliary tasks: quantized depth predic-

tion, inverse dynamics, and remaining path length predic-

tion. These focus on enriching the representation with scene

geometry, action consequences, and goal-awareness respec-

tively. Refer to Fig. 2 for a schematic of our agent and aux-

iliary network architectures.

3.1. Preliminaries: PointGoal Navigation

We consider the problem of point-goal navigation as de-

fined in [21] – an agent is spawned in a never-before-

seen environment and must reach a point given in rela-

tive coordinates. Agents observe the environment through

some set of visual sensors (e.g. RGB or Depth) and

are given their exact pose at each time step (e.g. as if

they had a perfect GPS+Compass). Based on the goal

and the current observation, the agent can turn in place

or move forward. More formally, we consider a point-

goal agent as a policy π that maps the goal coordinates

g and visual observation It to a distribution over actions

{left 15◦, right 15◦, forward 0.25m, stop} at each timestep.

A navigation episode ends when the agent calls stop.

Point-Goal Agent Models. Common formulations for

these agents [21, 26] consider a decomposition of the agent

into an observation encoder φ(·) and a recurrent policy f(·),
i.e. we can write

ht = f(φ(It), gt, ht−1) (1)

at ∼ π(ht) = Categorical(Waht) (2)

where gt is the agent-relative goal position computed from

the pose Pt and goal coordinates g. Following [21], we

implement f(·) as a Gated Recurrent Unit (GRU) [10] and

φ(·) as a simple CNN1. As in [21], we train these agents

with PPO with Generalized Advantage Estimation [23]. As

such, we also decode a value estimate for the current state

as vt = Wvht where Wv is a learned linear layer. See [21]

for full details.

Visual Observation. We consider two settings based on

the agent’s observations – either color images (RGB) or

depth (D). We denote observations as It in either case. Prior

work [21] has shown depth to be an important signal for

point-goal navigation – with RGB-only models narrowly

outperforming blind agents and falling well below the per-

formance of their depth-enabled counterparts [21]. Fig. 3

demonstrates this trend in terms of SPL [21] – a metric that

accounts for both success and path efficiency (see Sec. 4).

In Sec. 3.2, we examine depth prediction as an auxiliary

task – significantly improving RGB agent performance.

1In compact layer notation, the SimpleCNN network architecture is

{Conv 8×8, ReLU, Conv 4×4, ReLU, Conv 3×3, ReLU, Linear, ReLU}.

719



0 10 20 30 40 50 60 70
Number of training steps taken (experience) in million

0.2

0.4

0.6

0.8

1.0

SP
L

Performance on Gibson validation split

RGB
Depth
RGBD
Blind
SLAM

Figure 3. RGB agents perform significantly worse than their depth-

equipped counterparts; performing similarly to blind agents. This

plot is reproduced from [21] for convenient reference.

3.2. Quantized Depth Prediction

Depth’s success as an input modality for point-goal nav-

igation is perhaps unsurprising – depth explicitly repre-

sents key aspects of scene geometry for navigation includ-

ing free-space and the position of potential obstacles. How-

ever, depth agents achieving nearly twice the performance

of RGB-only agents seems extreme. After all, depth can

be inferred from motion of a monocular observer – for ex-

ample, you or I can likely move about the world with one

eye closed without bumping into any of the walls. We then

hypothesize that learning point-goal navigation with rein-

forcement learning is not adequately capturing this structure

from RGB observations. We consider a quantized depth

prediction task similar to [18]. The agent must predict a

representation of the current depth image given the cur-

rent observation and navigation history. For RGB agents,

this amounts to a monocular depth estimation problem. For

depth agents, this is a type of autoencoding task.

Depth Quantization. Rather than supervise the model to

regress dense, continuous depth values, we consider a low-

resolution, quantized representation that focuses on the gen-

eral structure of the scene. We find this is easier to learn

while still providing significant benefit. Given the depth ob-

servation at the current agent position, we crop to the central

50% of the frame (128× 128 in our setting) and then apply

an average pool operation to further reduce to 4 × 4. Each

depth value is then quantized into one of eight bins (classes)

of roughly equal size (slightly emphasising near depths over

further). We denote this quantized depth observation at time

t as Dt ∈ [0, . . . , 7]4×4 and treat depth prediction as an 8-

way classification task at each spatial location.

Depth Auxiliary Network. We would like representations

of the agent state – the current observation and memory –

to encode the information about scene geometry. To in-

duce this effect, we introduce an auxiliary network. We

denote the final spatial feature representation of φ(It) as

Ot ∈ R
28×28×32. Given Ot and the policy hidden state

ht ∈ R
512, we add an auxiliary depth prediction task net-

work fd such that:

D̂t = fd([Ot ++ ht]) (3)

where ++ denotes a spatially-tiled concatenation along the

channel dimension – i.e. [Ot ++ ht] ∈ R
28×28×544. We im-

plement fd as a series of convolutional layers followed by

a fully-connected layer to predict depth-class distributions

for each spatial cell. Note that this formulation considers

the entire spatial tensor when predicting each depth pixel.

See the supplementary - Sec. 2 for more details. The aux-

iliary loss is simply a cross-entropy between predicted and

actual depth-pixel classes, we denote this loss as LD.

3.3. Inverse Dynamics

In the previous task, we argued for depth’s usefulness in

terms of reasoning about obstacles and free-space. How-

ever, these concepts are primarily useful in estimating how

an agent’s actions affect its state transitions – e.g. if an agent

goes forward when there is an obstacle, its position may

not change. Rather than supervising depth, we can instead

guide the agent representation in terms of these environment

dynamics directly. Following prior work on self-supervised

representation learning from video [3, 15], we consider an

inverse dynamics formulation – predicting the action given

an observed state change in the environment.

Inverse Dynamics Auxiliary Network. Specifically, we

consider predicting the action at taken by the agent at a

given timestep t from the pre-action observation It and the

pre-and-post action relative goals gt and gt+1 respectively.

Note that we do not include ht as input because state se-

quences have strong correlation over time that would under-

mine the need to learn meaningful visual representations.

We introduce an inverse dynamics network fInv such that:

ât = fInv(φ(It), gt, gt+1) (4)

We implement fInv as a simple feed-forward network

that predicts a distribution over the actions taken given

the concatenation of the inputs. For training, we take

(at, It, gt, gt+1) tuples directly from agent policy rollouts.

The auxiliary loss LInv is just the cross-entropy loss of the

predicted and actual actions.

3.4. Remaining Path Length Prediction

Beyond obstacle avoidance and short-term path planning,

the point-goal navigation task requires reasoning about

longer range navigability. For example, avoiding dead ends

(e.g. bedrooms) in favor of better-connected areas (e.g. hall-

ways) when the Euclidean distance to the goal is large. Rea-

soning about these issues requires a sense of room extents or

path complexity at different distances in environments. To

encourage the observation representation to encode this, we

consider predicting the remaining geodesic path distance to

720



SPL Percentage (↑) Success Percentage (↑)

Row @5M @10M @15M @20M @25M @5M @10M @15M @20M @25M

1 Baseline Agent 17.8 ±0.7 41.8 ±0.7 44.2 ±1.2 45.1 ±1.0 44.3 ±1.8 27.0 ±1.2 65.1 ±1.1 69.9 ±1.5 74.6 ±1.1 78.0 ±1.9

2 + Depth Pred. 35.6 ±0.6 55.4 ±0.0 63.8 ±1.0 70.6 ±0.7 74.7 ±1.7 56.5 ±1.5 74.8 ±0.3 81.3 ±0.5 84.6 ±0.7 86.8 ±1.6

3 + Inv. Dyn. 37.0 ±0.9 47.6 ±1.5 55.3 ±0.8 59.1 ±2.8 65.5 ±0.8 53.0 ±2.1 66.7 ±1.4 74.9 ±1.0 78.0 ±2.1 81.0 ±1.0

4 + Remain. Path. 38.5 ±2.1 53.2 ±2.3 52.7 ±1.4 59.7 ±1.0 66.9 ±0.6 55.5 ±2.4 76.4 ±2.3 78.9 ±2.3 83.9 ±0.8 85.6 ±1.3

R
G

B

5 + All 40.8 ±0.7 60.5 ±2.5 68.8 ±1.6 73.4 ±2.4 75.1 ±3.0 61.1 ±0.8 77.04 ±2.4 81.7 ±1.0 85.5 ±2.5 85.6 ±3.5

6 Baseline Agent 53.7 ±2.0 68.4 ±1.3 72.1 ±0.9 70.9 ±0.6 70.5 ±0.9 68.7 ±1.8 82.1 ±1.2 89.1 ±0.3 90.9 ±1.3 92.1 ±1.0

7 + Depth Pred. 54.6 ±1.7 63.6 ±1.6 72.8 ±0.4 78.6 ±0.8 78.8 ±1.0 71.6 ±1.4 80.7 ±1.7 87.0 ±0.7 91.0 ±0.3 90.4 ±0.7

8 + Inv. Dyn. 55.2 ±1.7 71.2 ±2.4 77.0 ±0.9 78.2 ±0.8 79.4 ±1.9 73.0 ±1.9 84.3 ±1.9 89.0 ±0.7 91.1 ±1.2 92.4 ±1.4

9 + Remain. Path. 60.0 ±1.1 72.0 ±0.6 77.2 ±1.2 80.8 ±1.1 83.0 ±2.2 75.0 ±1.7 86.9 ±1.1 91.0 ±0.2 92.2 ±1.5 92.6 ±1.0

D
ep

th

10 + All 58.37 ±1.4 71.46 ±0.7 75.65 ±1.6 80.48 ±1.9 81.9 ±1.0 71.54 ±1.4 85.05 ±1.3 88.08 ±1.6 91.23 ±2.1 91.54 ±1.1

Table 1. Navigation metrics (SPL and Success percentages) on Gibson validation set as a function of training time (5, 10, 15, 20 and 25

million steps). We report means over three runs and 95% confidence intervals. We find our auxiliary task-equipped agents consistently

outperform their corresponding baseline agents by a significant margin. Our auxiliary tasks have a stronger affect on the RGB agents.

the goal. That is, the actual distance required to reach the

goal from a point by an oracle, shortest-path navigator.

Remaining Path Length Auxiliary Network. At a given

time t, we compute the geodesic distance to goal dgeo and

set an auxiliary task to predict this value based on the cur-

rent observation It and goal gt. As before, we leave out his-

torical information. Agent history information could enable

‘counting’ strategies that predict the remaining geodesic

distance based on how long the agent has already been nav-

igating rather than using the visual observation. We intro-

duce an auxiliary network fGeo such that:

d̂geo = fGeo(φ(It), gt) (5)

We implement fGeo as a simple feed-forward neural net-

work and define the auxiliary loss LGeo as an L2 regression

loss on this geodesic distance prediction.

4. Experimental Setting

PointGoal Navigation. We consider the PointGoal Navi-

gation task in the Habitat Simulator as defined in [21] for

the Habitat Challenge 2019. An agent is spawned in a

never-before-seen environment and must navigate to a lo-

cation given in relative coordinates. The agent must do so

by relying on a GPS+Compass sensor and visual observa-

tions (RGB or Depth). We follow the training and validation

splits on the Gibson dataset [27] in accordance with [21].

Training. We train using a combination of supervised

learning for auxiliary tasks and reinforcement learning for

agent actions. At each step, the environment provides dense

reward rt for an action based on the change in geodesic dis-

tance to goal – i.e.

rt = D(Pt, g)−D(Pt+1, g)− λ (6)

where λ is a constant slack penalty to encourage efficient

paths and D(·, ·) is geodesic distance. An episode ends

when the agent takes the stop action and an additional +10

reward is accrued if the agent is within 0.2 meters of the

goal. We apply Proximal Policy Optimization (PPO)[24]

with Generalized Advantage Estimation (GAE)[23]. Auxil-

iary task loss is also computed at each step during training.

Metrics. We report standard metrics for navigation [4] –

– Success. Percentage of episodes in which the agent calls

stop within 0.2 meters of the goal location.

– Success weighted by inverse normalized Path Length

(SPL). SPL considers both success and path efficiency –

weighting a binary success indicator by the normalized

ratio of the agent’s path length and the shortest path.

Both are reported as percentages. We report means and 95%

confidence intervals over multiple trials.

Implementation Details. For PPO, each batch of obser-

vations is generated using 8 rollout workers with rollout

length of 128 steps. The PPO trains for 4 epochs on each

batch with mini-batch size of 4. We use Adam optimizer

with a learning rate of 2.5 × 10−4. We train agents to 25

million steps of experience on two Tesla V100 GPUs – this

takes approximately 21 hours for RGB agents and 15 for

depth. To make fair comparisons, we use the agents and

training code from the public codebase from [21] – adding

our auxiliary losses to their existing model architectures.

We set auxiliary-task loss weights to 1.0, 0.2 and 1.0 for

quantized depth prediction, inverse dynamics and remain-

ing path length prediction tasks respectively.

5. Results

We apply each of our auxiliary losses and their combination

to the baseline agent and train three random initializations

– a total of 30 agents (3×{RGB, Depth}×{Baseline,

721



SPL Percentage (↑) Success Percentage (↑)

Row Depth Pred. Inv. Dyn. Path Pred. @5M @10M @15M @20M @25M @5M @10M @15M @20M @25M

1 X X 42.9 53.3 58.4 62.7 63.6 63.0 76.5 80.6 84.3 80.3

2 X X 42.1 59.0 67.2 71.8 72.9 61.5 73.9 79.7 83.4 83.3

3 X X 37.0 51.0 58.4 64.4 68.9 55.6 69.7 74.9 80.8 81.5

4 X X X 40.8 60.5 68.8 73.4 75.1 61.1 77.04 81.7 85.5 85.6

Table 2. Navigation metrics (SPL and Success percentages) on Gibson validation set for the RGB agent as a function of training time (5, 10,

15, 20 and 25 million). We present all combinations of auxiliary tasks. Underlined entries denote results for combinations that outperform

the independent performance of each individual constituent loss. We find the combination of task often lead to further improvements.

+DepthPred, +InvDyn, +RemainPath, +All}). We

report results in Tab. 1 for validation performance at fixed

points during training; 5, 10, 15, 20 and 25 million steps.

For compactness, we will denote performance at these

points as Metric@XXM – e.g. SPL@20M for SPL at 20

million steps. We also present these results as curves over

the full training run in the supplementary - Sec.3.

Auxiliary tasks improve sample efficiency. We find

our auxiliary task-equipped agents outperform the baseline

agent across training iterations. This is especially true for

RGB agents which see large gains early in training. After

only 5M steps, our RGB agents achieve ∼37 SPL on av-

erage – over twice that of the baseline at 17.8 SPL (rows

2-4 vs. 1 in Tab. 1). By 10 million steps, these agents

achieve 47.6 to 55.4 SPL – values not reached by the base-

line even after 25 million steps in our experiments (row 1).

By 15 million steps, our best RGB agent (row 2) achieves

63.8 SPL, outperforming the ∼57 SPL at 75 million re-

ported in [21] for the baseline agent (see Fig. 3). Like-

wise, our best depth agent achieves 77.2 SPL@15M (row

9) compared to the ∼75.4 SPL@75M reported in [21]. This

represents a 5x (75M/15M) improvement in sample effi-

ciency over the baseline agents.

Auxiliary tasks affect Depth and RGB agents differently.

We find significant differences in how RGB and Depth

agents respond to auxiliary tasks. Depth prediction is ex-

tremely effective for the RGB agent (row 2), outperform-

ing other auxiliary tasks by a large margin (∼9 SPL). This

follows our hypothesis that depth provides important ge-

ometric information for navigation that RGB agents have

trouble extracting from pixels. In contrast, the depth agent

benefits most from the remaining path length prediction task

(row 9). For depth agents, we find depth prediction and

inverse dynamics to be roughly equivalent (row 7 and 8).

Interestingly, the augmented agents achieve similar success

percentages as the baseline, with improvements in naviga-

tion efficiency being a strong driver for improvements in the

SPL metric. It is worth emphasizing that the depth agent

does still benefit from the depth prediction task (row 6),

improving by 8 SPL@25M over the baseline despite the fact

that depth is already provided as input to the agent.

RGB with depth prediction outperforms RGB-D. The

RGB agent benefits significantly from the depth auxiliary

loss; however, an alternative means of providing depth in-

formation is simply to append it as an input. While we do

not experiment with such an RGB-D agent here, we com-

pare our RGB+Depth Pred. agent with the RGB-D agent

reported in [21] (see Fig. 3). Interestingly, we find that our

RGB agent trained with the depth prediction auxiliary task

outperforms the RGB-D agent reported in [21] despite this

agent already having depth as input (74.6 SPL@25M for

our agent and 70 SPL@75M for [21]). This result suggests

that the role of auxiliary tasks is not just to add additional

information not already provided to the agent, but also to

shape representation learning given the existing inputs.

Combining multiple auxiliary tasks. Rows 5 and 10 in

Tab. 1 show models trained with all three auxiliary tasks ac-

tive. We combine task losses by weighting them to empir-

ically normalize their scale. We find these models outper-

form our best individual models with significantly steeper

learning curves for RGB input whereas their performance

nearly matches (within variances) our best agents for depth

input. This is another instance where auxiliary tasks seem

to have different effect for RGB and depth agents. To exam-

ine the relationship between auxiliary tasks, we present all

possible combinations in Tab. 2 for the RGB agent. We un-

derline any result for a combination that outperforms each

individual constituent loss. We find that Inv. Dyn. + Path

Pred. (row 1) and Depth Pred. + Inv. Dyn. (row 2) are

complementary to much extent while Depth Pred. + Path

Pred. (row 3) are not. This suggests depth prediction and

remaining path prediction compete when acting on common

representation. Despite this, combining all three yields fur-

ther gains across most time points. We believe the perfor-

mance of all these combinations can be improved in later

stages (>20M steps) by dynamically adjusting their (now

static) loss coefficients.

Comparison to state-of-the-art. So far we compared per-

formance of task-equipped agents with the Habitat [21]

agents that form our baseline architectures. However, state-

of-the-art in point-goal navigation [26] achieves nearly per-

fect SPL (≥99) in Gibson validation – significantly higher

722



SPL Percentage (↑) Success Percentage (↑)

Row @5M @10M @15M @20M @25M @5M @10M @15M @20M @25M

1 Baseline Agent 17.8 ±0.7 41.8 ±0.7 44.2 ±1.2 45.1 ±1.0 44.3 ±1.8 27.0 ±1.2 65.1 ±1.1 69.9 ±1.5 74.6 ±1.1 78.0 ±1.9

2 + Dense Depth Pred. [18] 1.5 ±0.4 13.7 ±1.0 51.3 ±0.8 61.0 ±3.7 64.8 ±2.8 2.14 ±0.5 17.8 ±1.4 68.6 ±0.2 77.4 ±3.6 79.4 ±2.3

3 + Reward Regression [14] 27.2 ±0.3 37.3 ±1.0 42.0 ±1.6 41.6 ±1.1 51.1 ±1.7 41.1 ±0.6 57.4 ±1.3 66.6 ±1.9 70.8 ±0.9 80.3 ±2.0

R
G

B

4 Ours (Best from Tab. 1) 35.6 ±0.6 55.4 ±0.0 63.8 ±1.0 70.6 ±0.7 74.7 ±1.7 56.5 ±1.5 74.8 ±0.3 81.3 ±0.5 84.6 ±0.7 86.8 ±1.6

Table 3. Navigation metrics (SPL and Success percentages) on Gibson validation set as a function of training time (5, 10, 15, 20 and 25

million steps). We report means over three runs and 95% confidence intervals. We compare the baseline agent with the agents equipped

with existing auxiliary tasks for navigation [18, 14]. Agents with [18] are slow to learn whereas those with reward regression only reach

51.1 SPL@25M. One can note that our best task-equipped RGB agent (row 4) outperforms all the agents.

than our models and those of [21]. It is however impor-

tant to consider how this impressive result is achieved. In

[26], agents architectures have significantly greater com-

plexity 2 and are trained on an extended dataset (Gibson

and Matterport3D [7]) for 2.5 billion steps of experience in

a distributed RL framework. This represents an increase in

model capacity, training set size, and a training time (100x).

Our focus in this work is on training efficiency and our re-

sults question whether these extreme training protocols are

necessary. Taking the first 75 million steps of the DDPPO

agent’s training regime, we find our RGB agents achieve the

same SPL in only 17 million steps (a >4x improvement)

(see supplementary - Sec. 4). An interesting question is

at what point our agents would reach optimal performance

compared to the 2.5 billion steps required in [26]. Unfortu-

nately, we cannot scale to these extremes. Our existing ex-

periments required 40 days of GPU time – scaling by over

100× is simply infeasible given our infrastructure.

Comparison with prior auxiliary tasks. We examine how

existing work on auxiliary tasks in visually-simple settings

transfers to photo-realistic environments. Specifically, we

examine two auxiliary tasks from prior work, depth predic-

tion [18] and reward regression [14]. We limit our discus-

sion to RGB agents to be consistent with these works.

Depth prediction. We contrast the performance of the depth

prediction architecture proposed in [18] with our own. De-

veloped in simple game-like environments, this task re-

quires agents to predict dense pixel-wise depth from non-

spatial features (i.e. φ(It)) – a difficult task in complex,

realistic environments. We find the architecture for depth

prediction employed in [18] causes the learning to be de-

layed and achieves lower performance when compared with

our results (Tab. 3 row 2 vs. Tab. 1 row 2). By 5 mil-

lion steps, agents augmented with [18] achieve 1.5 SPL on

average - which is nearly 1/17 of the SPL achieved by the

baseline agent (Tab. 3 row 1 vs row 2). Over the period

of training, we see an improvement in performance of task-

2Using a SE-ResNeXt50 [28] network for encoding observations

Average collisions per episode (↓)

Row @5M @10M @15M @20M @25M

1 Baseline Agent 31.63 54.97 54.90 62.40 67.01

2 + Inv. Dyn. 37.03 39.66 42.69 49.45 49.54

3 + Depth Pred. 44.17 37.97 37.25 34.57 34.89

4 + Remain. Path. 46.75 44.45 56.19 42.58 43.93

Table 4. Average collisions per episode for RGB agents in 250 test

episodes. We find auxiliary-augmented agents collide significantly

less, with the depth prediction auxiliary task inducing the fewest.

equipped agents and it surpasses the baseline at 15 million

steps. By 25 million steps, we see their depth-augmented

agents outperform the baseline but is still below our results

by ∼10 SPL. Interestingly, this approach fails to improve

the success metric significantly whereas our approach re-

sults in an improvement of ∼8% success.

Reward regression. We apply reward regression task pro-

posed in [14] to our problem – predicting the immediate re-

ward using the encoded observation φ(It) and relative goal

vector gt. We find reward regression to be less effective

than our approaches in improving either SPL or success

metric for the navigator. Initially by 5 million steps, the

reward-regression agents show some promise, leading over

the baseline agents by ∼ 10 SPL (compare Tab. 3 rows 1

and 3). But this lead does not extend further into training.

By 25 million steps, agents equipped with reward regres-

sion achieve 51.1 SPL which is lower than that achieved by

any of our individual auxiliary task-equipped agents (see

supplementary Sec. 5 for learning curves).

6. Analysis

6.1. Effect on Collision Rate

One hypothesis about the quantized depth prediction loss is

that it serves as a proxy for free space – imbuing the agent

with a strong sense of whether a forward action might re-

sult in a collision. In Tab. 4, we compare average colli-

723



SPL (↑)

@5M @10M @15M @20M @25M

Baseline 17.8 41.8 44.2 45.1 44.3

Depth Pred. (Pre.) 23.9 43.9 47.2 46.8 46.2

Depth Pred. (Aux.) 35.6 55.4 63.8 70.6 74.7

Inv. Dyn. (Pre.) 25.0 40.9 45.2 44.7 46.2

Inv. Dyn. (Aux.) 37.0 47.6 55.3 59.1 65.5

Remain. Path (Pre.) 27.9 36.3 44.6 48.6 47.1

Remain. Path (Aux.) 38.5 53.2 52.7 59.7 66.9

Table 5. We compare the agents equipped with auxiliary tasks

(Aux.) (Tab. 1) with the agents using a pretrained (Pre.) encoder

trained independently for these tasks. The task-equipped agents

consistently outperform the agents with pretrained encoders.

sion counts for different auxiliary-augmented RGB agents

across 250 test episodes. The baseline agent navigates

poorly early on and terminates episodes prematurely, result-

ing in initially low collision counts that rises significantly

as the agent improves at reaching the goal. In contrast, we

find all auxiliary tasks keep the collision rate lower through-

out training, with depth prediction resulting in the largest

reduction. Even when comparing at similar success rates

(@25M for Baseline vs. @10M for Depth Pred.), the Depth

Pred. augmented agent reduces collision by nearly half.

We note that collisions are not strictly negative. As

shown in [16], agents can take advantage of ‘sliding’

against walls to improve SPL. However, the augmented

agents achieve lower collision rates and more efficient paths

(higher SPL) – implying inefficient collisions are avoided.

6.2. Decoding Position from Agent Representations

While agent’s do take the dynamically-updating relative

goal coordinate as input, they do not explicitly receive their

own position. In this experiment, we examine whether

agent representations monitor changing goals to encode

agent position. Taking agents trained to 25 million steps

and then frozen, we learn a simple fully-connected decoder

that predicts agent position in three-dimensional XYZ co-

ordinates from the policy hidden state ht. After training on

10240 positions from the training set, we measure the pro-

portion of predictions that fall within 4m, 2m, and 1m of the

true position for 2400 instances on validation. Due to space

constraints, we present the full table in the supplementary

- Sec. 6. For accuracy within 1 meter, we find the base-

line achieves 48.4%, Depth Pred. 62.5%, Inv. Dyn. 50.6%,

and Remain. Path. 74.5%. These results suggest that the

remaining path prediction task induces significantly more

information about agent position.

Figure 4. Despite of both views in above example having simi-

lar Euclidean (L2) distance to the goal, they have different true

geodesic distances(Geo). The prediction for geodesic distance

(Pred) differs based on the “opennness” of the current frame.

6.3. Remaining Path Length Identifies Openness

Given the current observation and the goal in relative co-

ordinates, the remaining path length auxiliary task requires

agents to predict how much further an agent must move to

reach the goal. The Euclidean distance to the goal coordi-

nate provides a lower bound on the remaining distance – in

an open area, this may in fact be the distance to goal. How-

ever, if the goal is quite far or the visual observation is of a

cluttered space or ‘dead end’, the prediction should be sig-

nificantly higher. Fig. 4 shows a pair of qualitative examples

for the remaining path length task. In both, the Euclidean

distance to goal is around 6.5 meters. However, the “dead

end” example on left predicts a significantly higher remain-

ing path length (10.2m) whereas the open area on the right

keeps its estimate low (7.6m). Based on random qualitative

samples, this seems to be a fairly consistent trend.

6.4. Pretraining vs. Auxiliary Task Learning

As most of our auxiliary tasks focus on enriching the visual

encoder, we compare simply pretraining encoders on our

auxiliary tasks rather than using them during RL training.

Specifically, we collect agent trajectories from our best per-

forming agent in the training environments to create a static

dataset of observations and auxiliary task targets. As the

depth prediction task also requires a hidden state, we record

this as well for the pretrained agent. The models are trained

until they reach similar loss levels as those observed during

auxiliary learning and then they are used as warm-starts for

full RL training. From Tab. 5, we find pretraining improves

marginally over the baseline but lags significantly behind

the auxiliary training paradigm.

7. Conclusion

In this work, we examine the role of auxiliary training

tasks for point-goal navigation in realistic environment. We

demonstrate significant improvements (5x) in sample effi-

ciency over baseline models from prior work.

724



References

[1] Gibson challenge @ CVPR 2020. http://svl.

stanford.edu/gibson2/challenge.html.

[2] Habitat Challenge 2019 @ Habitat Embodied Agents

Workshop. CVPR 2019. https://aihabitat.org/

challenge/2019/.

[3] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning

to see by moving. ICCV, 2017.

[4] Peter Anderson, Devendra Singh Chaplot Angel Chang,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana

Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,

and Amir R. Zamir. On evaluation of embodied navigation

agents. arXiv preprint arXiv:1807.06757, 2018.

[5] Peter Anderson, Angel Chang, Devendra Singh Chaplot,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana

Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,

et al. On Evaluation of Embodied Navigation Agents. arXiv

preprint arXiv:1807.06757, 2018.

[6] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and

Anton van den Hengel. Vision-and-language navigation: In-

terpreting visually-grounded navigation instructions in real

environments. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3674–

3683, 2018.

[7] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niebner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d

data in indoor environments. In 2017 International Confer-

ence on 3D Vision (3DV), pages 667–676. IEEE, 2017.

[8] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta,

Abhinav Gupta, and Ruslan Salakhutdinov. Learning to ex-

plore using active neural slam. ICLR, 2020.

[9] Devendra Singh Chaplot, Saurabh Gupta, Abhinav Gupta,

and Ruslan Salakhutdinov. Modular visual navigation using

active neural mapping.

[10] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. Learning phrase representations using rnn

encoder-decoder for statistical machine translation. EMNLP,

2014.

[11] Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan

Wu, Hamza Merzic, and Aaron van den Oord. Shaping be-

lief states with generative environment models for rl. NIPS,

2019.

[12] Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal

Piot, Bernardo A. Pires, and Rémi Munos. Neural predic-

tive belief representations. arXiv preprint arXiv:1811.06407,

2018.

[13] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-

thankar, and Jitendra Malik. Cognitive mapping and plan-

ning for visual navigation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2616–2625, 2017.

[14] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czar-

necki, Tom Schaul, Joel Z Leibo, David Silver, and Koray

Kavukcuoglu. Reinforcement learning with unsupervised

auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

[15] Dinesh Jayaraman and Kristen Grauman. Learning image

representations tied to ego-motion. ICCV, 2015.

[16] Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexan-

der Clegg, Erik Wijmans, Stefan Lee, Manolis Savva, Sonia

Chernova, and Dhruv Batra. Are we making real progress in

simulated environments? measuring the sim2real gap in em-

bodied visual navigation. In IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), 2020.

[17] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra,

and Stefan Lee. Beyond the nav-graph: Vision-and-language

navigation in continuous environments. 2020.

[18] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer,

Andrew J Ballard, Andrea Banino, Misha Denil, Ross

Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. Learn-

ing to navigate in complex environments. arXiv preprint

arXiv:1611.03673, 2016.

[19] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018.

[20] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor

Darrell. Curiosity-driven exploration by self-supervised pre-

diction. ICML, 2017.

[21] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,

Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia

Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv

Batra. Habitat: A platform for embodied ai research. ICCV,

2019.

[22] Alexander Sax, Bradley Emi, Amir R. Zamir, Leonidas J.

Guibas, Silvio Savarese, and Jitendra Malik. Mid-level vi-

sual representations improve generalization and sample effi-

ciency for learning visuomotor policies. 2018.

[23] John Schulman, Philipp Moritz, Sergey Levine, Michael Jor-

dan, and Pieter Abbeel. High-dimensional continuous con-

trol using generalized advantage estimation. ICLR, 2016.

[24] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-

ford, and Oleg Klimov. Proximal policy optimization algo-

rithms. arXiv preprint arXiv:1707.06347, 2017.

[25] Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Ab-

hishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi

Parikh, and Dhruv Batra. Embodied question answering in

photorealistic environments with point cloud perception. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 6659–6668, 2019.

[26] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee,

Irfan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra.

DD-PPO: Learning near-perfect pointgoal navigators from

2.5 billion frames. 2020.

[27] Fei Xia, Amir Zamir, Zhi-Yang He, Alexander Sax, Jitendra

Malik, and Silvio Savarese. Gibson env: Real-world percep-

tion for embodied agents. CVPR, 2018.

[28] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1492–1500,

2017.

725


