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Abstract

We propose a self-supervised approach for training

multi-frame video denoising networks. These networks pre-

dict each frame from a stack of frames around it. Our self-

supervised approach benefits from the temporal consistency

in the video by minimizing a loss that penalizes the differ-

ence between the predicted frame and a neighboring one,

after aligning them using an optical flow. We use the pro-

posed strategy to denoise a video contaminated with an

unknown noise type, by fine-tuning a pre-trained denois-

ing network on the noisy video. The proposed fine-tuning

reaches and sometimes surpasses the performance of state-

of-the-art networks trained with supervision. We demon-

strate this by showing extensive results on video blind de-

noising of different synthetic and real noises. In addition,

the proposed fine-tuning can be applied to any parameter

that controls the denoising performance of the network. We

show how this can be expoited to perform joint denoising

and noise level estimation for heteroscedastic noise.

1. Introduction

Denoising has been a fundamental problem of image and

video processing since the early days of these disciplines. It

continues to be an active research area due to the continuous

need for reducing the size of imaging sensors and the desire

of imaging in increasingly challenging conditions (such as

low light and short exposure times).

The current state of the art in image and video denoising

is dominated by convolutional neural networks (CNNs) [64,

51, 35, 15, 55]. In addition to their superior performance,

CNNs offer a greater flexibility as they can be trained to

denoise potentially any type of noise [8, 58, 23, 6]. In

contrast, traditional model-based approaches typically re-

quire a tractable model of the noise, and specific algorithms

for each type of noise (e.g. [32, 19, 36, 49, 12, 3, 65]).

This flexibility however, comes at a price, as it has been

observed that CNNs are very sensitive to mismatches be-

tween the data and noise distributions at training and test-

ing [43]. This has fueled the interest in training CNNs

for real noisy raw images, with the publication of several

datasets and benchmarks [42, 43, 8, 1, 5], as well as meth-

ods [20, 4, 44, 27, 27, 63]. Most of this research focuses

almost exclusively on still image denoising.

Producing datasets of realistic noisy-clean pairs for su-

pervised training is a challenging task. Some works con-

taminate clean images with synthesized realistic noise [20,

4, 27, 63], but the results depend on the fit between the

synthetic and real data. Realistic data can not be always

be generated. For example the noise distribution might be

unkown. Generative Adversarial Networks have been pro-

posed to generate samples from a unknown noise distribu-

tion [9]. Other works have proposed datasets of real images

with ground truth. For still image denoising, it is possible

to acquire pairs of images of exactly the same scene, either

altering the exposure time so that one of them is approxi-

mately noiseless [43, 8, 7], or by taking a second noisy shot

with an independent noise realization as proposed by noise-

to-noise [33]. Acquiring such pairs with real noise can be

cumbersome and prone to dataset biases as the scenes need

to be static. For video denoising the situation is even worse

as it would require independent acquisitions of the exact

same action [61].

A more ambitious goal is that of self-supervised train-

ing, where the network learns exclusively from noisy im-

ages/videos xi with a loss that uses them both as input and

target, for instance
∑

i ‖F(xi) − xi‖
2. To prevent the net-

work from learning the identity function, restrictions are in-

corporated in the architecture. Denoising autoencoders [57]

use a bottleneck forcing the network to filter out informa-

tion. Blind-spot networks [28, 2] do not have access to the

input pixel at j for computing the output pixel j (a blind spot

at the center of the receptive field). This has a significant

penalty on the performance, as the noisy value of a pixel

is a valuable piece of information for denoising it. Some

works re-introduce the blind spot in a second Bayesian es-

timation step [30, 29], but this requires knowing the noise

distribution. A related approach is proposed in [46], where

a fraction of input pixels is masked at random, and the net-

work then learns to do joint denoising and inpainting. Av-

eraging predictions obtained with different random masks
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Figure 1: Denoising results on Poisson noise (p = 8), Box noise (σ = 40, 3 × 3) and demosaicked Poisson noise (p = 4). From left to

right: noisy frame; FastDVDnet [55] trained for each noise (supervised); DnCNN [64] fine-tuned with frame-to-frame (F2F) [18] (self-

supervised); FastDVDnet fine-tuned with the offline version of the proposed multi-frame-to-frame (MF2F) framework (self-supervised).

leads to results comparable to supervised training. Blind-

spot networks fail if the noise is spatially correlated. Spa-

tially correlated noise is handled in [41], but it requires

knowing the parameters (e.g. variance) of the noise dis-

tribution. Other works [38, 52] approximate the MSE risk

with an unsupervised loss using Stein’s unbiased risk es-

timator (SURE) [53]. Unfortunately, these approaches re-

quire the noise distribution to be known and cannot be ap-

plied to other risks.

The treatment of real noise in videos is beginning to

attract more attention. Patch-based approaches have been

proposed for handling correlated noise in compressed [34]

and infrared videos [36]. In [39, 37, 11] CNNs are trained

by synthesizing signal dependent noise. In [7] a still image

denoising network is trained on low-light static sequences

using a long exposure image as ground truth. The au-

thors add a temporal consistency term to the loss to im-

prove generalization to dynamic scenes. In [61] the authors

train a video denoising network for raw video using a com-

plex combination of simulated noise, datasets of long and

short exposure raw images and a dataset of stop motion raw

videos. In the latter each video is actually a sequence of

static scenes. In this way several images can be captured

for each video frame, and averaged to reduce the noise. Re-

cently, Ehret et al. [18] proposed frame-to-frame (F2F), a

method to fine-tune an image denoising network (or joint

denoising and demosaicking [17]) to an unknown noise type

from a single noisy video. The fine-tuning is based on a loss

that penalizes the motion compensated error between the

predicted frame and the previous noisy frame as target. The

fine-tuned network achieved (and even surpassed) the per-

formance of the same network trained with supervision for

that specific noise. An important limitation of F2F is that its

single-frame denoising network leads to sub-optimal video

denoising results and lacks of temporal consistency.

Contributions. We introduce multi-frame-to-frame

(MF2F), a self-supervised fine-tuning framework for video

denoising networks that take a stack of several frames as in-

put. The proposed fine-tuning allows to adapt a multi-frame

network to an unknown noise type using a single noisy se-

quence. This extends the single-image F2F approach of [18]

to multi-frame networks, resulting in a model blind video

denoising method that achieves, for the first time, results on

par with those of non-blind state-of-the-art methods.

Naively applying F2F to a multi-frame network leads to

unwanted trivial solutions, as the target frame in the loss is

part of the input stack. This applies to any loss in which the

target is a function of the input to the network. We evaluate

different configurations of non-overlapping input stacks and

target frames and identify the ones yielding the best perfor-

mance. We also found that the fine-tuned network leads to

even better results if we switch back to the standard input

2725



Unet Unet

Unet

Unet

Figure 2: The FastDVDnet [55] architecture consists of two cas-

caded U-nets [47], each of which takes as input three frames (with-

out alignment), plus a variance map Σi of the same size as the in-

put frames. The first U-net is applied three times to produce initial

estimates of the frames t−1, t and t+1. These estimates are then

fed into the second network which predicts the central frame ût.

stack at inference time.

We call MF2F the fine-tuning method resulting from ap-

plying F2F with the proposed training stack. We demon-

strate the effectiveness and flexibility of the proposed MF2F

by fine-tuning a network pre-trained for additive white

Gaussian noise (AWGN) to different noise types (AWGN,

Poisson, colored Gaussian and demosaicked Poisson) and

levels. The results are comparable to those of supervised

noise-specific training (see Fig. 1). Evaluations on videos

with real and realistic [4] camera noise show that MF2F

outperforms state-of-the-art raw video denoising networks.

The proposed fine-tuning can also be applied to any

network parameter which influences the denoising perfor-

mance. We illustrate this by working with an AWGN de-

noising network that receives as input a noise variance map.

Fine-tuning the variance map allows to jointly estimate the

variance at each input pixel and denoise the video. We apply

this to heteroscedastic Gaussian and Poisson noises. The

proposed fine-tuning is able to recover complex variance

maps with remarkable spatial resolution.

In Section 2 we describe the proposed framework. We

validate our approach on synthetic data in Section 3 and on

real noisy sequences in Section 4. Concluding remarks are

given in Section 5.

2. Self-supervised Video Denoising

We consider a video f with frames ft, that is a noisy ver-

sion of a video u. The distribution of the noise is unknown.

We assume that the noise at each frame is independent and

median preserving in the noise-to-noise sense [33, 18].

Our self-supervised loss for video denoising extends the

F2F loss introduced in [18], which penalizes the error be-

tween the output of the network at frame t with the noisy

frame t− 1 (the target frame). The authors of [18] consider

a denoising network Fθ which takes a single image as input,

and train it via the following loss:

ℓF2F
1 (Fθ(ft), ft−1) = ‖κt◦(Wt,t−1Fθ(ft)−ft−1)‖1. (1)

Here ◦ denotes the element-wise product, Wt,t−1 the warp-

ing operator from frame t to the target frame t − 1, and κt
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MF2F loss

FastDVDnet

fine-tuning inference

backprop
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t-4
t-2

t-1
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Figure 3: Proposed multiframe-to-frame blind fine-tuning for a

video denoising network taking as input a stack of frames. During

fine-tuning we use a dilated input stack (in red) so that the target

frame is hidden from the network. At inference time we use the

natural stack (in blue).

is an occlusion mask removing mismatches from the loss.

Given the optical flow vt−1,t, the warping operator from

frame t− 1 to t is defined as

(Wt,t−1ut)(x) = ut(x+ vt−1,t(x)), (2)

where bicubic interpolation is used to resample the ut.

In [18] the temporal consistency of the video is used

to train the network but the network itself takes as input

a single image. Better results can be obtained by net-

work architectures that take into account temporal informa-

tion. This can be done with frame recurrent networks [10]

or by providing multiple frames as the input of the net-

work [59, 14, 55]. We focus on the latter type of networks

as they currently produce state-of-the-art results in video

denoising. In particular, we will adopt the recent FastDVD-

net [55] (see Fig. 2), but the proposed fine-tuning can be

applied to other multi-frame networks as well. The Fast-

DVDnet architecture is well suited as it takes five frames

as input as well as variance maps. Furthermore, it can be

trained end-to-end without requiring an external motion es-

timation stage.

We denote the input stack of frames as St =
[ft−n, ..., ft+n]. The tth denoised frame is produced as ût =
Fθ(St) (to simplify the notation we will omit the input vari-

ance maps Σr with r = t− 1, t, t+ 1).

2.1. Frame stacks for self­supervised training

The F2F loss (1) cannot be directly applied to Fθ(St), as

it can be minimized simply by warping ft−1 (which is in the

input stack) to W−1

t,t−1ft−1, i.e. by aligning the noisy frame

ft−1 to ft without removing the noise. In the following we

show that any loss that depends only on the network input

and its output leads to these unwanted solutions.

Suppose we want to predict y from z. In our case, z is

a stack of noisy frames and y the clean version of the cen-

tral frame of the stack, however the following arguments

also apply to other regression problems. In a supervised

training setting we minimize an approximation of the ex-

pected value of a loss penalizing the difference between the
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Training stack S
′

t ref. Box AWGN Poiss.

ft−2, ft−1, ft, ft+1, ft+2 ft−3 28.93 28.78 28.13

ft−3, ft−1, ft, ft+1, ft+2 ft−2 32.02 32.25 31.18

ft−3, ft−2, ft, ft+1, ft+2 ft−1 36.23 37.25 35.20

ft−4, ft−2, ft, ft+2, ft+4 ft−1 36.22 37.32 35.21

FastDVDnet superv. n/a 36.58 37.29 35.82

Table 1: Results for different reference frames and training stacks

S
′

t. During inference after training is done, we denoise the video

using the natural stack St. We report the average PSNR of the on-

line fine-tuning over 17 sequences from the Derf [40] and Vid3oC-

10 [26] datasets, excluding the first 10 frames of each video (to

allow for the adaptation time). We considered 3×3 box noise with

σ=40, AWGN σ=20 and scaled Poisson noise with p = 8.

network output and the desired output y. The optimal es-

timators ŷ = F∗(z) capture some aspects of the data dis-

tribution, which is the point of a data-driven approach. For

instance, for the MSE loss we have F∗(z) = E{y|z} [24].

We would like to configure the input stack to our network

so that the fine-tuning can learn such data-driven estimators.

The following observation restricts the number of options.

Observation 1. Let (z, y) distributed according to p(z, y).
An estimator ŷ(z) = F∗(z) minimizing the expected value

of a loss E{ℓ(F(z), z)} that depends only on z and F(z) is

independent from the data distribution p(z, y).

As the loss depends only on the input z and F(z), the

minimization of E{ℓ(F(z), z)} can be done for each input

z independently, i.e. F∗(z) = argminŷ ℓ(ŷ, z). Given z,

the optimal estimator is the minimizer of the loss for that

specific z. As a consequence it is independent of the data

distribution and only depends on the chosen loss.

Observation 1 implies that the reference frame cannot be

a function of the input stack if we want to have a data-driven

estimator. Therefore, for our input stack we will adopt a

solution similar to that of blind spot networks [28, 2]: re-

move the target frame from the input stack. Denoting by

S ′

t the fine-tuning stack, we then minimize the following

multi-frame to frame (MF2F) loss:

ℓMF2F
1 (Fθ(S

′

t), ft−1) = ‖κt ◦ (Wt,t−1Fθ(S
′

t)− ft−1)‖1,
(3)

where the warping operator Wt,t−1 is defined in (2).

We evaluated the fine-tuning with different configura-

tions of disjoint stack and reference frame: introducing the

blind spot at different distances from the central frame or

evenly spacing the frames in the stack. Table 1 summarizes

the results. We found that: (1) The target frame has to be

as close as possible to the denoised frame. Otherwise, the

quality of the alignment degrades, negatively impacting the

fine-tuning. (2) The results can be slightly improved using

the dilated stack [ft−4, ft−2, ft, ft+2, ft+4].
We also observed that, regardless of the fine-tuning

stack, the best way to perform the inference is by using the

F
2

F
w

it
h

o
u

t
m

a
s
k

-
2

9
.8

2
d

B

F
2

F
w

it
h

m
a

s
k

-
2

9
.9

7
d

B

M
F

2
F

w
it
h

o
u

t
m

a
s
k

-
3

2
.7

6
d

B

M
F

2
F

w
it
h

m
a

s
k

-
3

3
.0

4
d

B

Figure 4: Effect of the mask. Errors in the optical flow create

mismatches that negatively influence the fine-tuning (e.g. trans-

parency of right arm, hallucinated texture). We detect occlusions

and warping errors and remove them from the loss via a binary

mask.

natural stack. Frames in the natural stack are more tempo-

rally correlated and this helps improving the denoising. The

results reported in Table 1 were obtained using the natural

stack for testing. The results obtained using the training

stack at testing time (which can be found in the supplemen-

tary material) are on average 0.3dB below the ones shown

in the table. In our remaining experiments we will always

use the dilated stack for fine-tuning and the natural stack for

final inference as illustrated in Fig. 3.

2.2. Handling warping errors

Following [18], the warping transformations are esti-

mated using the TV-L1 optical flow method [62, 50], as it

gives consistent results across noise types and intensities.

Moreover, it is based on minimizing the photometric dis-

tance between pixels, which is precisely what we need for

our loss.

In Equation (3) the mask κ is zero for regions where a

misalignement is likely, and one otherwise. Alignment er-

rors are defined as the union of occlusions computed from

the optical flow and regions with a large warping residual

rt,t−1 = g ∗ ‖Wt,t−1(g ∗ ft)− g ∗ ft−1‖1, (4)

where g is Gaussian filter of standard deviation σ = 2 used

to obtain a rough estimate of the clean video. The warping

residual is then thresholded with a robust adaptive threshold

(see supp. material). This mask differs from the one used

in [18], which is based on the divergence of the optical flow.

The mask κ is particularly important for fine-tuning a

multi-frame denoising network. Indeed, since the network

has access to multiple input frames, it is likely that the mis-

matched target can be found in the stack. The result in Fig. 4

confirms this. We see that the result of F2F barely changes

with or without mask. However, applying MF2F without a

mask leads to a degradation of the result.

All the experiments in the following sections were com-

puted using the same parameters for the optical flow and

misalignment mask.
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Non-blind AWGN σ blind Model blind

FastDVDnet supervised online MF2F online MF2F online F2F online MF2F offline MF2F

noise specif. multi task VBM3D scalar sigma 8 sigmas weights weights weights

D
er

f

Gaussian 20 36.96 / .946 36.49 / .942 36.21 / .933 36.92 / .946 36.90 / .945 34.53 / .909 37.32 / .951 37.48 / .952

Gaussian 40 34.00 / .907 33.70 / .903 32.63 / .871 33.95 / .906 33.91 / .905 32.04 / .847 34.24 / .913 34.27 / .914

Poisson 1 40.45 / .974 39.71 / .970 38.99 / .959 39.50 / .960 40.15 / .972 36.56 / .953 40.39 / .974 40.51 / .974

Poisson 8 36.00 / .939 35.58 / .935 34.18 / .897 34.15 / .890 35.73 / .934 31.98 / .890 35.57 / .941 35.68 / .942

Box 3× 3, 40 35.42 / .932 34.86 / .924 29.94 / .757 34.13 / .900 34.34 / .902 32.55 / .891 35.51 / .927 35.60 / .927

Box 5× 5, 65 34.78 / .932 33.98 / .919 28.37 / .736 32.14 / .873 32.60 / .888 31.78 / .886 34.29 / .928 34.35 / .928

Demosaicked 4 34.85 / .926 25.53 / .533 33.16 / .890 33.23 / .877 34.30 / .916 32.61 / .885 34.75 / .926 34.81 / .927

V
id

3
o

C
-1

0

Gaussian 20 37.49 / .964 36.84 / .959 36.55 / .951 37.43 / .963 37.40 / .963 31.62 / .868 37.32 / .964 37.55 / .966

Gaussian 40 34.27 / .937 33.70 / .929 32.74 / .901 34.23 / .935 34.21 / .935 29.10 / .799 34.17 / .937 34.26 / .938

Poisson 1 40.63 / .980 39.71 / .975 39.32 / .967 39.30 / .966 40.29 / .978 33.54 / .905 40.01 / .978 40.16 / .979

Poisson 8 35.72 / .951 35.09 / .944 32.16 / .844 33.26 / .887 35.42 / .946 29.92 / .823 34.99 / .947 35.00 / .947

Box 3× 3, 40 37.28 / .964 36.54 / .957 30.19 / .770 34.70 / .936 34.90 / .938 31.27 / .871 36.65 / .963 36.76 / .963

Box 5× 5, 65 36.81 / .965 35.84 / .955 28.53 / .746 32.65 / .909 33.11 / .917 30.75 / .869 35.65 / .956 35.79 / .957

Demosaicked 4 34.50 / .941 23.96 / .508 32.31 / .882 32.24 / .876 33.86 / .931 31.59 / .890 33.95 / .933 33.98 / .934

Table 2: Average PSNR and SSIM over all the sequences for a given dataset and type of noise. The MF2F fine-tuning is applied to a

FastDVDnet network [55], either on the weights (model blind) or the input variance map (σ blind). F2F fine-tuning is applied to the

weights of a single frame DnCNN network [64]. The best PSNR in each case is underlined. The best blind method is in bold.

2.3. Fine­tuning and inference

Similarly to [18], the proposed fine-tuning can be done

online or offline. In the offline setting, the network is first

fine-tuned on the entire video, which is considered as a

dataset of frames. We form batches by randomly sampling

frame stacks from the video and update the network param-

eters by performing one optimizer step per batch. This is

repeated a fixed number of epochs. Afterwards, the fine-

tuned parameters are used to denoise the video by applying

the network to each frame using the natural input stack.

The online setting defines a time-varying sequence of

network parameters, and can thus adapt to temporal changes

in the distribution of the noise or the signal. The video is

processed sequentially, applying the following two steps on

each frame. First the network parameters are updated by

performing a fixed number N of optimizer steps of the loss

(3). Then the denoised output is produced by applying the

updated network on the natural input stack.

The proposed fine-tuning can be applied to the network

weights, or any other parameter that has an influence on

the denoising performance, such as the variance map Σt

that FastDVDnet takes as input (see Fig. 2). In FastDVD-

net [54] the authors consider only homoscedastic AWGN,

and use therefore a constant image Σt(x) = σ2 as vari-

ance map. The input variance map controls the denoising

strength and the correct value has to be provided at infer-

ence time. In Section 3.2 we apply the MF2F fine-tuning

to simultaneously estimate the variance map and denoise

the video. This is particularly relevant when the noise is

AWGN, but its variance map unknown.

In all the experiments in upcoming sections we use the

same hyper-parameters when the fine-tuning is done with

respect to the weights. In the online setting we use a learn-

ing rate of 10−5 and N = 20 iterations of the Adam opti-

mizer on mini-batches consisting of pairs of frames (i.e. the

weights are updated each two frames). In the offline set-

ting we use the same learning rate and perform 200 Adam

iterations with mini-batches of 20 frames (no improvement

was observed with more iterations). When the fine-tuning

is applied to the variance map, we adapt the learning rate

and keep the same number of iterations and batch sizes.

3. Experiments on synthetic noise

We now present results of the proposed framework for

a wide range of synthetic noise types and use cases. The

evaluation is performed on videos from two datasets. One

is a set of seven Full HD videos of 100 frames each ex-

tracted from the Derf’s Test Media collection [40]. The

second, more challenging, dataset consists of ten videos of

120 frames extracted from the training split of the Vid3oC

dataset [26]. We refer to this dataset as Vid3oC-10. We

downscaled all videos by a factor of two.

In our experiments we consider four noise types (1)

AWGN noise, (2) scaled Poisson noise with scaling param-

eter p (the mean of the noisy pixel fi is the clean pixel ui,

and the variance is pui), (3) correlated noise (denoted box

noise) obtained by filtering AWGN with an s × s box fil-

ter and (4) demosaicked Poisson noise, obtained by mo-

saicking the image, adding scaled Poisson noise and then

applying the demosaicking algorithm of [25]. For the first

three types we consider two noise levels, indicated in the

first columns of Table 2. The demosaicked Poisson noise

simulates the correlation introduced by a demosaicking al-

gorithm applied on the noisy data. We evaluate the average

PSNR and SSIM for the given sequence using the ground-

truth, but excluding the first 10 frames of each sequence.

Additional qualitative comparisons of the methods can be

found in the supplementary material.
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We remark that all results are obtained by fine-tuning

a network independently on each video. In all cases the

fine-tuning starts from weights pre-trained for AWGN with

σ = 25. The proposed fine-tuning scheme can be applied

to any denoising network and any pre-trained weights can

be used as starting point. In the supplementary material

we studied the impact of the starting point on the perfor-

mance of the fine-tuned network for different noise types.

Unsurprinsingly, the the speed of the adaptation depends on

the similarity between the pre-trained and the target noise

distributions. We observed that it is easier for the AWGN

weights to adapt to other noise types.

3.1. Fine­tuning the network weights

In the following experiments we apply the proposed fine-

tuning to the network weights of FastDVDnet, while keep-

ing constant the input variance map. We compare with

F2F [18] which is, to the best of our knowledge, the only

other blind video denoising method in the literature. As ref-

erence, we compare with three non-blind algorithms. (1)

A noise-specific FastDVDnet network trained in a super-

vised setting for each kind of noise. For AWGN we used the

weights provided by the authors of FastDVDnet [55], which

work in conjunction with the input variance map. For other

noise types we retrained one FastDVDnet per noise type and

intensity, using the same dataset [45] and hyperparameters

as in [55]. (2) A multi-task FastDVDnet trained to handle

multiple noise types: Gaussian (σ = 20 and σ = 40), Pois-

son (p = 1 and p = 8), and our box noise (3×3, σ = 40 and

5×5, σ = 65). (3) The VBM3D [13] path-based method in

which the noise parameter is set to yield the best result.

In Table 2, we report quantitative results obtained with

the proposed MF2F fine-tuning applied on the network

weights both in the online and the offline settings. From the

results we can see that the performance of the offline MF2F

method is slightly superior to the online one. Compared

against the multi-task network the proposed MF2F fine-

tuning always attains better results. Furthermore, the multi-

task network cannot handle demosaicking noise (which was

unseen during training) while our self-supervised networks

compete with the network specifically trained with supervi-

sion for that noise type.

For most noise types, the results of our self-supervised

MF2F fine-tuning are close to those obtained with the

noise-specific FastDVDnet network trained with supervi-

sion. This is confirmed in Fig. 1, where we compare some

results of the offline method with the noise-specific FastD-

VDnet (supervised), and F2F.

In all experiments we observe a consistent PSNR gain of

about 3dB with respect to F2F. This corresponds to a noise

reduction of a factor 2, which is expected from a network

that exploits the redundancy of 5 frames compared against

a single-frame method.

32

34

36

Poisson noise
p= 8

Gaussian noise
= 40

0 20 40 60 8024
(1) (2)

FastDVDNet trained for Poisson (30.31 dB)
FastDVDNet trained for Gaussian (34.56 dB)
FastDVDnet multi-task (35.61 dB)
Online MF2F (35.55 dB)
Offline MF2F (35.47 dB)

(1): Poisson noise (2): Gaussian noise

Figure 5: Adaptation to changes in the noise properties. We sim-

ulate a sequence with Poisson noise for the first half and Gaussian

noise for the second half. The frames (1) and (2) corresponds to

Poisson and Gaussian noise respectively. The pretrained methods

for the specific noise types perform poorly on the other half (yel-

low and blue), while the proposed methods (online and offline) are

able to cope with the abrupt change.

Time varying noise. The online fine-tuning of the weights

permits to quickly adapt to changes in the noise properties.

The PSNR plot in Fig. 5 shows the per-frame PSNR com-

puted on a video in which the noise switches from Poisson

(p = 8) to Gaussian (σ = 40) at frame 50. While the two

noise-specific FastDVDnet networks perform well for their

respective noise types, their performance strongly degrades

for the other type. On the other hand, the proposed MF2F

approaches are able to cope with the abrupt change of noise,

and the online version even outperforms the network trained

for Gaussian on the Gaussian section. The offline method is

able to handle both noise types by learning to denoise them

with the same network. The results obtained with MF2F

are on par to those of a multi-task FastDVDnet trained with

supervision for these two noise distributions. The crops in

Fig. 5 show that the noise-specific networks failed for the

other noise types (as expected), while the online method is

able to restore fine details for both noise types.

3.2. Fine­tuning only the noise map

The proposed fine-tuning can be used to estimate the in-

put variance map of the network, while keeping the net-

work weights fixed. This is done by minimizing the MF2F

loss (3) with respect to the variance map Σt(x). To high-

light the flexibility of the framework, we examine three pa-

rameterizations of the input variance map. All experiments

in these section were performed with the online fine-tuning.

Thus, a different input variance map is estimated for each

frame, and used as the starting condition for the next frame.

Homoscedastic AWGN. If a sequence has homoscedastic

AWGN of unknown variance σ2, we set a constant variance

map Σt(x) = σ2. By fine-tuning only with respect to σ,

we obtain a σ-blind denoiser (scalar sigma in Table 2). The

convergence is very fast and after a few frames the estimated

σ stabilizes around the real noise variance. If the noise is not

homoscedastic AWGN, a compromise value for σ is found.
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Figure 6: Spatially variant variance map used in a synthetic exper-

iment. From left to right and top to bottom: a noisy frame; the

corresponding denoised by the proposed online MF2F; variance

map of the added Gaussian noise; and the variance map obtained

by using the proposed fine-tuning of the input variance map. The

noise level of the letters is σ = 0 and varies linearly in the back-

ground from σ = 0 to 40;

Heteroscedastic AWGN. We now consider AWGN with a

space varying variance map which is constant in time, i.e.

Σt(x) = Σ0(x), and fine-tune with respect to the entire in-

put variance map. We add a TV regularization term to the

loss (e.g. [48]) enforcing smoothness on the variance map.

We tested this on a sequence contaminated with AWGN

with variance map shown in Fig. 6. Our method is able to

recover the message hidden in the noise variance, with re-

markable spatial resolution. The convergence took around

40 frames, which is quite slower than for the scalar σ. We

are not aware of any other method that can estimate such a

noise map from a video. This could be useful in practical

cases where the noise distribution is spatially variant, such

as optical images with vignetting or MRI imaging [31]. In

these cases the variance map is much smoother than the arti-

ficial one we used for our experiment. Note that the ultimate

goal here is not to accurately recover the noise map, but to

maximize the denoising performance. For example, in a flat

region, the fine-tuning might lead to an over-estimation of

the variance so as to increase the amount of smoothing. This

explains the differences in Fig. 6 between the actual noise

map and the one found.

Signal dependent AWGN. Poisson noise can be approxi-

mated as AWGN with signal dependent variance map given

by Σt(x) ∝ ut(x). To cope with this noise, we use a

spatially-variant noise map based on the brightness of the

noisy video. We parametrize the variance map with K train-

able parameters σ1, . . . σK . We split the intensity range of

the noisy video in K equal intervals, each with a corre-

sponding σi. The input variance map at pixel (x, t) is the

σi corresponding to the pixel brightness. At each frame,

the σi are automatically determined with the proposed on-

line MF2F fine-tuning. We set K = 8, since it results

a good trade-off between efficiency and denoising perfor-

mance. Quantitative results are reported in Table 2. For

Poisson and AWGN noise, the obtained results are close to

the ones obtained by the noise-specific FastDVDnet trained

with supervision. Visual results for Poisson noise can be

found in the supplementary material.

4. Results on real noisy videos

In this section we show results on real noisy videos.

In these examples the network adapts not only to different

types of noise, but also to signals on different domains.

Fig. 7 shows results obtained on the outdoor CRVD

dataset [61]. This dataset consists in raw sequences of 50

frames with real noise from a surveillance camera with the

sensor IMX385, at five ISO levels. Since our fine-tuning

does not handle mosaicked videos, we first applied a simple

tone curve (γ = 2.5) and a demosaicking algorithm [25].

We then applied our offline blind denoising on the demo-

saicked noisy frames. Although the conventional approach

is to perform first denoising and then demosaicking (or even

better, perform both jointly), recent work in [22] suggested

that good results can also be obtained by applying the de-

noising after the demosaicking. We compare with the multi-

frame denoiser of RViDeNet [61] which was fine-tuned on

the indoor CRVD dataset, consisting on short raw stop mo-

tion sequences with ground truth. This network takes raw

noisy videos as input. In order to obtain comparable results,

the denoised raw frames are then tone-mapped and demo-

saicked [25] as described above. From Fig. 7 we can see

that the results of MF2F are sharper and contain more de-

tails than those of RViDeNet, and has less residual noise

than F2F (more visual results for the five ISO levels can be

found in the supplementary material).

To obtain a quantitative evaluation on realistic noisy

videos we follow [61] and use the unprocessing network [4]

to simulate raw videos from clean RGB ones. These sim-

ulated videos are also used in [61] to pre-train (in a su-

pervised setting) RViDeNet. We consider the Poisson-

Gaussian noise (to model the shot and read noises), using

the parameters estimated in [61] for the ISO levels 1600,

3200, 6400, 12800 and 25600. To avoid any influence from

the demosaicking step we evaluate the performance on the

raw denoised videos. For MF2F the fine-tuning is per-

formed independently on each video. We apply the same

raw process as for the outdoor CRVD dataset: tone curve

and demosaicking [25] before denoising. Since the results

are in sRGB, we re-mosaick them and invert the tone curve

for evaluating the PSNR in the raw domain. Table 3 presents

the average PSNRs on all the sequences for each ISO level.

We can see that even though RViDeNet was pre-trained on

the same noise type, MF2F performs much better.
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noisy raw (demosaicked) online F2F offline MF2F RViDeNet

noisy raw (demosaicked) online F2F offline MF2F RViDeNet

Figure 7: Details from frame of a denoised raw video (ISO 12800) processed by F2F, offline MF2F, and RViDeNet. All images are

demosaicked and gamma corrected.

1600 3200 6400 12800 25600

RViDeNet 45.79 44.26 42.64 40.83 38.93

Online MF2F 46.51 45.13 43.64 41.91 39.68

Table 3: Synthetic raw denoising: average PSNR per ISO levels

over the dataset Derf. The best PSNR in each case is in bold.

Noisy online MF2F

offline MF2F online F2F

Figure 8: Example frame of a restoration of infra-red real video.

Lastly, we also tested MF2F on thermal infra-red video

from the FLIR ADAS [21] dataset, which consists of videos

taken with a Tau2-640 sensor. Fig. 8 shows a frame from the

result obtained with the offline MF2F method on a sequence

of 4224 frames.

5. Conclusions

In this work we address the problem of blind video de-

noising. To that aim, we extend the self-supervised fine-

tuning approach introduced in [18] to multi-frame denois-

ing networks. This is achieved by fine-tuning the network

using a dilated input frame stack and switching back to the

natural input stack at inference time.

The proposed approach demonstrates that by exploiting

the temporal consistency in videos it is possible to fine-tune

a video denoising network using only a few frames of a sin-

gle noisy sequence and attain the performance of a network

trained with supervision on a large dataset. This also allows

to handle time-varying noise, which could be useful for vi-

sion systems exposed to varying conditions (for instance a

surveillance camera at day and night).

There are some interesting future research perspectives.

For instance, meta-learning could be used to improve the

adaptation speed of the pre-trained network [56]. Also, the

optical flow and the warping mask used in the MF2F loss

could be computed by a network and trained at the same

time, similar to [60, 16].
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[44] Tobias Plötz and Stefan Roth. Neural nearest neighbors net-

works. In Advances in Neural Information Processing Sys-

tems (NIPS), 2018.

[45] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
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