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Abstract

The ability to find safe landing sites over complex 3D ter-

rain is an essential safety feature for fully autonomous small

unmanned aerial systems (UAS), which requires on-board

perception for 3D reconstruction and terrain analysis if the

overflown terrain is unknown. This is a challenge for UAS

that are limited in size, weight and computational power,

such as small rotorcrafts executing autonomous missions on

Earth, or in planetary applications such as the Mars Heli-

copter. For such a computationally constraint system, we

propose a structure from motion approach that uses inputs

from a single downward facing camera to produce dense

point clouds of the overflown terrain in real time. In con-

trast to existing approaches, our method uses metric pose

information from a visual-inertial odometry algorithm as

camera pose priors, which allows deploying a fast pose re-

finement step to align camera frames such that a conven-

tional stereo algorithm can be used for dense 3D recon-

struction. We validate the performance of our approach

with extensive evaluations in simulation, and demonstrate

the feasibility with data from UAS flights.

1. Introduction

On July 30, 2020 NASA launched the rover Persever-

ance that is scheduled to land on Mars in February 2021.

Traveling on-board the rover is the Mars Helicopter Inge-

nuity which was developed to prove that autonomous con-

trolled flight is possible on Mars [3]. If this technology

demonstration is successful, it could open the door for fu-

ture Mars Science Helicopters enabling a whole new era of

∗This research was carried out at the Jet Propulsion Laboratory, Califor-

nia Institute of Technology, under a contract with the National Aeronautics

and Space Administration (80NM0018D0004).

Figure 1. 3D reconstruction example: Left: rectified reference im-

age from UAS flight; Right: reconstructed range image (warm col-

ors are closer to the camera).

Mars exploration. Due to the signal delay between Mars and

Earth, such a rotorcraft has to operate fully autonomously,

which requires advanced navigation capabilities to fly over

complex 3D terrain, including finding new safe landing

places during flight. A feature that requires on-board 3D

perception since maps derived from orbit cannot resolve

small landing hazards (maximum HiRISE resolution is 25

cm/pixel [21]) and planned landing sites might not be reach-

able in cases of emergencies.

Detecting landing sites in unknown terrain requires a ro-

bust method for on-board 3D reconstruction before observa-

tions can be aggregated into a local map representation used

for detecting suitable landing sites during flight. On-board

3D reconstruction on a computationally limited embedded

computer is however challenging, since methods deployed

need to be accurate and at the same time efficient enough to

be executed in reasonable time.

In this paper, we introduce a 3D reconstruction method

that takes advantage of existing autonomous navigation

components on-board a small autonomous rotorcraft. Our

method deploys a structure from motion approach with a

single downward facing camera that receives metric pose

priors from a visual-inertial odometry algorithm. This al-
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lows us to efficiently perform a pose refinement step with

subsequent deployment of a dense stereo algorithm on se-

lected frames. The result is a dense 3D reconstruction of

the observed surface (see Figure 1) as a basis for subse-

quent processes such as landing site detection that can be

executed on small embedded compute modules as our target

platform, a Qualcomm Snapdragon 820 system on a chip.

In the following chapters, we give a brief introduction

on related work, and then explain our approach in detail,

followed by experimental evaluation in simulation and with

data from UAS flights.

2. Related Work

Obtaining accurate and reliable information about the

environment is crucial for autonomous navigation. Decades

of research evaluated a vast variety of options of sensor sys-

tems and algorithms.

Several sensors can be taken into account to approach

this problem. Commonly used sensor types for this task

are for example Lidar [24], ultrasonic sensors [17], or depth

cameras for indoor applications [4]. While Lidars are too

heavy and power hungry for our application, depth cam-

eras and ultrasound sensors only work in close proxim-

ity. A stereo camera would be an ideal sensor, but small

baselines increase depth errors quickly for flights at alti-

tude. Monocular Structure-from-Motion (SfM) approaches

for 3D reconstruction overcome this limitation by adapting

the baseline between camera observations depending on the

distance to the observed terrain. Of course, this comes at

the price of a non rigid setup that cannot be pre-calibrated

and thus requires accurate camera pose estimation. Conven-

tional SfM couples the pose estimation problem with the 3D

reconstruction problem, often requiring significant compu-

tational resources. Examples are commercial applications

such as Pix4D [1] that deploy a full Bundle Adjustment

(BA) over all camera poses and observed scene points to

estimate highly-accurate terrain models. These methods are

executed off-line on state-of-the art computation hardware,

and thus not feasible for on-board 3D reconstruction in real

time.

Speed up can by achieved by sparsifying the recon-

structed environment [16], moving this method closer to

Simultaneous Localization and Mapping (SLAM) methods

that can be executed in real-time on computationally con-

straints systems. However, here the main focus is localiza-

tion and not dense 3D reconstruction. SLAM approaches

can be separated in terms of their processing of the image

data in indirect and direct methods. Indirect methods use

the geometric reprojection error in the optimization pro-

cess [22, 26], while direct methods are based on the pho-

tometric error [11, 10, 23]. A hybrid-approach is given by

[12, 13], where feature tracking is based on minimizing the

photometric error for incremental camera poses. Indirect

methods have advantages regarding robustness to outlier,

large motion and lighting changes over time. In contrast,

direct methods are more suitable for scenes with low tex-

ture. Since the major goal of approaches like ORB-SLAM

[22] or VINS-Mono [26] are pose and state estimation in

real-time, the density of reconstructed point clouds is low

and too sparse for reconstructing the environment by a se-

quential mapping.

Engel et al. introduced Large-Scale Direct Monocu-

lar (LSD)-SLAM [11] and later Direct Sparse Odometry

(DSO) [10], which provide semi-dense depth maps or point

clouds with an adjustable density. These approaches come

close to meeting our requirements, if the density is in-

creased to full image reconstruction. However, since all 3D

points are used for the combined optimization of camera

poses and 3D observations, the process grows in computa-

tional complexity with increasing density, which is not ap-

propriate for our target hardware.

Newcombe et al. [23] focuses on generating dense depth

maps from monocular image sequences by either refining

an already available 3D model or building initially a new

model from sparse correspondences. The optimization is

based on minimizing the photometric error by a global en-

ergy minimization framework extensively parallelizing cal-

culations on a Graphics Processing Unit (GPU).

There are some approaches that also emphasize on dense

reconstruction. An example is REMODE (REgularized

MOnocular Depth Estimation) [25] which is a real-time

temporal fusion approach based on Bayesian estimation that

heavily uses GPU parallelization in order to reach accept-

able execution times. This approach combines 3D recon-

struction with a local mapping approach, which could be in-

teresting for perception tasks if ample computational power

exists, as shown previously by Daftry et al. [6] for au-

tonomous landing.

Finally, if the overflown terrain is mostly flat, approaches

that deploy a homography approach to estimate camera

poses efficiently and then perform 3D reconstruction can

have an advantage since pose estimation by homography

decomposition does not require solving a computationally

intensive optimization problem as shown by [5] and [9].

Methods that use on optimization back-end often deploy

a standard optimization frame work. Prominent examples

are g2o [20], GTSAM [8] and Ceres [2].

g2o, used in the first SVO release [12] and in ORB-

SLAM [22], formulates the non-linear least square problem

as a directed graph. With regard to efficiency, special struc-

tures, as they occur within BA or SLAM, as well as the

sparseness of the graph can be explicitly taken into account.

Georgia Tech Smoothing and Mapping (GTSAM) is also

a graph-based approach for solving non-linear least square

problems, used e.g. by SVO in the second release [13]. This

framework includes different approaches, such as iSAM
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[19] and iSAM2 [18]. The approaches in GTSAM place a

special focus on the incremental expansion of the problem,

as is particularly the case with SLAM problems.

Ceres is used by VINS-MONO [26] during initializa-

tion. In contrast to the two previous approaches, Ceres is

not graph-based. The focus in this framework is on efficient

modeling and solving of large and complicated non-linear

optimization problems.

3. Proposed Approach

In the following we present our approach to calculate

dense depth maps from monocular image sequences. Fig-

ure 2 gives an overview of the processing pipeline for our

Structure from Motion approach.

Camera pose priors are provided by an existing state esti-

mator while we execute a separate feature tracker (see Sec-

tion 3.1) to process the images from a downwards-facing

camera and generate frame to frame feature tracks. We de-

ploy a keyframe based approach which selects individual

images based on a desired image overlap and a minimum

parallax constraint (see Section 3.3), and collect keyframes

in a sliding window buffer. Camera poses of keyframes are

refined by an optimization step (Section 3.4). Inspired by

related approaches [10, 13, 22], we focus on Bundle Adjust-

ment (BA) as a less time-restricted optimization back-end in

this work. For 3D reconstruction, a pair of keyframes is se-

lected based on baseline constraints and a standard stereo

algorithm is used for dense 3D reconstruction (see Sec-

tion 3.5).

3.1. Feature Tracking

We extract FAST feature points in raw input images

which are tracked with a KLT based algorithm that uses

image binning to enforce an even distribution of features

across the image. Lost feature tracks are replaced by newly

detected features on a frame to frame basis up to a fixed

maximum feature number.

3.2. Pose Priors from Visual Inertial Odometry

Our pose priors are obtained from the xVIO state estima-

tor [7]. xVIO is based on Extended Kalman Filter (EKF)

that tightly couples visual, and optionally range and solar

measurements with inertial state propagation [7]. The con-

cept is designed for use in space missions and therefore

does not require GPS conditions. The advantage of this

approach compared to other state-of-the-art visual-inertial

frameworks is the use of a Laser-Range-Finder (LRF) to

observe metric scale without requiring inertial excitation,

which is usually not present on most real-world flight tra-

jectories. Furthermore, the yaw drift is reduced through the

use of the sun sensor.

3.3. Keyframe Management

Individual keyframes are selected out of the stream of

individual images and the attached camera pose priors and

collected in a sliding window keyframe buffer. For the re-

construction after the camera pose refinement, we further

have to select two camera poses for stereo reconstruction.

We split these tasks in two separate processes to select new

camera frames as keyframes in one process and an image

pair from the keyframe buffer for dense stereo reconstruc-

tion in a second process (see Section 3.5).

The camera frames in the keyframe buffer are selected by

evaluating the rotation compensated, frame-to-frame paral-

lax, which ensures a required amount of movement between

the frames. Further, a new keyframe should preserve infor-

mation that is already available in the buffer, while simul-

taneously adding new information to it. This means, a sig-

nificant amount of feature tracks should be continued by the

new keyframe and also new feature observations for starting

new feature tracks are introduced.

3.4. Camera Pose Refinement

We deploy a windowed bundle adjustment (BA) algo-

rithm to improve camera poses. In contrast to full bundle

adjustment approaches which refine the complete history of

camera poses and feature locations, the goal of our algo-

rithm is to improve only camera poses in the recent history

that may be used for 3D reconstruction - which requires im-

ages that observe corresponding terrain (image overlap).

We refer to the recent history of camera poses as a win-

dow, that consists of n keyframes. The keyframes are se-

lected by the procedure as described in Section 3.3. Since

the number of keyframes and also the number of features

in a window are limited, the run time of the optimization is

bounded.

Thus, the optimization run time depends on the window

length and the number of feature observations. Sibley et al.

[27] showed that the number of frames in the window has

a minor influence on the accuracy of the optimization re-

sult, in contrast to the length of the feature tracks. Engel

et al. [10] and Qin et al. [26] suggest a window length be-

tween 7 and 10 camera frames. Since this agrees with our

own findings, which we present in Section 4.1, we select a

keyframe window length of 7 frames and require features to

be visible in all keyframes. The selection of an optimization

framework is presented in Section 4.3.

Our objective function is composed of feature observa-

tions and camera pose priors, obtained from the state esti-

mator. Thus, its based on the reprojection error as a geo-

metric error measure:

rpix (ξ,P) = ẑpix −Π (ξ,P) , (1)

where the camera poses are given by ξ, a 3D point by P and

the reprojection function by Π(. . . ). The feature observa-
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Figure 2. Proposed SfM pipeline for calculating dense dense depth maps/3D point clouds from monocular image sequences and pose priors

for subsequent landing site detection.

tions are denoted by ẑpix. Furthermore, we use the Huber

norm as a robust loss function:

ρ(r) = r2 for |r| < α (2)

= 2α|r| − α2 otherwise. (3)

One of the main advantages of the Huber norm is that, in

contrast to the Cauchy norm, for example, it is convex and

therefore does not introduce further local minima [14].

Since the residual distribution of the feature observations

is widely considered to be a superposition of normal [27]

and uniformly distributed [25] inlier and outlier, respec-

tively. The residual distribution is sufficiently modeled by

the Huber norm. For more details we refer to [14].

3.5. Dense 3D­Reconstruction

For 3D reconstruction, we deploy conventional stereo al-

gorithm. This involves selecting an image pair from the

keyframe buffer, that maximizes the baseline and also yields

an image overlap in a range between 70% and 90%. The

reference frame of the stereo pair is the most recent, i.e.

current, frame.

After rectification, we deploy a fast standard block-

matching stereo algorithm for correspondence search and

3D reconstruction.

4. Experimental Evaluation

The following section provides an overview of the im-

pact of various parameters affecting the windowed BA (Sec-

tion 4.1). Further, the three optimization back-ends from

Section 2 are compared in terms of accuracy and run time,

regarding our approach. Several experiments are conducted

with the selected framework using simulated feature tracks

(see Section 4.4), a full-image simulation (see Section 4.5)

and a qualitative evaluation with UAS flight data (see Sec-

tion 4.6).

4.1. Parameter Studies

This section is dedicated to the evaluation of different

parameters and making design choices for our approach.

First, we analyze the influence of feature observation

noise and camera pose perturbations on the windowed BA.

Noise on feature observations has a major influence on

the optimization problem, as experiments show. However,

since the noise on the feature observation, i.e. our measure-

ments, is not observable, it yields the lower bound of the

achievable accuracy.

Rotational perturbations on the camera poses are found

to be negligible, while translational errors in the direction

of the motion of the rotorcraft affect the optimization, since

scale in vision-only BA is not observable. However, with

the assumption that the initialization of our BA optimization

with pose priors from VIO is close to the global minimum

of our BA problem, scale changes by the BA step can be

neglected. We evaluated window lengths of 5, 7, 9, 11, 15

and 20 camera poses per window regarding improvements

in accuracy and increasing run time. For this experiment,

the feature tracks are continuous through the entire window

and the number of features is constant.

Table 1. Comparison of the median Vertical Epipolar Error (VEE)

(see Section 4.2) in a window for different sizes of the keyframe

buffer, i.e. length of the window. For each keyframe buffer length

1500 camera pose refinements are processed.
quantiles in [px]

25% 50% 75% 99%

5 frames 0.0285 0.0472 0.0744 0.1653

7 frames 0.0270 0.0431 0.0688 0.1526

9 frames 0.0244 0.0407 0.0650 0.1447

11 frames 0.0260 0.0402 0.0627 0.1331

15 frames 0.0241 0.0386 0.0620 0.1467

20 frames 0.0233 0.0364 0.0580 0.1274

Regarding the accuracy presented in Table 1, no signif-

icant improvements for an increasing window size are ob-

servable. In contrast, however, the run time per iteration

is largely influenced by the window length, as presented in

Figure 3.

The run time grows exponentially with an increasing

window length. Thus, using a window length of 7 frames,

as also suggested by [10], is appropriate.

4.2. Evaluation Metrics

To evaluate pose estimation methods, a common met-

ric is to calculate the deviation of estimated trajectory to a

ground truth trajectory, if available. Refinement approaches

are usually compared and evaluated by the root mean square

(RMS) of the reprojection error. However, the possibility

of successful stereo reconstruction is not directly apparent
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Figure 3. Run time evaluation for different window length (5, 7, 9,

11, 15 and 20) with a constant number of feature observations in

the window.

from this. Therefore, we use the estimated vertical epipo-

lar error (VEE) after image rectification as an error metric

for the accuracy of our optimized camera poses to simulate

the performance of a subsequent dense stereo algorithm that

requires alignment of epipolar lines with image rows.

While a large VEE is indicating that stereo matching

will fail due to the violated epipolar constraint, a horizon-

tal epipolar error will affect the accuracy of depth recon-

struction. Since both errors are coupled, we assume that the

horizontal epipolar error is negligible, if the VEE is small.

Our calculations are based on projecting pixel coordi-

nates onto a virtual ground plane, which altitude is derived

from the actual altitude of the rotorcraft. Figure 4 visual-

izes the idea of the following described method. First, pixel

coordinates are generated w.r.t. to the first camera view and

are projected to the virtual ground plane using the camera

matrix. These pixel coordinates are further rectified using

the camera poses which are under examination, e.g. camera

poses after the refinement step.

Next, the projected 3D points on the ground plane are re-

projected into the view of the second camera and the pixel

coordinates are also rectified. Subtracting the correspond-

ing, rectified pixel coordinates from the first and second

view, we obtain the vertical shift in pixels.

The maximum permissible VEE essentially depends on

the matching algorithm used. In the following it is assumed,

that with a VEE below 0.25 px the stereo reconstruction

will not fail due to an incorrect rectification, and that depth

errors caused by horizontal epipolar errors are sufficiently

small to be absorbed by a subsequent mapping process.

4.3. Selection of Optimization Frameworks

We compare the three optimization frameworks, pre-

sented in Section 2, Ceres, g2o and GTSAM.

First, the comparison focuses on the achievable accuracy

of the frameworks regarding our approach. Therefore, we

process the same data set for all frameworks. The data is re-

trieved from a non-visual simulation, which provides cam-

Figure 4. The vertical epipolar error (VEE) is calculated by pro-

jecting the features in the first image onto a virtual ground plane,

and back-projection into the second camera view.

era poses on a trajectory and ground truth feature observa-

tions via reprojection from a given 3D terrain mesh. The

added noise on feature observations is Gaussian distributed

with 0.1 px. The camera poses are also perturbed by inde-

pendent Gaussian noise with 0.01m and 0.5◦, respectively.

Table 2 presents the results of the comparison regarding

the accuracy of the optimized solution of the three frame-

works. For this experiment 574 subsequent camera poses

refinements are performed by the optimization back-end on

a circular trajectory. All frameworks are processed with ex-

actly the same data and stopping criteria.

Table 2. Evaluation of the median VEE in a window calculated

with Ceres, GTSAM and g2o over a circular trajectory with 574

windows.
quantiles in [px]

Frameworks 25% 50% 75% 99%

Ceres 0.0105 0.0135 0.0172 0.0256

GTSAM 0.0104 0.0133 0.0173 0.0258

g2o 0.0107 0.0139 0.0176 0.0265

No significant difference in terms of accuracy can be ob-

served between Ceres, GTSAM and g2o.

Next, we evaluate the run time of each frame work. The

data used for evaluation is derived from the previous test

runs, that includes 574 measurements per framework. The

test is carried out on an Intel i7 desktop computer.

Figure 5 shows the results as a histogram. Ceres has

the shortest run times in this comparison; followed by g2o,

and GTSAM. Furthermore, Ceres has the smallest run-time

standard deviation in our test.

Pose graph approaches, i.e. here g2o and GTSAM, aim

for problems on a larger scale, then we have to solve in our

approach. Since we are only interested in refining camera

poses, we select Ceres as framework for further work.

In the next step we prove the computational feasibility

on the target platform, a Snapdragon 820. Since the noise

on the feature observations majorly affects the optimiza-

tion results, as discussed in Section 4.1, we examine the

run time under different feature noise conditions. The sim-

ulated camera trajectory is a straight line with ground truth

camera poses and 7 camera frames per window. Each noise
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Figure 5. Run times of the examined frameworks measured on a

desktop computer with an Intel i7.
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Figure 6. Run time of Ceres on the Snapdragon 820 under exam-

ination of different noise magnitudes on the feature observations

(0.5 px, 1.0 px, 2.0 px and 3.0 px). The box plot presents the me-

dian as red line, the 25% and the 75% quantile by the blue box

and the whiskers correspond to 1.5-times the inter quantile range.

Outlier are marked separately.

level consists of 17 camera poses refinements, i.e. windows.

As expected, the run time increases with a higher noise

magnitude on the feature observations. We aim for a fre-

quency of 1Hz for the entire pipeline. Thus, the optimiza-

tion process should not take longer than 200ms. Except for

a single measurement, the run time stays well below this

limit.

4.4. Optimization Back­End Evaluation

We evaluated the performance of our approach in a series

of Monte Carlo tests in a simulation environment to analyze

the accuracy of the approach when using pose priors from

the xVIO state estimator [7]. We expect a worst-case uncer-

tainty of 1% error of distance traveled for the translation.

Further, a rotational 3σ-uncertainty of 2◦ is assumed and an

average feature observation 1σ-noise of 0.2 px. All pertur-

bations are distributed independently for all axes in a range

around the ground truth values. The simulated terrain used

for the Monte Carlo tests is derived from a 3D surface with

elevation changes from −1m to 3m.

The virtual rotorcraft moves along straight lines in var-

ious directions over the terrain with a constant altitude of
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Figure 7. Qualitative overview of a Monte Carlo simulation with

500 runs (x-axis) and 40 windows (y-axis) each, with the y-axis

showing the mean VEE for each refined window. The color-

bar indicates the magnitude of the VEE from 0.0 px (blue) up to

≥0.4 px (red).

approx. 10m. Figure 7 shows the results for the Monte

Carlo simulation with 500 independent runs with 40 win-

dows each. The color map provides a qualitative overview

of the experiment, where each window is reduced to its

mean VEE along the y-axis. The VEE on the colorbar in-

creases from 0.0 px (blue) up to ≥0.4 px (red). As can be

seen, the vast majority of the VEEs is distributed at lower

end of the provided error scale.

Table 3 presents the quantitative analysis in terms of

quantiles of the median VEE of the Monte Carlo experi-

ment, while Table 4 summarizes the results as a histogram

analysis.

Table 3. Quantitative analysis of the Monte Carlo simulation with

500 runs of various straight trajectories with 40 windows each.

quantiles in [px]

min [px] 25% 50% 75% 99% max [px]

0.0046 0.0308 0.0416 0.0561 0.1211 0.2344

Table 4. Histogram analysis of the Monte Carlo simulation with

500 runs of various straight trajectories with 40 windows each.
bins in [%]

(cumulative percentage)

<0.0625 px <0.125 px <0.25 px <0.5 px <0.75 px ≥ 0.75 px

82.14

(82.14)

17.07

(99.21)

0.79

(100.0)

0.00

(100.0)

0.00

(100.0)

0.00

(100.0)

While the vast majority of the median VEE in a win-

dow stays below 0.1211 px (>99%), also the maximum er-

ror from all 20000 examined windows is below the 0.25 px
limit. By analyzing Table 4 we can also observe the major-

ity of the VEEs being mainly distributed in the smallest bin.

This indicates, that a continuous dense depth reconstruction

is feasible for all windows in the simulation.
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Figure 8. Flight in simulation environment. Top: Simulated UAS

over Mars Victoria crater rim; Bottom left: Rectified image of

down-facing camera; Bottom right: Associated disparity image

(GT poses, no image noise; warmer colors are farther away).

4.5. Pipeline Evaluation in 3D Simulation

In this section we evaluate the proposed pipeline, includ-

ing the feature tracker and the state estimator xVIO. Thus,

a photo-realistic 3D simulator [15] is required for providing

the test data (see Figure 8). Since the feature tracker may in-

troduce large outliers due to mismatches, we also introduce

a pre-optimization outlier rejection scheme, that removes

gross outliers in the set of triangulated feature points. The

removal is based on the reprojection error of the 3D feature

point in every keyframe it is observed. Thus, if a reprojec-

tion error is larger than a threshold of 1 px, this feature is

not further considered in the optimization process.

The experiment was carried out with 114 s-long simu-

lated flight, that includes an overflight of a cliff at approxi-

mately t = 18 s (see Figure 8, Bottom left), where the rotor-

craft pitches to follow the terrain. The rotorcraft’s altitude is

around 20m with a velocity of approx. 10m s−1 and cam-

era frame rate of 20Hz. For this experiment we obtain the

initial guesses by ground truth data for simplicity and de-

ploy the feature tracker on simulated images. The number

of feature tracks is limited to 400 tracks per window.

The simulation is processed with the same settings with

(black dots) and without (red dots) the proposed outlier re-

jection method in two different runs (see Figure 9).

We evaluate this experiment using the median VEE over

each window. For the runs without any outlier rejection (red

dots), we can observe VEEs beyond 0.25 px several times
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Figure 9. Improvement of median VEE per window by an outlier

rejection step prior to the optimization process. Black dots: with

outlier rejection; Red dots: without outlier rejection.

over the entire trajectory. In contrast, repeating the simu-

lation run with outlier rejection (black dots) improved the

rate of the median VEE over a window below 0.25 px sig-

nificantly to over 95%, which is also presented in the last

row of Table 6.

We further provide experiments with camera pose pri-

ors obtained from xVIO and also with image noise, cor-

rupting the image by shot noise with a standard devia-

tion of 0.179 px
√
I , with I denoting the image inten-

sity, and additional Gaussian blur with 0.25 px (1σ). All

measurements of xVIO are modeled by the InvenSense

MPU-9250 with a gyroscope noise spectral density of

1.3× 10−3 s−1Hz−1/2, a gyroscope bias random walk of

1.3× 10−4 s−2Hz−1/2, a accelerometer noise spectral den-

sity of 8.3× 10−3 s−2Hz−1/2 and a bias random walk of

8.3× 10−4 s−3Hz−1/2.

Table 5. Distribution of VEE for different camera pose refinement

methods. Note, that IMU measurements for xVIO are simulated

using noise parameters from the InvenSense MPU-9250 IMU, as

described in the text.
quantiles in [px]

25% 50% 75% 99%

xVIO 0.2451 0.5001 0.8430 1.5869

BA; w/ noise; w/ xVIO init 0.0805 0.1616 0.2548 0.7549

BA; w/ noise; w/ gt init 0.0045 0.0175 0.0405 0.3969

BA; w/o noise; w/ xVIO init 0.0323 0.0746 0.1711 1.0609

BA; w/o noise; w/ gt init 0.0059 0.0190 0.0438 0.2848

Table 5 presents the quantitative results of the pipeline

evaluation using the 3D simulation with different initial-

ization priors and various image noise settings in terms of

quantiles, while the quantiles are calculated over the me-

dian VEE for each window. Table 6 shows the percentage

separated in six groups of the median VEEs in the first line

of each row and their cumulative percentage in the second.

The first row yields results without the pose refinement step

as a reference, using xVIO camera poses directly for stereo.

Less than 30% of the camera poses lead to a median VEE

per window below 0.25 px (see Table 6). This can also be
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Table 6. Histogram analysis of VEE for different camera pose re-

finement methods. Note, that IMU measurements for xVIO are

simulated using noise parameters from the InvenSense MPU-9250

IMU, as described in the text.
bins in [%]

(cumulative percentage)

<0.0625 px <0.125 px <0.25 px <0.5 px <0.75 px ≥ 0.75 px

xVIO
7.47

(7.47)

7.50

(14.98)

13.99

(28.97)

24.17

(53.14)

18.29

(71.44)

28.57

(100.0)

BA

w/ noise

w/ xVIO init

23.46

(23.46)

21.75

(45.22)

29.19

(74.41)

19.50

(93.90)

4.68

(98.56)

1.41

(100.0)

BA

w/ noise

w/ gt init

80.37

(80.37)

9.91

(90.28)

5.59

(95.87)

2.34

(98.21)

0.69

(98.91)

1.09

(100.0)

BA

w/o noise

w/ xVIO init

45.76

(45.76)

20.06

(65.82)

18.97

(84.79)

11.96

(96.75)

1.71

(98.48)

1.55

(100.0)

BA

w/o noise

w/ gt init

89.42

(89.42)

5.27

(94.69)

3.02

(97.70)

1.41

(99.12)

0.39

(99.52)

0.48

(100.0)

seen in Table 5: more than 71% of all pixels have a VEE

larger than 0.25 px. Thus, the required accuracy is achieved

only in a minority of the cases tested.

The most realistic experiment is the initialization by

xVIO and additional noise on the images, where approx.

94% of the median VEE are below 0.5 px, while the vast

majority of 74.41% stays below 0.25 px. Using xVIO to es-

timate pose priors without additional noise (fourth row), the

percentage of VEEs below 0.25 px increases significantly.

As a reference, the last row shows the initialization with

ground truth camera poses and no additional image noise,

where over 97% of the median VEEs stay below 0.25 px.

The experiments show, that the refinement step keeps

over 90% of the median VEEs below 0.5 px and over 74%

below 0.25 px in all scenarios, which is sufficient for the

deployment of a dense stereo algorithm. The remaining

horizontal epipolar error (see Section 4.2) is assumed to be

small enough to be absorbed by a subsequent probabilistic

mapping approach.

4.6. Evaluation with UAS Flight Data

This section is dedicated to experiments we carried out

with UAS flight data over a desert area (see also Figure 1).

Flights were executed at a constant height at low altitude

(6m to 8m above ground) with a constant velocity of 5m/s
over terrain that varied in height.

Figure 10 presents example frames for various time steps

of a flight sequence with the current camera image, overlaid

with features that are tracked from frame to frame (left), the

rectified reference image (middle), and the corresponding

range image (right). Stereo disparity maps were calculated

with a SAD-based block matching algorithm using a 11x7

correlation window. The first row shows an increasing slope

to the left of the image. In the middle row, some large obsta-

cles are located at the bottom right, whereas the bottom row

depicts some small bushes. Note, that colors in the range

image are normalized per image.

Figure 10. Sample results from UAS flight data over a dessert area.

Left: Original camera image with overlaid tracked features; Mid-

dle: Rectified reference image; Right: Range image (color codes

elevation; warmer colors are closer to the camera).

As one can see, the reconstruction is dense, with the

exception of occluded regions and non-assignable areas

caused by the moving shadow of the UAS.

5. Conclusion

We presented a real-time approach for generating dense

depth maps from a sequence of monocular images taken

by a downwards-facing camera. Further, we focused on

a computationally efficient design, since our target hard-

ware is constrained in size, weight and power and thus in

computational power. First, we distinguished our approach

from competitive state-of-the-art approaches. We compared

the performance of well established BA optimization frame-

works: Ceres, g2o and GTSAM and concluded Ceres is sig-

nificantly faster for the same accuracy. After proving the

computational feasibility of using Ceres on our target hard-

ware, we presented a Monte Carlo experiment with vari-

ous trajectories over a 3D terrain. We evaluated our SfM

approach in a simulation environment that generates real-

istic flight scenarios. Various combinations of priors and

image noise were analyzed together with the influence of

image noise. We showed a sufficient accuracy for align-

ing the stereo image pair for the vast majority of refined

camera poses. Furthermore, we showed successful exam-

ples of dense 3D depth reconstruction with real-world UAS

flight data, which ultimately verified the feasibility of our

approach.

Future work includes improved outlier rejection to fur-

ther increase the accuracy of the refined pose. Additionally,

estimating the lower bound of achievable accuracy by the

covariance matrix of the approximated Hessian is assumed

to give an additional criterion for rejecting ill-posed prob-

lems.
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