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Abstract

Generic visual object tracking is difficult due to many

challenge factors (e.g., occlusion, blur, etc.). Each of these

factors may cause serious problems for a tracker, and when

they work together can make things even more complicated.

Despite a great amount of efforts devoted to understand-

ing the behavior of trackers, reliable and quantifiable ways

for studying the per factor tracking behavior remain barely

available. Addressing this issue, in this paper we contribute

to the community a tracking diagnosis toolkit, TracKlinic,

for diagnosis of challenge factors of tracking algorithms.

TracKlinic consists of two novel components focusing on

the data and analysis aspects, respectively. For the data

component, we carefully prepare a set of 2,390 annotated

videos, each involving one and only one major challenge

factor. When analyzing an algorithm for a specific chal-

lenge factor, such one-factor-per-sequence rule greatly in-

hibits the disturbance from other factors and consequently

leads to more faithful analysis. For the analysis component,

given the tracking results on all sequences, it investigates

the behavior of the tracker under each individual factor and

generates the report automatically. With TracKlinic, a thor-

ough study is conducted on ten state-of-the-art trackers on

nine challenge factors (including two compound ones). The

results suggest that, heavy shape variation and occlusion

are the two most challenging factors faced by most trackers.

Besides, out-of-view, though does not happen frequently, is

often fatal. By sharing TracKlinic1, we expect to make it

much easier for diagnosing tracking algorithms, and to thus

facilitate developing better ones.

1. Introduction

As one of the most fundamental problems in computer

vision, visual tracking has been studied for several decades.

1TracKlinic is released at https://hengfan2010.github.io/

projects/TracKlinic/TracKlinic.htm.

Despite considerable progress in recent years, object track-

ing remains difficult due to many challenge factors2 such as

occlusion, rotation, background clutter, out-of-view, motion

blur, etc. Any one of these factors may cause severe varia-

tion in target shape and/or appearance in a video, resulting

in tracker failures. Moreover, multiple factors may occur at

the same time, making things even worse.

Numerous approaches have been proposed to tackle the

aforementioned challenge factors. To validate effectiveness,

evaluating and comparing these trackers on datasets [42, 43,

7, 31, 20, 19, 27, 23, 39, 17, 36, 30] is an important section.

Doubtlessly, these benchmarks greatly advance the tracking

community. Nevertheless, if used directly, they are inca-

pable of faithfully investigating tracker behaviors on spe-

cific factors, as described below.

In existing datasets, a sequence is typically involved with

multiple challenge factors (see Fig. 1 (a) for an example),

and these factors are usually annotated for the entire se-

quence instead of for individual frames. In such case, it is

hard to faithfully examine a tracker on a specific factor due

to disturbances from other ones. Likewise, reliably com-

paring different trackers with respect to a factor is hard, be-

cause the trackers may fail due to other factors instead of

the one to assess. For instance, when comparing two track-

ers TA and TB on a sequence with background clutter and

occlusion, assuming it only contains these two factors and

background clutter occurs earlier, if TA outperforms TB ,

can we conclude that TA performs better than TB in deal-

ing with occlusion? Obviously, drawing such a conclusion

would be arbitrary since TB may fail where background

clutter happens and it never has a chance to demonstrate

its ability in handling the subsequent occlusion.

To conduct reliable and quantifiable per factor analysis

for tracking algorithms, a new type of benchmark is desired,

which ideally should meet the following two requirements:

(1) Purity. Different from sequences in existing tracking

datasets with many challenge factors, each sequence of the

desired benchmark should be involved with one and only

2Note that, challenge factor is often called attribute as well [42].
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(a) A sequence in existing benchmark with multiple various challenge factors.

Shape Variation Occlusion Rotation/Shape Variation

Motion Blur

(b) Two sequences in our TracKlinic with each containing only one major factor.

Rotation

Figure 1. Comparison between existing tracking benchmark LaSOT [7] and our diagnosis benchmark TracKlinic. Note that, the per frame

factor annotations in image (a) are labeled by us, and the original benchmark only provides global factor annotations. Best viewed in color.

one major factor (i.e., one-factor-per-sequence). By doing

so, we are able to eliminate influences from others when ex-

amining tracking algorithms on a specific challenge factor,

leading to more faithful analysis.

(2) Quantity. Evaluation and analysis of trackers on a

benchmark are desired to be general. To this end, a dataset

should be large scale to guarantee the statistical significance

of analysis, so is the desired dataset. In particular, the de-

sired benchmark should contain at least a decent number

(30 is used in our work) of videos for each challenge factor

for statistically meaningful analysis [22].

1.1. Contribution

Motivated by the above discussion, we introduce a novel

toolkit, referred to as TracKlinic, aiming to offer an in-depth

understanding of visual tracking algorithms on each chal-

lenge factor. TracKlinic consists of two components focus-

ing on data and analysis aspects, respectively.

Data Component. At the core of the proposed TracKlinic

is an elaborately designed benchmark, which is generated

by first per frame labeling 461 videos of three benchmarks

(OTB-2015 [43], TC-128 [27] and LaSOTtst [7]) with seven

challenge factors. In total, 776K frames are labeled with

7×776K annotations. With these annotations, we construct

the TracKlinic diagnosis benchmark by extracting eligible

(sub-)sequences from the 461 annotated ones. Eventually,

TracKlinic consists of 2,390 sequences with 280K frames.

Each sequence in TracKlinic consists of one and only one

major factor3, which is essentially different from existing

benchmarks (see Fig. 1 (b)). By doing so, we can reliably

examine a tracker on a specific factor by eliminating noisy

influences from others, providing guidance for pertinent im-

provements in future research. Besides, TracKlinic allows

more fair comparison of trackers on these factors.

3In practice, there is a small chance that a sequence still suffers from

some unidentified factors, but statistically negligible in our study.

The annotation above involves seven simple challenge

factors, including Occlusion, Background Clutter, Illumi-

nation Variation, Motion Blur, Out-of-View, Rotation and

Shape Variation. We observe that, not surprisingly, some

factors often accompany with each other, and may be worth

being investigated together. Thus, we include into TracK-

linic two compound challenge factors, Occlusion with Back-

ground Clutter and Occlusion with Rotation, both of which

are seriously under-studied in previous work. Finally, nine

challenge factors are included in TracKlinic.

Analysis Component. For the analysis aspect, we present

a diagnosis tool. Given the tracking results of all sequences

in TracKlinic, this tool analyzes the behavior of a tracker on

each individual factor and generates a report automatically.

In specific, we demonstrate failure distribution of a tracker

and examine its robustness to each challenge factor. In this

way, we can better understand the strengths and weaknesses

of a tracker, allowing of pertinent improvement. In addition,

we conduct more reliable comparisons of trackers on each

factor by erasing noise caused by irrelevant ones. Moreover,

we measure the consistency of a tracker to different factors

to validate its stability.

Integration of the above two components forms our novel

diagnosis toolkit TracKlinic. We exemplify its use and ca-

pability on ten state-of-the-art trackers. Our analysis reveals

that, heavy shape variation and occlusion are the two most

challenging factors faced by most trackers. In addition, out-

of-view, though does not occur frequently, it is often fatal to

visual trackers, and effective strategies should be presented

to handle it. More analysis is detailed in later sections.

In summary, our contributions are two-fold:

(i) We propose the novel TracKlinic for investigating per

factor tracking behaviors. Our toolkit offers the community

a diagnosis dataset consisting of 2,390 sequences with 280K

frames. To the best of our knowledge, TracKlinic is the first

benchmark for diagnosing challenge factors in tracking. In

addition, an analysis tool is presented to study trackers and
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generate report automatically.

(ii) We apply our TracKlinic to ten state-of-the-art track-

ers, which serves as an example of how researchers can di-

agnose their own trackers. We include detailed analysis for

the exemplification purpose, beyond any insights observed

from the diagnosis results.

2. Related Work

Visual Tracking Benchmarks Benchmarks have played

a crucial role in advancing the tracking research. For a long

time, tracking algorithms are usually evaluated with a small

number of sequences, resulting in the problem of subjective

bias [32]. Addressing this issue, various tracking bench-

marks are proposed, such as OTB [42, 43], TC-128 [27],

VOT series [18], NUS-PRO [23], NfS [17], UAV123 [30],

CDTB [28] and ALOV [36]. Recently, to provide enough

data for training deep trackers, larger-scale datasets have

been proposed, including OxUvA [39], GOT-10K [14], La-

SOT [7] and TrackingNet [31]. These benchmarks greatly

advance the research of visual tracking. Nevertheless, as

discussed above, they are not suitable for reliable diagnosis

of tracking algorithms regarding specific challenge factors.

Different from these benchmarks, the proposed TracK-

linic is dedicated for challenge factor diagnosis. For this

goal, per frame challenge factor annotation is first provided

on initial sequences. Moreover, one-factor-per-sequence is

enforced in TracKlinic for reliable analysis. These charac-

teristics make TracKlinic uniquely suitable for the diagnosis

purpose, and enable us, for the first time (to our knowledge),

to perform per factor analysis.

It is worth noting that, TracKlinic does not aim to replace

existing tracking benchmarks. Instead, it can be viewed as

complimentary to existing datasets to focus on challenge

factor analysis.

Diagnosis of Tracking Algorithms Another important

related work is [40]. In [40], a diagnosis approach is pro-

posed to analyze the impact of each tracking component on

final tracking performance. Specifically, five constitution

parts including motion model, feature extractor, observa-

tion model, model updater and ensemble post-processor are

examined using different implementations, aiming to offer

guidance to researchers in designing robust trackers.

Our work is significantly different from [40]. The work

of [40] focuses on studying the impact of a specific tracking

component on tracking performance, while ours examines

the abilities of a tracker on different challenge factors. In

fact, the diagnosis approach of [40] and this work are com-

plementary and can work together to provide directions for

improving tracking performance.

Diagnosis in Other Vision Problems Our work is also

closely related to similar studies [13, 47, 34, 35, 1, 44] for

other tasks. The seminal work of [13] explores different

failure modes in object detection and showcases the impacts

of different characters on detection performance. The ap-

proach of [47] analyzes localization errors for pedestrian

detection. The methodology of [34] provides an insight-

ful diagnosis of different algorithms in the field of action

understanding in videos and discusses relevant directions

for future improvements. The method of [35] introduces

the diagnosis analysis into human pose estimation with the

goal of quantitatively identifying the failure modes of dif-

ferent algorithms and recommending effective strategies for

improvements in body part localization. In [1], a diagnos-

tic tool is presented to characterize errors for temporal ac-

tion localization. The work of [44] diagnoses deep learning

models for age estimation.

In a similar spirit with these studies, we present a diag-

nosis approach to characterize different challenge factors in

tracking, and thus help researchers to understand the perfor-

mance of a tracker on specific challenge factors.

3. TracKlinic

3.1. Diagnosis Dataset

In order to validate effectiveness of a tracker in handling

a specific challenge factor, it is essential to inhibit distur-

bance from others in videos. However, the sequences in ex-

isting datasets are often involved with more than one chal-

lenge factor (see Fig. 1 (a)). In such situation, it is not clear

which factor is the cause of a tracking failure. To address

this issue, we propose TracKlinic, which is the first diagno-

sis dataset in the tracking community.

3.1.1 Initial Collection

Our goal is not to build a completely new dataset for assess-

ing overall performance of a tracker as in existing datasets.

Instead, we aim to diagnose an algorithm on different chal-

lenge factors to further improve its performance on existing

benchmarks. Considering this, it is natural to adopt existing

benchmarks as our data source.

Since this work is focused on generic model-free single-

object tracking, we narrow down our choices to OTB-

2015 [43], TC-128 [27], NUS-PRO [23], VOT series [18],

GOT-10K [14], LaSOT [7] and TrackingNet [31]. With

a joint consideration of target diversity, groundtruth avail-

ability and the amount of required annotation, we choose

OTB-2015 [43], TC-128 [27] and LaSOTtst [7] as our data

source. For conciseness, we use OTL to denote these three

benchmarks. In this way, we obtain 461 videos with 770K

frames in OTL for initial collection of TracKlinic.

3.1.2 Per-frame Factor Annotation

Tracking is a complex process, and it is difficult to enumer-

ate all challenge factors that may result in tracking failures.

In this paper, we study the seven most common factors in

tracking, including Occlusion (OCC), Background Clutter
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Figure 2. The statistic of overlapping frequency between challenge

factors in OTL. Best viewed in color.

Table 1. Descriptions of nine challenge factors in OTL.
Challenge Factor Definition

Occlusion (OCC) Target is occluded in a frame

Rotation (ROT) Target rotates in a frame

Out-of-View (OV) Target completely leaves the video frame

Bkg. Clut. (BC) The background is similar to target

Illumination Vari. (IV) The illumination in target region changes

Motion Blur (MB) Target region is blurred due to motion

Shape Variation (SV) The ratio of bounding box or its aspect ratio is

outside the range [0.25, 4]

Occ.-Bkg. Clut. (O-B) Target suffers from overlapping OCC and BC

Occ.-Rot. (O-R) Target suffers from overlapping OCC and ROT

(BC), Illumination Variation (IV), Motion Blur (MB), Out-

of-View (OV), Rotation (ROT) and Shape Variation (SV)4.

Unlike conventional tracking benchmarks in which each

video is labeled with global challenge factors, our goal is to

build a new type of dataset where each sequence is involved

with one and only one major factor. For this purpose, we

need to label each video in OTL with per frame challenge

factors. Based on these annotations, we extract eligible sub-

sequences from OTL and ensure that each one qualifies the

one-factor-per-sequence rule.

To guarantee the annotation quality, each frame is manu-

ally labeled with the aforementioned challenge factors (ex-

cept for SV) by an expert and then verified by another ex-

pert. The annotation of SV is automatically computed based

on its definition. It is worth noticing that, since we focus on

diagnosing challenges in object tracking, a frame is labeled

with challenge factors only when obvious target appearance

variations are caused by them. In total, we finish 7×776K

manual annotations for all sequences in OTL. An example

of our annotation for a video is shown in Fig. 1 (a) and more

video examples can be seen in supplementary material.

In OTL, each challenge factor represents a type of chal-

4It is worth noting that, since the Deformation and Aspect Ratio Change

almost always accompany with Scale Variation, we unify all these three

challenge factors into Shape Variation.

lenge (referred to as simple-challenge factor) for tracking.

However, it is rather frequent in tracking that two or more

factors occur simultaneously. Considering this, we also

study challenge factors containing two types of challenges

(referred to as compound-challenge factor). In specific, we

count the overlapping frequency between two challenges

in OTL. Note that, in order to be considered as overlap-

ping, the number of overlapping frames of two challenges

has to be greater than τop (set to 3). Fig. 2 demonstrates

the statistical results. In this work, we select the two most

frequent compound-challenge factors, i.e., Occlusion with

Background clutter (O-B) and Occlusion with Rotation (O-

R). After that, we automatically generate annotations for

these two compound-challenge factors and meanwhile ad-

just annotations for OCC, BC and ROT.

In summary, we diagnose nine factors for tracking algo-

rithms. The definitions of these factors are shown in Tab. 1.

3.1.3 Single-factor Sequence Extraction

With the per-frame annotations of each challenge factor, we

extract single-factor sequence from OTL under one-factor-

per-sequence rule. These eligible videos form our diagnosis

dataset. We describe the extraction rules as follows.

For extraction purpose, we classify challenge factors into

two types T1 and T2 based on the status of last frame in a

challenge. If the last frame suffers from occlusion or out-of-

view, the challenge factor belongs to T1, otherwise T2. For

challenge factor of T1, we extract subsequences which sat-

isfy: the subsequence can be decomposed into three consec-

utive parts s1nc, s2c and s
3
nc, where s1nc and s

3
nc do not contain

any challenge factors and s
2
c exclusively contains this fac-

tor, and the lengths |s1nc| ≥ τs (set to 10) and |s3nc| = τe

(set to 2), as shown in Fig. 3 (a). Considering that long se-

quence may cause more cumulative errors, we only retain

the last 30 frames in s
1
nc if |s1nc| > 30 for all factors ex-

cept for shape variation, because 30 frames are sufficient

for stable tracker initialization. For challenge factor of T2,

we extract subsequences that satisfy: the subsequence can

be divided into two consecutive parts s1nc and s
2
c , where s1nc

does not contain any challenge factors and s
2
c exclusively

contains this factor, and the length |s1nc| ≥ τs, as shown in

Fig. 3 (b). Likewise, we only retain the last 30 frames in s
1
nc

if |s1nc| > 30. The difference between T1 and T2 is that, for

challenge factor of T1, the target may be partly visible (e.g.,

occlusion) or completely invisible (e.g., out-of-view) in the

last frame. In such case, it is not suitable to estimate target

status. Therefore, we add an extra part s3nc to T1 type factor

to ensure that the target is fully visible.

After the above procedure, we construct TracKlinic with

each sequence involving one and only one major factor. We

show examples for each factor in supplementary material.

Tab. 2 summarizes TracKlinic and comparisons with other

datasets. Fig. 4 shows the numbers of videos for each factor.
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no factor type factor

challenge factor

no factor no factor

challenge factor

(a) Subsequence for      factor type (b) Subsequence for      factor type
type factor

Figure 3. Generating subsequences of TracKlinic for challenge factors of types T1 and T2. Best viewed in color and by zooming in.

Table 2. Comparison of TKB and other tracking Benchmark. OTL

combines OTB-2015 [43], TC-128 [27] and LaSOTtst [7].

Benchmark Videos
Min

frames

Mean

frames

Max

frames

Total

frames

Chal.

factor anno.

VOT-18 [20] 60 41 356 1,500 21K n/a

UAV123 [30] 123 109 915 3,085 113K global

NfS [17] 100 169 3,830 20,665 383K global

GOT-10Ktst [14] 180 51 127 920 23K n/a

TrackingNettst [31] 511 96 441 2,368 226K n/a

OTB-2015 [43] 100 71 590 3,872 59K global

TC-128 [27] 129 71 429 3,872 55K global

LaSOTtst [7] 280 1,000 2448 9,999 690K global

OTL 461 71 1683 9,999 776K per frame

TracKlinic 2,390 11 115 6,559 280K per frame

Figure 4. Numbers of sequences for different challenge factors in

TracKlinic. There are at least 30 videos for each challenge factor,

indicating that our diagnosis analysis is statistically meaningful.

3.2. Analysis Tool

In addition to the benchmark, an analysis methodology is

presented in our toolkit for studying trackers on each factor.

In specific, we demonstrate the proportion of failures due

to challenge factors for trackers, which allows us to under-

stand the potential failure causes. In addition, we study the

failure rates of trackers for each factor. In this way, we can

better understand the strengths and weaknesses of trackers

for future improvements. Furthermore, we compare differ-

ent tracking algorithms on our benchmark. In comparison

with other datasets, our analysis is more reliable because

noise caused by irrelevant factors are erased. We also mea-

sure consistency of a tracker to different factors.

Given the tracking results of all sequences in TracKlinic,

our tool analyzes the above per factor tracking behavior and

generates the report automatically, with which researchers

can further improve their own trackers.

4. Diagnosis of Challenge Factors

4.1. Algorithms

We apply TracKlinic to ten state-of-the-art trackers. In

specific, we choose the top three trackers with available im-

plementations on each of the four datasets, including VOT-

19 [21], LaSOT [7], OTB-2015 [43] and TC-128 [27]. We

exclude the repeated ones from these trackers. In this way,

we obtain eight algorithms, including DiMP [3], ATOM [5],

SiamRPN++ [24], SiamDW [49], ASRCF [4], ECO [6], D-

STRCF [26] and GFS-DCF [45]. In addition, we also an-

alyze two baseline trackers KCF [12] and SiamFC [2] as

these two trackers have led the recent trends of tracking with

many extensions [29, 37, 8, 25, 38, 10, 48, 9], and it is worth

diagnosing them on different challenge factors.

4.2. Proportion of Failures by Challenge Factors

It is important to understand failures of a tracker caused

by different challenge factors for improvements. In this sec-

tion, we take ten trackers as an example of showcasing the

proportions of failures by each factor.

Since each video in TracKlinic is involved with one ma-

jor challenge factor, we define tracking failure on a video

according to the tracking result in the last frame. If the inter-

section over union (IoU) of tracking result with groundtruth

is less than a threshold τIoU (set to 0.5), the tracker fails for

the challenge factor in this video. Note that, although each

video contains one major factor, it is possible that a tracker

fails before the challenge in a video happens. For this case,

we identify the tracking failure caused by others.

Fig. 5 shows the proportions of failures by different chal-

lenge factor. Surprisingly, we observe that for all ten track-

ers, although shape variation does not happen the most fre-

quently in videos (see Fig. 4), it is the most likely to cause a
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Figure 5. The percents of failures caused by different challenge factors for ten trackers. Best viewed in color and by zooming in.

failure. Specifically, the probabilities of a failure caused by

the shape variation are 38%, 36%, 38%, 46%, 48%, 50%,

49%, 47%, 49% and 46% for DiMP, ATOM, SiamRPN++,

SiamDW, SiamFC, GFS-DCF, D-STRCF, ECO, ASRCF

and KCF, respectively.

Following shape variation, occlusion is second most

likely to cause a tracking failure, with chances of 24%, 24%,

26%, 21%, 18%, 19%, 18%, 17%, 18% and 17% for the ten

trackers. Note that, shape variation and occlusion account

for more than 60% of failures, suggesting that strategies to

better handle them may be the most rewarding for future

research. Moreover, we can see from Fig. 5 that, illumina-

tion variation is the least possible reason for a failure. For

all trackers, the chances of a failure caused by illumination

variation do not exceed 1%, indicating that future research

can focus more on dealing with other factors such as shape

variation, occlusion, rotation, motion blur and so forth.

4.3. Understanding Trackers on Different Factors

To understand the strengths and weaknesses of a tracker,

it helps (1) guide future researches for improvement and (2)

deploy the tracker in practical applications as we can choose

the tracking algorithms according to the specific scenarios.

In this section, we show the abilities of ten representative

trackers in response to each challenge factor. We use failure

rate, defined as the ratio of the number of tracking failures

and the number of videos of a challenge factor, to represent

the ability of the tracker. The lower the failure rate is, the

stronger the tracker is in handling the challenge factor.

Fig. 6 shows the failure rates of ten trackers on each fac-

tor. An interesting observation is that, although out-of-view

appears least frequently (see Fig. 4), it is fatal to trackers.

For DiMP, ATOM, SiamRPN++, SiamDW, SiamFC, GFS-

DCF, D-STRCF, ECO, ASRCF and KCF, their failures rates

under the out-of-view are 65.8%, 71.1%, 78.9%, 81.6%,

86.2%, 86.8%, 89.5%, 84.2%, 89.5% and 86.8%, respec-

tively. It is worth noting that DiMP, ATOM, SiamRPN++

and SiamDW utilize very deep networks [11] for feature

representation. Nevertheless, they still easily fail when out-

of-view happens, which implies the requirement of a special

mechanism in handling out-of-view for tracking. A fea-

sible solution is to couple the tracker with a global detec-

tor [16, 46] which can re-locate the target when it appears

again in the view.

In addition, shape variation is difficult to visual track-

ers, especially for the baseline SiamFC and correlation filter

based ones including GFS-DCF, D-STRCF, ECO, ASRCF

and KCF. The failure rates of these trackers are higher than

80% due to the lack of an effective strategy to estimate tar-

get state. This issue is alleviated by borrowing techniques

such as RPN [33] (i.e., SiamRPN++ and SiamDW) and

IoU-Net [15] (i.e., DiMP and ATOM) from object detection.

Despite this, a tracker is prone to fail when shape variation

occurs. Especially for non-rigid targets, the bounding-box

based trackers may introduce a large amount of background

information into the tracking model, resulting in gradual

degradation. To achieve accurate target state estimation, a

better way is to leverage the mask of target through segmen-

tation [41]. Although the chance of an occlusion-causing

failure is high, trackers perform surprisingly robustly to this

challenge factor. In particular, using deeper feature can fur-

ther reduce the failure rate. Nevertheless, when accompa-

nied with other factors such as rotation or background clut-

ter, occlusion becomes more challenging. Furthermore, we

also see that all visual trackers exhibit robust performance

with failure rates of 3.1%, 2.3%, 2.3%, 3.1%, 4.7%, 4.7%,

5.4%, 7.8%, 6.4 and 8.5% in tackling illumination varia-

tion, which indicates that the illumination variation issue is

almost addressed using deep features.

In order to qualitatively analyze each tracker, we demon-

strate qualitative results of common failure cases for each

tracker on eight difficult factors in Fig. 7.
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Figure 6. Failure rates of ten state-of-the-art trackers for each challenge factor. Best viewed in color and by zooming in.

(a) Video with challenge factor O-R (b) Video with challenge factor MB (c) Video with challenge factor OCC

(d) Video with challenge factor OV (e) Video with challenge factor ROT (f) Video with challenge factor SV

(g) Video with challenge factor O-B (h) Video with challenge factor BC

DiMP ATOM SiamDW SiamRPN++ SiamFC KCF ECO ASRCF GFS-DCF D-STRCF GT

Figure 7. Qualitative results of failure cases for each tracker under eight challenge factors. Best viewed in color.

4.4. Challenge Factorbased Comparison

In addition to diagnosis of each challenge factor in track-

ing, our TracKlinic allows more reliable comparison of dif-

ferent approaches for each challenge factor. We adopt suc-

cess score (at the threshold of 0.5) [42] as evaluation metric.

Fig. 8 demonstrates the challenge factor-based compari-

son of different algorithms. We observe that DiMP achieves

the best performance under eight out of nine challenge fac-

tors. In particular, compared with its baseline ATOM, the

improvement under background clutter is obvious, which

evidences the effectiveness of exploring background infor-

mation in distinguishing target from distractors. For shape

variation, the three trackers DiMP, ATOM and SiamRPN++

significantly outperform others, showing the importance of

deeper features and the advantages of bounding box regres-

sion and IoU prediction in target state estimation. Besides,

an interesting finding is that, as the two most popular ap-

proaches for state estimation, our analysis shows that IoU-

Net based strategy performs slightly better than RPN based

method. For illumination variation, all trackers show robust

performance, which is consistent with previous diagnosis.

4.5. Consistency Analysis

In real-world sceneries, it is difficult to estimate the com-

plexities of challenge factors in a video. Therefore, a practi-

cal algorithm should demonstrate consistent (good) perfor-

mance no matter how complicated the factor is. For this

purpose, we conduct consistency analysis for each tracker.

In detail, we adopt the variance of all success scores for con-

sistency measurement of a tracker to a challenge factor. The

smaller the variance is, the more consistent the performance

is. Notice that, the consistency of a tracker may be high if it

performs poorly on all factors. Thus, consistency analysis

should be applied with other metrics such as success score.

Fig. 9 demonstrates the consistency of each tracker on

different factors. We observe that deep trackers performs
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Figure 8. Challenge Factor-based comparison of ten state-of-the-art trackers. Best viewed in color.

Figure 9. Consistency measurement to each challenge factor. The square represents the average success score of a tracker. The difference

between the top (or bottom) and the square denotes the variance under the challenge factor. Best viewed in color.

consistently on illumination variation. However, the perfor-

mance of trackers on out-of-view and background clutter is

inconsistent due to their extreme complexities. For instance

for out-of-view, the target may re-enter the view from a dis-

tant position. In such case, trackers easily fail. In a video

with complicated background clutter, there may exist many

distractors with identical appearances to the target. As a re-

sult, trackers may drift to other similar distractors. In sum-

mary, more efforts are needed to improve the consistency to

challenge factors to make visual trackers practical.

5. Conclusion

In this work, we present a novel diagnosis toolkit, TracK-

linic, for studying per factor tracking behaviors and exem-

plify its use on ten state-of-the-art trackers. We show how

TracKlinic helps identify potential challenge factors for a

tracker. Our results suggest that, heavy shape variation and

occlusion are worth more attentions in future research. In

addition, we examine the ability of a tracker in handling

different challenge factors, which is crucial in understand-

ing the strengths and weaknesses of a tracker. We investi-

gate the failure rate of a tracker to each factor and observe

that some rare factors such as out-of-view and occlusion

with ration are fatal to visual trackers. We measure consis-

tency of a tracker to different challenge factors and show

that more efforts should be made to improve the stability of

a tracker. By releasing TracKlinic, we aim to empower the

community with more in-depth understanding of tracking

algorithms, beyond a single scalar metric evaluation. Most

importantly, we expect that our diagnostic tool inspires the

development of innovative tracking models that address the

issues in current ones.
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