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Abstract

Transfer learning has become the de facto practice to

reuse a deep neural network (DNN) that is pre-trained with

abundant training data in a source task to improve the

model training on target tasks with smaller-scale training

data. In this paper, we first investigate the correlation be-

tween the DNN’s pre-training performance in the source

task and their transfer results in the downstream tasks. We

find that high performance of a pre-trained model does not

necessarily imply high transferability. We then propose a

metric, named Fréchet Pre-train Distance, to estimate the

transferability of a deep neural network. By applying the

proposed Fréchet Pre-train Distance, we are able to identify

the optimal pre-trained checkpoint, and then achieve high

transferability on downstream tasks. Finally, we investigate

several factors impacting DNN’s transferability including

normalization, different networks and learning rates. The

results consistently support our conclusions.

1. Introduction

This paper is concerned with the transferability of deep

neural networks (DNNs), which are pre-trained in a source

task with abundant training data, to downstream tasks

whose training sets are small-scale or medium-sized. The

transferability of DNNs has been studied from various per-

spectives. Since DNNs have hierarchical architectures, the

layers represent different feature granularities and result in

distinct transferabilities [28, 15, 4]. The pre-training meth-

ods also play a key role in DNNs’ transferabilities [25, 9].

All the studies mentioned above fine-tune the DNNs that

have converged on the source task. However, we find that

the converged models do not always lead to better transfer

results to the downstream tasks than those stopped early.

Moreover, if we pick up a checkpoint from the early pre-

training stage, we could possibly get a transfer result worse

than train-from-scratch. Transfer results is referred to the

highest-performing model after fine-tuning over the target

task.

Hence, a new question is raised about DNN’s transfer-

ability. Suppose the pre-training method and the source task

do not change, and that we save multiple checkpoints dur-

ing the course of the pre-training (e.g., after each learning

rate decay). How can we identify the best checkpoint for a

given target task? Here, the best checkpoint is referred to

the one that yields the best transfer results.

To address the above question, we propose to a spe-

cific metric to measure transferability, named Fréchet Pre-

train Distance (FPD), derived from Fréchet Distance [6], a

widely-used metric to measure the distance between two

distributions. We compute Fréchet Pre-train Distance be-

tween the source and target datasets through all the pre-

trained checkpoints. Our extensive experiments demon-

strate that Fréchet Pre-train Distance is well correlated with

the checkpoints’ transferability for target tasks under differ-

ent experimental settings.

Equipped with the Fréchet Pre-train Distance, we extend

our study to investigate multiple impact factors in trans-

fer learning, including fine-tuneing learning rates, DNNs’

depths, and Spectral Normalization [16] to DNNs’ weights.

An interesting finding is that the over-parameterized fully-

connected layer hurts the transferability of AlexNet [14],

and yet the Spectral Normalization [16] can alleviate it.

To conclude, our work makes three major contributions:

• We investigate how the transfer performance varies

along with the pre-training process.We find that pre-

training would not necessarily improve transfer per-

formance, but, on the contrary, sometimes the transfer

performance decreases when the pre-training perfor-

mance increase.

• We propose to use Fréchet Pre-train Distance to es-

timate the transferability of a pre-trained network be-

tween source and target datasets. Our extensive experi-

ments show that Fréchet Pre-train Distance is well cor-

related with the checkpoints’ transferability to target

tasks. With the proposed Fréchet Pre-train Distance,

we are able to pick up an optimal pre-trained check-

point for given target tasks without actually conducting

transfer learning experiments.

• We further investigate multiple impact factors on the
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transfer performance of neural networks. We find

that over-parameterization hurts deep neural networks’

transferability in the early training stage and the Spec-

tral Normalization helps recover it. Our experiments

with different learning rates and networks also sup-

port our previous claims that networks’ transferabil-

ity and Fréchet Pre-train Distance are consistent corre-

lated across different settings.

The rest of this paper is organized as follows. Section 2

discusses related areas to our method. In Section 3, we dis-

cuss the pre-train/transfer performance correlation and pro-

pose Fréchet Pre-train Distance to quantify the transferabil-

ity of pre-trained networks. Section 4 shows our extensive

experimental results. Finally, we conclude our paper in Sec-

tion 5.

2. Related Work

Transfer learning [17, 5] is a widely used technique in vi-

sual perception algorithms, where a deep neural network is

first trained on the source dataset then fine-tuned on another

downstream dataset. Through transfer learning, knowledge

learned from the source task is transferred to the target task.

However, a questions is raised here: how to efficiently trans-

fer the knowledge learned from the source dataset and avoid

the negative impact from the discrepancy between source

and target domains? Previous studies propose different ap-

proaches to answer the question.

A straightforward idea is to visualize and understand

the knowledge learned by neural networks. Along with

this direction, a few approaches were proposed to interpret

neural networks through visualization techniques. Yosin-

ski et al. [29] propose two tools to visualize live activa-

tions and features. Simonyan et al. propose an approach

to visualize the notion of classes and saliency maps [19].

More recent studies include interpreting through explana-

tory graph [31] and decision trees [32]. Moreover, to under-

stand neural networks more precisely, quantitative methods

are also proposed for interpretation purposes. Bau et al.

align hidden units with human-interpretable concepts to in-

terpret deep visual representations and quantify their inter-

pretability [4]. Achille et al. introduce the notion of “In-

formation in the Weights” to measure generalizability of

DNNs [2]. Yosinski et al. study the layer-wise transferabil-

ity in transfer learning tasks by freezing a different number

of pre-trained layers and observing the change of transfer

performance [28], which experimentally quantifies the gen-

erality versus specificity in deep neural networks.

Besides knowledge or information measurement, learn-

ing process is also investigated. Achille et al. [1] measure

Fisher Information of weights in each training phase and

conclude that there are “memorization phase” and “forget-

ting phase” in the learning process. Kirkpatrick et al. inves-

tigate how to avoid information forgetting in transfer learn-

ing [13]. Moreover, the “break-even” point is proposed on

the optimization trajectory of learning, and the curvature of

the loss surface and noise in the gradient are implicitly reg-

ularized by SGD [12]. A similar work studying dynamic

stability of learning process is proposed by [24].

Initialization affects the transferability in many ways.

Ash et al. [3] compares the performance between warm-

starting and fresh random initialization. Regularization may

also lead to a better initialization and sometimes help im-

prove the transferability [27, 26]. Miyato et al. use spectral

norm to evaluate the generalizability in Generative Adver-

sarial Networks [8] and propose the Spectral Normalization

to improve the performance of neural networks [16]. Li et

al. propose L2-SP penalty with the pre-trained model be-

ing referred as the baseline of penalty for transfer learning

tasks [26]. As a domain adaptation approach, a param-

eter regularization scheme is introduced to encourage the

representation similarity between the source and target do-

mains [18].

3. Transferability of Neural Networks

3.1. Pre­training performance VS transfer perfor­
mance

Transfer learning is a research problem that focuses on

storing knowledge gained in solving the source problem and

applying it to a different but related target downstream prob-

lem [23]. The ultimate goal is to improve the performance

on the target problem. To achieve that, most previous work

starts from the checkpoint which gains the best performance

on source task [9, 25, 30]. While, a problem remaining less

explored: does a better model on the source problem nec-

essarily imply a better initialization for the target problem?

We conduct an experiment in which we first learn a base

network on the source task [7] and keep all checkpoints

during the learning. Then we initialize the target network

with these pre-trained checkpoints and conduct the same

transfer experiments one by one. Finally, best test perfor-

mance achieved during the fine-tuning is recorded for each

pre-trained checkpoint.

We conduct transfer learning experiments on

AlexNet [14], VGG-16 [20] and ResNet-18 [10]. We

use CIFAR-100 and SVHN as the source datasets and

CIFAR-10 and MNIST as the target datasets, respectively.

Since both CIFAR-10 and MNIST are simple datasets, to

obtain recognizable differences, we choose 10% of CI-

FAR10 and 1% of MNIST training data for the target tasks’

training. But the testing data in CIFAR10 and MNIST

remain the same. We follow the experiment settings in

[7] to conduct both pre-training and transfer learning. For

both source and target tasks, SGD is used for training with

batch size 128, momentum 0.9 and weight decay 5e − 4.
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(a) CIFAR100-CIFAR10

(b) SVHN-MNIST

Figure 1: Transfer performance vs pre-training performance.

For the source task, we use an initial learning rate of 0.1

for AlexNet and ResNet-18, 0.01 for VGG-16 and the

learning rate is dropped by a factor of 5 after epochs 60,

120, and 160 for a total of 200 epochs. In the target task,

100 epochs are trained with the learning rate dropped after

30,60 and 80 epochs by the same factor of 5. The initial

learning rate of the pre-trained layers is divided by a factor

of 2 compared with the pre-training. Since the results

change rapidly in the early stage of the pre-training and

become more consistent in the finishing stage, we test the

pre-trained checkpoints every 30 iterations in the first 2

epochs, and then every 5 epochs for rest epochs. We also

use a log scale for the x-axis in Figure 1 to better visualize

the results. All transfer performance refer to the best test

performance achieved in the 100 training epochs.

Not surprisingly, Figure 1 shows that better pre-training

accuracy (orange lines) does not necessarily lead to better

transfer performance (blue lines). On the contrary, in most

cases, while the pre-training accuracy is still increasing in

the later epochs, the transfer performance starts decreas-

ing. The transfer performance could even drop as many as 5

points on AlexNet using CIFAR100-CIFAR10 setting. Be-

sides, the transfer performance variation is more dramatic

in the earlier pre-training stages compared with the later

stages, which is also reasonable since a large learning rate

is used at the beginning of the pre-training.

We also notice that for AlexNet, some pre-trained check-

points from the early training stage would result in a worse

transfer learning performance compared with train-from-

scratch (blue dotted line), which indicates that picking a

wrong pre-trained checkpoint is likely to deviate us from

the best performance on the target task, or even leads us

to a wrong direction. Compared with AlexNet, VGG and

ResNet perform more consistently, as almost all pre-trained

checkpoints lead to a better accuracy compared with train-

ing from scratch. The only difference is that the transfer-

ability decreasing is less severe for VGG in the late stage

compared with ResNet.

3.2. Measuring Transferability with Fréchet Pre­
train Distance

Fréchet distance Fréchet distance [6] is a measure of

similarity between distributions. Specifically, Fréchet dis-

tance d between a Gaussian distribution with mean and co-

variance (m1, C1) and another Gaussian distribution with

mean and co-variance (m2, C2) is known as Wasserstein-2

distance [22], which is defined as:
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(a) CIFAR100-CIFAR10

(b) SVHN-MNIST

Figure 2: Transfer Performance vs Fréchet Pre-train Distance.

d2
(

(m1,C1), (m2, C2)
)

=

||m1 −m2||
2

2
+ Tr(C1 + C2 − 2

(

C1C2)
1

2

)

(1)

Where Tr denotes the Trace of matrix.

Fréchet Inception Distance (FID) Since Fréchet Dis-

tance could be used to measure the similarity of two Gaus-

sian distributions. Heusel et al. propose to measure the sim-

ilarity between GAN [8] generated images and real ones

with Fréchet Inception Distance (FID) [11]. The FID is

measured between the real images, the GAN generated

images, and the ImageNet [14] pre-trained Inception net-

work [21]. In which two Gaussians are fitted on the Incep-

tion outputs while the real images and GAN generated im-

ages are the inputs, respectively. The value of FID is used to

identify if the GAN generated images are as real and diverse

as real ones.

Fréchet Pre-train Distance (FPD) Inspired by Fréchet

Inception Distance, we find Fréchet distance can also be

used to measure the distances between the source dataset

and the target dataset on a given pre-trained network in

transfer learning. More specifically, in FID, when the Incep-

tion network is fixed, the variation of the Fréchet distance

represents the similarity of two group of images. On the

contrary, when we fix the two groups of images but change

the pre-trained networks, would Fréchet distance also be

able to represent the transferability of the pre-trained neu-

ral network which connects the source and target task? It

provides a potential solution to our previously raised ques-

tion i.e., how to select a best pre-trained checkpoint based

on the target performance. Usually the pre-trained network

with the best performance on the source dataset and task

would be used. But we propose to measure the transferabil-

ity of a given pre-trained network with Fréchet distance,

which proves a quantitative metric to help select a check-

point which might don’t have the best performance on the

source task but the best performance on the target task. The

Fréchet Pre-train Distance is defined as follows.

FPD =

√

d2
(

(ms, Cs), (mt, Ct)
)

ms = E(fθ(Xs)),mt = E(fθ(Xt))

Cs = Cov(fθ(Xs)), Ct = Cov(fθ(Xt))

(2)

where fθ denotes the source network, Xs and Xt denote the

source and target datasets, respectively. ms and mt are the

sample means and Cs and Ct are the sample covariances for
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(a) CIFAR100-CIFAR10

(b) SVHN-MNIST

Figure 3: Transfer Performance Recovered by Spectral Normalization (SN: Spectral Normalization, Trans: transfer perfor-

mance, TFS: train-from-scratch, rmFC: remove 2 inner FC layers, 1024/128FC: change the size of 2 inner FC layers).

Algorithm 1 Find the optimal pre-training checkpoint with Fréchet Pre-train Distance

Input: Source network fs, source training dataset Xs, target network ft, target training dataset Xt

Output: Optimal transfer performance on target task Ât

Initialize the source network f0

s =fs, initialize the minimal FPD F̂
for every epoch do

f i
s ⇐ Training f i−1

s with Xs

Evaluate Fréchet Pre-train Distance of the current ith pre-training epoch

Fi =

√

||mi
s −mi

t||
2

2
+ Tr(Ci

s + Ci
t − 2(Ci

sC
i
t)

1

2 )

mi
s = E(f i

s(Xs)),m
i
t = E(f i

s(Xt))

Ci
s = Cov(f i

s(Xs)), C
i
t = Cov(f i

s(Xt))

if Fi < F̂ then

Record the best epoch ibest = i
Record the best FPD F̂ = Fi

end if

end for

Initialize the target network ft with the weights of source network f ibest
s from the ibest epoch.

Fine-tunning the target network ft with Xt and return the best transfer accuracy on target task Ât.
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(a) CIFAR100-CIFAR10

(b) SVHN-MNIST

Figure 4: Transfer Performance vs Different Learning Rate (Trans: transfer performance, TFS: train-from-scratch).

the source domain and target domain. In our experiments,

we evaluate Fréchet Pre-train Distance between the source

and target test datasets on each pre-trained checkpoint. Fig-

ure 2 shows the correlation between the value of FPD and

the best test performance achieved on target task.

In Figure 2, the left y labels show the best performance

achieved in the target task (among 100 epochs) while the

bottom layers of the network are initialized with the weights

learned on the i − th iteration of the pretraining. The right

y labels show the value of FPD. Since the transfer perfor-

mance changes more dramatically in the early pre-training

stages than in the finishing stages. We plot the iterations as

the x-axis in a log scale.

Surprisingly, the value of Fréchet Pre-train Distance evi-

dently negatively correlates with the variation of the transfer

performance, both in the early training stage and late train-

ing stage. It shows a similar trend for all three representa-

tive networks (Alexnet, VGG-16, and Resnet-18) and two

dataset settings (CIFAR100-CIFAR10, SVHN-MNIST). At

the turning point when Fréchet Pre-train Distance begins to

decrease, the transfer performance begins to increase. At

the late stages, the transfer performance decreases on both

AlexNet and ResNet18 while the Fréchet Pre-train Distance

also increase slightly. On VGG, both the transfer perfor-

mance and Fréchet Pre-train Distance are more even in the

late stages. The experiments verify that Fréchet Pre-train

Distance measures the transferability of the tested networks

well, which are nowadays very popular in most of ma-

chine learning tasks. Specifically, for the most widely used

ResNet, we also test how Fréchet Pre-train Distance works

on ResNet-50 and ResNet-101. The comparison is shown

in Section 4.3.

With the help of Fréchet Pre-train Distance, we are able

to find an optimal pre-trained checkpoint in the pre-training

stage before conducting actual fine-tuning experiments. Al-

gorithm 1 shows how the process works.

4. Investigating Factors Affecting Neural Net-

works’ Transferability

Equipped with Fréchet Pre-train Distance, we inves-

tigate more factors that affect the transferability of neu-

ral networks. Specifically, we investigate the over-

parameterization problem that might cause the degradation

of transferability, and propose to recover it with Spectral

Normalization. We also explore the influence of learning
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(a) CIFAR100-CIFAR10

(b) SVHN-MNIST

Figure 5: Transfer performance vs Different ResNets (Trans: transfer performance, TFS: train-from-scratch).

rates and neural network depth on the transfer results.

4.1. Improving the Transferability of AlexNet with
Spectral Normalization

Spectral Norm Section 3.1 shows that in the early per-

training stage, for AlexNet only, pre-trained checkpoints

bring a negative effect to the target task. In other words,

the pre-trained weights become worse initialization than

random for the target network and fine-tuning cannot re-

cover from it. To prevent the degraded weights, inspired by

[16], we propose to use Spectral Normalization (SN), which

was introduced to improve the generalization of neural net-

works by reducing the sensitivity to test data perturbation ξ.

Specifically, the spectral norm of weight matrix A ∈ Rm×n

is defined as

σ(A) = max
ξ∈Rn,ξ 6=0

||Aξ||2
||ξ||2

(3)

which corresponds to the largest singular value of A. It has

been proven [27] that for each weight matrix W l of layer l
in fθ, in order to bound the spectral norm of Wθ,x, it suffices

to bound the spectral norm of W l for each l ∈ {1, ...L}.

σ(Wθ,x) ≤ σ(DL
θ,x)σ(W

L)σ(DL−1

θ,x )σ(WL−1) · · ·

σ(D1

θ,x)σ(W
1) ≤

L
∏

l=1

σ(WL)
(4)

where D denotes the activation function and σ(Dl
θ,x) ≤ 1

for every l ∈ {1, ...L}. This suggests to use the spectral

norm as a regularizer to improve the generalizability of deep

neural networks [27].

Spectral Normalization While Spectral Norm Regular-

ization bounds the spectral norm of the entire neural net-

work. Miyato et al. propose to apply Spectral Normaliza-

tion to each specific layer which requires the spectral norm

of each layer satisfies the Lipschitz constraint σ(W ) =
1 [16], which is defined as:

ŴSN (W )) := W/σ(W ) (5)

Where W is the weight matrix and ŴSN denotes the nor-

malized W .
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In Spectral Normalization, when each layer is normal-

ized, the Lipschitz of the entire network ||f ||Lip is bounded

from above by 1 (check [16] for more details). While in

our experiments, we find when applying Spectral Normal-

ization on different layers in AlexNet, the transfer perfor-

mance varies on both CIFAR100-CIFAR10 (sub-figure 3a)

and SVHN-MNIST (Sub-figure 3b) settings. The left col-

umn of Figure 3 shows how the transfer performance varies

when we apply Spectral Normalization on the five convo-

lution layers, the two 4096 × 4096 middle fully-connected

layers, and the last classification layer. When the classi-

fication layer is normalized by Spectral Norm, the trans-

ferability is better recovered. To investigate the reason be-

hind, we test the value of Fréchet Pre-train Distance before

each layer. If we look into the finishing stages in the layer-

wide FPDs (sub-figures in the middle column of 3), we find

that only the fully-connected layers show the same trend as

the entire network. We wonder whether it is the two over-

parameterized 4096 × 4096 layers that cause the transfer-

ability degradation since it is easier to over-fit a layer with

more parameters. We then modify the number of channels

in the two fully-connected layers and show the results in

the right column of 3. It turns out when we choose smaller

channel sizes (1024×1024 or 128×128), the transferability

of the network is improved immediately. That supports our

claim that over-parameterization hurts transferability.

4.2. The Effect of Learning Rates

For the experiments in Section 3, we use a consistent

hyper parameters settings such as learning rate for both

pre-training and transfer learning experiments. We follow

mostly setting from the previous study [7]. However, we

wonder whether the same conclusion can be achieved un-

der different learning rates. In this section, we modify

the learning rate in our experiments on AlexNet, VGG-16

and ResNet-18 on both CIFAR100-CIFAR10 and SVHN-

MNIST transfer learning. To verify our assumption, three

different initial learning rates are tested (with same decay

strategy) and the correlated results are shown in Figure 4.

From Figure 4 we find different networks and datasets

perform slightly differently. For AlexNet and ResNet-18,

the transfer performances in different pre-training stages

are consistent when different learning rates are used. But

for VGG-16, when learning rate equals to 0.5, the transfer

performance in the starting stage is much lower than other

learning rates but the performance in the finishing stage is

better than others. For ResNet-18, the transfer performance

changes less when we modify the learning rates. Addition-

ally, the results are more noisy when a large learning rate is

used. Besides, for three networks and two dataset settings,

the change trending of the transfer performance is consis-

tent across different networks and datasets but the degree

varies. This is also reasonable since learning rates affect

the speed of over-fitting, and the over-fitting speed further

affects the transferability.

4.3. The Effect of ResNet Depths

ResNet [10] is one of the most popular neural networks

that has been widely used nowadays among many different

tasks. In this section, we would like to investigate how pre-

training, transfer learning, and Fréchet Pre-train Distance

change across different ResNets. We choose ResNet-18,

ResNet-50, and ResNet-101 in our experiments. The ex-

periments are also conducted on both CIFAR100-CIFAR10

and SVHN-MNIST datasets. Figure 5 shows the results.

The left sub-figures show the comparison of pre-training ac-

curacy, the middle sub-figures show transfer accuracy, and

the right sub-figures show the results on Fréchet Pre-train

Distance.

It is interesting that all ResNets reach the similar pre-

training performance, transfer performance and Fréchet

Pre-train Distance in the finishing training stages. But in the

early stages, the pre-trainings of ResNet50 and ResNet101

are slower and nosier. It shows that ResNet-18 is parame-

terized enough for both CIFAR100-CIFAR10 and SVHN-

MNIST. Therefore, increasing the depth of ResNet would

not learn extra knowledge. On the contrary, when the net-

work is over-parameterized compared to the complexity of

the task. Not only the neural networks converge slower, but

also the training process becomes noisier. The is compatible

to the conclusion we achieve in Section 4.1, when AlexNet

experiences a transfer performance degradation in the start-

ing pre-training stage, which is also caused by the over-

parameterization of the fully-connected layers in AlexNet.

5. Conclusion

In this paper, we explore the transferability of deep neu-

ral networks. We find that a pre-trained checkpoint that

achieves the best performance on a source task would not

always lead to a better transfer performance on target tasks,

sometimes even cause a transfer degradation where pre-

training would be worse than train-from-scratch. It shows

the transferability of a pre-trained checkpoint is affected by

the pre-training on both the beneficial and harmful sides for

the downstream tasks. We propose a metric named Fréchet

Pre-train Distance to evaluate the transferability of a pre-

trained checkpoint by measuring the Fréchet distance of

feature distributions between the source and target datasets.

With the help of Fréchet Pre-train Distance, we would be

able to identify a proper pre-trained checkpoint as the ini-

tialization for the target tasks before conducting transfer

learning. Moreover, we investigate other factors that affect

transfer learning and discuss the causes of the transferabil-

ity degradation. In particular, we notice that over-fitting and

over-parameterization hurt the transferability.
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