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Abstract

Modern video person re-identification (re-ID) machines

are often trained using a metric learning approach, super-

vised by a triplet loss. The triplet loss used in video re-

ID is usually based on so-called clip features, each aggre-

gated from a few frame features. In this paper, we pro-

pose to model the video clip as a set and instead study the

distance between sets in the corresponding triplet loss. In

contrast to the distance between clip representations, the

distance between clip sets considers the pair-wise similar-

ity of each element (i.e., frame representation) between two

sets. This allows the network to directly optimize the feature

representation at a frame level. Apart from the commonly-

used set distance metrics (e.g., ordinary distance and Haus-

dorff distance), we further propose a hybrid distance met-

ric, tailored for the set-aware triplet loss. Also, we propose

a hard positive set construction strategy using the learned

class prototypes in a batch. Our proposed method achieves

state-of-the-art results across several standard benchmarks,

demonstrating the advantages of the proposed method.

1. Introduction

Person re-identification (re-ID) has drawn an increasing

amount of attention in academia and industry due to its

great potential in research and real-world applications [43].

A person re-ID machine is trained to regress a non-linear

function which maps the pedestrian images to a semanti-

cally meaningful embedding space. In such an embedding

space, feature vectors extracted from images belonging to

the same identity (ID) are clustered, thereby retrieving cor-

rect matches for unseen query images of persons in the

gallery. In the past decades, image re-ID has achieved sig-

nificant improvements via learning discriminative represen-

tations from a single image [28, 29, 4, 12]. Recently, video

person re-ID has attracted a growing interest as videos pro-

vide richer cues in terms of encoding video representations

∗Work done while at NEC Laboratories America

for person retrieval [15, 41, 6, 26, 3]. In this paper, we aim

to create compact yet discriminative features from videos

for accurate video re-ID.

The pipeline of training a typical video re-ID machine

consists of first extracting the frame-level features with the

help of a deep network backbone and then aggregating them

to a clip-level feature. In video re-ID, the ranking task

(i.e., triplet loss) is a popular choice to supervise the net-

work to learn an embedding space, w.r.t. the clip-level fea-

tures. This, however, could lead to sub-optimal learning of

the video embedding space, as the aggregation operation to

frame features will result in loss of information of the origi-

nal frame features. Specifically, in the video-based applica-

tions, the triplet loss considers the distance between the clip

representations (i.e., dan and dap in Fig. 1(a)), which only

indirectly penalizes the hard frames between the clips (i.e.,

hard positive frames and hard negative frames in Fig. 1(a)).

This observation motivates us to directly leverage the frame

features, to decrease the hard positive distance (i.e., ↔ in

Fig. 1(a)) and increase the hard negative distance (i.e., ↔ in

Fig. 1(a)) for frame features.

In video re-ID, we often aggregate the frame features

(i.e., {f1, . . . ,f t},f i ∈ R
c, i = 1, . . . , t) to a clip-level

representation (i.e., f̂ ∈ R
c) using an aggregation function

(i.e., Agg(·)). This processing can be summarized as:

f̂ = Agg({f1, . . . ,f t}) = φ
(

t
∑

i=1

(ωif i)
)

, (1)

where φ(·) and {ω1, . . . , ωt} ∈ R
t denote non-linear map-

ping and aggregation weights, respectively. Due to the sum-

mation operator in Eqn. (1), the clip feature (i.e., f̂ ) is in-

variant to the order of frame features, indicating that the ag-

gregation function is temporally invariant. In other words,

the aggregation function acts on sets, in the sense that the

response of the aggregation function is “insensitive” to the

ordering of elements in the input [38]. With this intuition,

we aim to use the theory of sets to make better use of the

frame features within each video clip.

In this paper, we propose to model the frame features

within a clip as a set and propose to use the distance be-
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Figure 1. (a): Geometry interpretation of the distance metrics for clip representation and frame representation. The color represents the

class of samples. dap and dan denote the distance from positive pair and negative pair in a clip level. However, those two distances cannot

reveal the original distribution of frame features, thereby ignoring the distance between hard frames (i.e., ↔ for hard negative pair and ↔

for hard positive pair). (b): The comparison of R-1 accuracy from the networks trained without set-aware triplet loss and with set-aware

triplet loss, across four datasets. The backbone network is ResNet-50, pre-trained on ImageNet. In the set-aware triplet loss, we use the

proposed hybrid set distance metric to calculate the distance of anchor-positive pair and anchor-negative pair.

tween sets in the triplet loss. Different from the L2 dis-

tance between the aggregated clip features (see Fig. 2(a)),

the distance between sets considers every pair-wise distance

in two sets and explores more information of the frame

features. In set theory, the distance between sets is usu-

ally measured by ordinary distance (see Fig. 2(b)) or Haus-

dorff distance (see Fig. 2(c)). However, these set distance

measures cannot fully utilize hard frames (i.e., hard posi-

tive and hard negative) in a triplet. To construct an effec-

tive set triplet loss, we further propose a hybrid distance

metric (see Fig. 2(d)), where the hard frames for anchor-

positive and anchor-negative sets are considered explicitly.

In essence, our hybrid distance metric aims at penalizing

the hard frames between sets (i.e., ↔ and ↔ in Fig. 1(a)).

Fig. 1(b) shows the comparison of retrieval accuracies from

video re-ID models, trained without our set-aware triplet

loss, and with our set-aware triplet loss, across four video

re-ID datasets. We further apply the class prototypes to

frame-level features to construct hard sets by comparing

the similarity between the class prototype and frame fea-

ture with the same instance. Then the constructed set acts

as a hard positive set.

Contributions. The contributions of this work are summa-

rized as follows:

• We model the video clip as a set1, and employ the dis-

tance metric between sets to construct the triplet loss.

Furthermore, we propose a new hybrid set distance

metric, which is tailored for the set triplet loss.

• We further model the weights in the last classification

layer as class prototypes, to construct a hard positive

set, w.r.t. each anchor set with the same identity.

1In the remainder of this paper, we will use “clip” and “set” inter-

changeably

• Our algorithm achieves state-of-the-art performance

across four standard video person re-ID datasets (i.e.,

PRID-2011 [10], iLIDS-VID [32], MARS [42] as well

as DukeMTMC-VideoReID [35]), showing the effec-

tiveness of the proposed set augmented triplet loss.

2. Related Work

2.1. Sets

The concept of modeling the training data as a set has

appeared in many applications, e.g., point cloud classifica-

tion [38], image tagging [38], object localization [22] et al.

In general, the response of set functions is insensitive to the

order of the elements in the set and the work in [38] studies

the structure of such functions. The most popular function

is the pooling operation (i.e., max pooling, average pool-

ing) across the elements of its input. For example, deep

Convolutional Neural Networks (CNNs) use pooling layers

to summarize the features in a patch [8]. In the point cloud

classification task [21], a non-linear function extracts the

latent representation of point coordination and the pooling

function further summarizes the features of objects. Atten-

tion using non-local connections also acts as a set function

as the attention weights are produced by pairwise similari-

ties of pixel features [33]. In [22], the locations of objects

are estimated by training a detector which minimizes the set

distance between the prediction and ground truth of objects.

2.2. Metric Learning

Deep metric learning aims to project images to a low di-

mensional embedding space, in which the images with sim-

ilar semantics are clustered together [27, 23, 4]. The most

popular paradigm is to employ the triplet loss to penalize

the positive pair or negative pair or both of them within a

triplet [25]. However, the possible number of triplets is ex-
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(a) Clip distance metric (b) Ordinary distance metric (c) Hausdorff distance metric (d) Hybrid distance metric

Figure 2. Geometry interpretation of different distance metrics. (a), (b), (c), and (d) denote L2 distance metric between clip representation,

ordinary distance metric, Hausdorff distance metric, and hybrid distance metric between sets. The color represents the class of samples.

ponential to the number of samples in a mini-batch, leading

to a prohibitive computational cost. Much effort has gone

into mining the triplets efficiently [9, 4, 27]. For example,

the hard mining strategy only selects the hard positive and

hard negative for an anchor sample [9]. However, a hard

mining strategy often leads to getting caught in local min-

ima during optimization [9]; thus the semi-hard mining

method is further proposed to make use of more negative

pairs [4]. Beyond mining the triplets in a mini-batch, the

work in [27] employs the class signatures to mine hard neg-

ative classes for an anchor class in the whole dataset.

2.3. Person Reidentification

Most popular solutions for person re-ID mainly focus on

learning an appearance-discriminative representation [43].

In general, the person representation is often encoded by

the holistic appearance feature [31], or part features [29] or

both of them [4]. Beyond an image-based person re-ID, a

video-based re-ID system can make use of additional tem-

poral cues within a couple of frames, thereby encoding a

robust video representation [15, 26, 36]. Various tempo-

ral modeling methods have been studied extensively to ef-

fectively fuse the frame features to encode a discriminative

and robust video representation. In [19, 36], a clip-level

person representation is modeled by average/max tempo-

ral pooling of frame-level features; thereafter, frame fea-

tures are regressed by a Recurrent Neural Network (RNN),

whose final hidden state encodes the representation of the

target. The temporal modeling also utilizes the attention

mechanism, which aggregates frame features according to

individual importance [7, 15]. In [7], individual importance

is generated to aggregate frame features in a weighted sum

fashion.

In contrast to existing works, our work utilizes the orig-

inal frame features by modeling the video clip as a set, and

employ the distance between sets to optimize the hard frame

features. In the remainder of this paper, we will present our

set triplet loss and empirically verify the superior perfor-

mance of the proposed method.

3. Method

3.1. Set Theory Revisited

A function f(·), which maps its domain X to its range

Y , is considered as a function of sets if it is permutation in-

variant to the order of elements in the input. In other words,

given a set (i.e., X = {x1, . . . ,xs}) as input, the function

f holds that f(X) = f(PX) for any permutation matrix

P . In this case, the domain of f(·) is the power set of X ,

i.e., X = ℘(X).
Let (X, d) be a metric space. The distance between two

nonempty sets A and B in ℘(X) (i.e. D : ℘(X) \ ∅ ×
℘(X) \ ∅ → R) measures the similarity of two sets. The

ordinary distance between sets (see Fig. 2(b)) is defined as:

Do(A,B) = inf
a∈A,b∈B

d(a, b), (2)

where inf denotes the infimum function. The ordinary dis-

tance metric could be interpreted as the minimum pair-wise

distance between two sets.

Another well-known set distance metric is the Hausdorff

distance, which is defined as:

Dh(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}

= max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}

,

(3)

where sup represents the supremum function. As shown

in Fig. 2(c), the geometrical interpretation of the Hausdorff

distance can be understood as the greatest of all the dis-

tances from an element in one set to the closest element in

the other set.

3.2. Triplet Loss

When training a deep video feature extractor, we first

sample a mini-batch, which contains P different classes and

K video clips for each class, with each video clip having T
frames. The network first extracts the frame features, de-

noted by Ai = {ai1, . . . ,aiT }, i = 1, . . . , PK. Then the

network aggregates the frame features to a clip feature as

âi = Agg(Ai). Given an anchor clip representation âa
i ,

one possible triplet is formed as {âa
i , â

p
i , â

n
i }, where the
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positive pair (i.e., {âa
i , â

p
i }) shares the same label, while

the negative pair (i.e., {âa
i , â

n
i }) does not. The triplet loss

aims to penalize the triplet in which the distance between

the positive pair is not sufficiently smaller than that between

the negative pair. The triplet loss with hard triplet mining is

given by

Lhm
ctri =

1

PK

PK
∑

i=1

max(0, di(â
a
i , â

p
i )− di(â

a
i , â

n
i ) + η),

(4)

where η is a task-specific margin. Existing video re-ID

machines [6, 7] only optimize the clip representation (see

Fig. 2(a)) and it has never been considered to optimize the

frame features within each video clip.

3.3. Setaware Triplet Loss

The nature of the triplet loss is to penalize the positive

pairs with a large distance and negative pairs with a small

distance. It works well in image re-ID where the triplets

are constructed from the image features. However, in video

re-ID, the distance measure is hampered by the aggregation

operation, as shown in Fig. 1(a). To overcome this issue,

we directly enforce the constraint of the triplet loss on the

frame features. We first model the frame features within a

video clip as a set and employ set theory to calculate the

distance between sets. Eqn. (2) and Eqn. (3) formulate the

commonly used set distance metrics. However, the geome-

try interpretation of Eqn. (2) and Eqn. (3) (see Fig. 2(b) and

Fig. 2(c)) indicates that those two distance metrics cannot

distinguish the distances from the hard positive frames (↔
in Fig. 1(a)) and hard negative frames (↔ in Fig. 1(a)) si-

multaneously. Thus, we further propose a hybrid distance

metric tailored to the nature of the triplet loss.

Given a triplet, i.e., {Aa,Ap,An}, the hybrid distance

metric is defined using the anchor-positive distance and

anchor-negative distance individually, as follows:

Dhd+(Aa,Ap) = sup
aa∈Aa,ap∈Ap

d(aa,ap), (5)

and

Dhd−(Aa,An) = inf
aa∈Aa,an∈An

d(aa,an), (6)

where Dhd+ and Dhd− denote the positive pair distance

and negative pair distance, respectively. Fig. 2(d) shows

the geometrical interpretation of the hybrid distance metric.

This formulation allows the loss to penalize the hard frames

in each set with the set-aware triplet loss:

Lhm
stri =

1

PK

PK
∑

i=1

max(0, Dhd+
i −Dhd−

i + η). (7)

3.4. Hard Positive Set Construction

The network is also supervised by a cross-entropy loss

to minimize the within-class variance. Once the net-

work aggregates the frame features to a clip feature as

âi = Agg(Ai). A following fully connected (FC) layer,

parameterized by W , is used to predict the identity of

the video, normalized by the softmax function, as p =
softmax(W⊤âi). A cross-entropy loss is employed to

maximize the log likelihood of âi with respect to its label c
as follows:

Lce =
1

PK

PK
∑

i=1

−log
(

p(yi = c|âi)
)

. (8)

In Eqn. (8), it holds that p(yi = c|âi) ∝ w⊤
c âi. The opti-

mization will maximize p(yi = c|âi), thereby maximizing

the similarity between wc and âi. Thus wc can be under-

stood as a prototype feature for the class c. Given K sets

containing the same class c in one mini-batch, we can fur-

ther approximate the probability of each frame feature be-

longing to its label as: p(yj = c|aj), j = 1, . . . ,KT . For

each class, we continue to mine T frame features Â = {ar :
r ∈ i′}, where i′ satisfies

i′ = {r : argmin
r=1,··· ,KT

pr; s.t.|i
′| = T}, (9)

and this set is summarized to a set representation (i.e.,

â = Agg(Â)), acting as a hard positive with respect to

the original set features {â1, . . . âK} in the batch, where

âi = Agg(Ai). Finally, we could form hard positive pairs

as {âi, â}, i = 1, . . . ,K. The hard positive pairs are also

minimized by the triplet loss. Besides the hard positive set,

we mine a hard negative clip representation to form a valid

triple loss, denoted by Lhpsc
ctri . Algorithm 1 summarizes the

process of constructing hard positives.

3.5. Network and Optimization

Fig. 3 shows the architecture of the deep network. The

network receives a batch of video clips as input and pro-

duces frame representations. The original frame features

are used to model the set and supervised by the set-aware

triplet loss. We further use our proposed hard positive set

construction to form hard positive pairs. Then average pool-

ing is used to summarize the clip features. A vanilla triplet

loss with hard mining and a triplet loss with hard positive set

construction are utilized to supervise the clip features. An

additional classifier is further used to train the network. The

network is trained to update the parameters by jointly min-

imizing the multiple triplet losses and cross-entropy loss.

The total loss function is formally formulated as:

L = λ1Lce + λ2L
hm
ctri + λ3L

hpsc
ctri + λ4L

hm
stri, (10)
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Figure 3. The architecture of the proposed approach. The network receives frame images as input and produces the frame features.

Algorithm 1 Hard Positive Set Construction

Input: K: Number of sets; T : Number of frame features

in each set with same class; Ai = {ai1, . . . ,aiT }:

A set of frame features; âi: Set feature; W =
{w1, . . . ,wn}: Class prototypes; c: Class of sets

Output: {âi, â}, i = 1, . . . ,K: Hard positive pairs

1: Merging all sets with the same class: A =
{A1, . . . ,AT } = {a1, . . . ,aTK}

2: Calculate the probability of predicting class c for each

frame:

p(yj = c|aj) =
exp(w⊤

c aj)
∑n

m=1 exp(w
⊤
maj)

, j = 1 . . . TK

3: Pick T frame features with the lowest probability, sat-

isfying

i′ = {r : argmin
r=1,··· ,KT

pr; s.t.|i
′| = T}

4: Construct a hard positive set: Â = {ar : r ∈ i′}
5: Summarize to hard positive set feature: â = Agg(Â)
6: Form hard positive pairs: {âi, â}, i = 1, . . . ,K

where Lce, Lhm
ctri, Lhpsc

ctri and Lhm
stri denote cross entropy

loss, clip-feature triplet loss with hard mining, clip-feature

triplet loss with hard positive set construction, and set-

aware triplet loss with hard mining. The loss terms are

weighted by the factors [λ1, λ2, λ3, λ4].

4. Experiments

4.1. Datasets and Evaluation Protocol

We evaluate our method on four popular video

person re-identification benchmarks, including PRID-

2011 [10], iLIDS-VID [32], MARS [42] and DukeMTMC-

VideoReID [35], with samples shown in Fig. 4. The PRID-

2011 consists of 200 identities, each with 2 video se-

quences, amounting to 400 video sequences in total. Both

the train and test sets contain 100 person identities. The

person trajectories are captured by two disjoint, static cam-

eras. In each frame/image, the person bounding box is man-

ually annotated. Similar to PRID-2011, iLIDS-VID is also

a small scale dataset, which contains 600 video sequences

of 300 identities, recorded by two cameras in an airport.

Each of the train and test sets has 150 person identities. The

main challenge of this dataset is the occlusion of the target

person. MARS is one of the large-scale video datasets. It

has 1, 261 identities and 20, 715 video sequences captured

by 6 separate cameras. In this dataset, each video sequence

is generated by the GMMCP tracker [2], and the bounding

box of each frame is automatically detected by DPM [5]. In

this dataset, the train and test sets contain 631 and 630 per-

son identities, respectively. The DukeMTMC-VideoReID

is another large video re-ID dataset. This manually labeled

dataset contains 702 pedestrians for training, 702 pedestri-

ans for testing. Additionally, this dataset further employs

408 extra pedestrians as distractors. Those 1812 identities

have 4832 video sequences. Mean average precision (mAP)

and cumulative matching characteristic (CMC) metrics are

used to evaluate the proposed method. We report R-1, R-5,

R-10 and R-20 values in the CMC metric.

4.2. Implementation Details

4.2.1 Network and Data Organization

We implement all experiments using the PyTorch [20] ma-

chine learning package. We use ResNet-50 [8], SE-ResNet-

50 [13] and GLTR [15] as baseline networks to evaluate our

approach. Noted that the GLTR is self implemented ver-
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Table 1. Comparison with state-of-the-art approaches on PRID-2011, iLID-VID and MARS datasets. The 1st best in bold font. † indicates

the self-implemented network.

Methods
PRID-2011 iLIDS-VID MARS

R-1 R-5 R-10 R-20 mAP R-1 R-5 R-10 R-20 mAP R-1 R-5 R-10 R-20 mAP

Chen et al. [1] 88.6 99.1 - - 90.9 79.8 91.8 - - 82.6 81.2 92.1 - - 69.4

+ Optcal flow 93.0 99.3 100.0 100.0 94.5 85.4 96.7 98.8 99.5 87.8 86.3 94.7 - 98.2 76.1

QAN [17] 90.3 98.2 99.3 100.0 - 68.0 86.8 - 97.4 - 73.7 84.9 - 91.6 51.7

Li et al. [16] 93.2 - - - - 80.2 - - - - 82.3 - - - 65.8

PBR [28] - - - - - - - - - - 83.0 92.8 95.0 96.8 72.2

SCAN [39] 92.0 98.0 100.0 100.0 - 81.3 93.3 96.0 98.0 - 86.6 94.8 - 98.1 76.7

+ Optical flow 95.3 99.0 100.0 100.0 - 88.0 96.7 98.0 100.0 - 87.2 95.2 - 98.1 77.2

STIM-RRU [18] 92.7 98.8 - 99.8 - 84.3 96.8 - 100.0 - 84.4 93.2 - 96.3 72.7

COSAM [26] - - - - - 79.6 95.3 - - - 84.9 95.5 - 97.9 79.9

STAR+Optical flow [34] 93.4 98.3 100.0 100.0 - 85.9 97.1 98.9 99.7 - 85.4 95.4 96.2 97.3 76.0

STA [6] - - - - - - - - - - 86.3 95.7 - 98.1 80.8

VRSTC [11] - - - - - 83.4 95.5 97.7 99.5 - 88.5 96.5 97.4 - 82.3

Zhao et al. [41] 93.9 99.5 - 100.0 - 86.3 97.4 - 99.7 - 87.0 95.4 - 98.7 78.2

GLTR [15] 95.5 100.0 - - - 86.0 98.0 - - - 87.0 95.7 - 98.2 78.4

MG-RAFA [40] 95.9 99.7 - 100.0 - 88.6 98.0 - 99.7 - 88.8 97.0 - 98.5 85.9

STGCN [37] - - - - - - - - - - 89.9 96.4 - 98.3 83.7

ResNet-50 85.4 98.9 98.9 98.9 91.0 80.0 95.3 98.7 99.3 87.1 82.3 93.9 95.8 97.2 76.2

+ Set Triplet Loss (Ours) 90.2 99.6 100.0 100.0 93.6 85.3 96.0 98.6 99.4 90.4 85.3 95.4 97.1 98.2 81.8

SE-ResNet-50 89.9 98.9 100.0 100.0 94.3 84.0 96.0 98.7 99.3 89.5 85.2 95.3 97.0 97.8 80.0

+ Set Triplet Loss (Ours) 96.6 100.0 100.0 100.0 97.2 88.6 98.6 98.7 100.0 92.9 87.9 97.2 97.1 98.9 83.2

GLTR† 94.4 99.7 100.0 100.0 95.3 85.2 96.7 97.3 99.7 91.1 86.4 95.4 96.9 97.7 78.8

+ Set Triplet Loss (Ours) 96.6 100.0 100.0 100.0 96.9 88.0 98.0 99.3 100.0 92.5 87.8 95.5 97.0 97.9 82.2

Figure 4. Frames sampled from the pedestrian video sequences

across four datasets. Each row shows two sequences of the same

person captured by different cameras.

sion. All baselines are pre-trained on ImageNet [24]. The

baseline network extracts each frame feature to the dimen-

sion of 2048 and we further project them to a lower dimen-

sional space of dimension 1024. Thereafter, a set of frame

features are fused to a clip-level video representation and a

linear-transformation layer is further utilized to predict the

class of the video representation. In each video clip, T is

chosen as 4 in all experiments and 4 frames are randomly

sampled from a video sequence. The frames are first resized

to 288 × 144, and then randomly cropped to 256 × 128.

The data augmentations used in our experiments include

randomly flipping in the horizontal direction and random

erasing (RE) [44] during training. In the test phase, no data

augmentation and re-ranking are used.

4.2.2 Optimization Details

We train the network using the Adam [14] optimizer with

default momentum (i.e., [β1, β2] = [0.9, 0.999]). The

learning rate is initialized to 3e-4 for PRID-2011 and

iLIDS-VID datasets, and 4e-4 for MARS and DukeMTMC-

VideoReID datasets. During training, the learning rate is

decayed by a fixed factor of 1e-1 at the 200th and 400th

epoch for the PRID-2011 and iLIDS-VID , and the 100th,

200th and 500th epoch for the MARS and DukeMTMC-

VideoReID, respectively. The batch size is set to 16 for

the PRID-2011 and iLIDS-VID datasets and 32 for the

MARS and DukeMTMC-VideoReID datasets, respectively.

In a mini-batch, both P and K are set to 4 for the PRID-

2011 and iLIDS-VID, whereas P = 8, K = 4 for

the MARS and DukeMTMC-VideoReID. The margin in

Eqn. (4) and Eqn. (7), i.e., η, is set to 0.3 for all datasets.

[λ1, λ2, λ3, λ4] = [1, 0.5, 0.5, 0.5]. In § 4.4, we will verify

each loss component in the total loss function. We report

the results of the network at its 800th epoch without any

post processing tricks to boost the accuracy, i.e., re-ranking.

4.3. Results

We first compare our method to existing state-of-the art

algorithms, as shown in Table 1 and Table 2.

Evaluation on PRID-2011. PRID-2011 is an old video re-

ID dataset; thus only a few methods report the mAP value.
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To show the superiority of our method, we report both met-

rics for comparison in Table 1. Our method outperforms

MG-RAFA [40] by 0.7% on the R-1 value. Our approach

also outperforms the state-of-the-art mAP value in [1] by

2.7%.

Evaluation on iLIDS-VID. Same as for the PRID-2011

dataset, we report the CMC accuracy and mAP value in Ta-

ble 1. On the iLIDS-VID dataset, our method also achieves

state-of-the-art performance. In particular, our network has

the same R-1 value with MG-RAFA [40] and outperforms

the state-of-the art mAP values by 5.1% in [1].

Evaluation on MARS. Compared with MG-RAFA [40],

the state-of-the-art algorithm on the MARS dataset (see Ta-

ble 1), our method improves the R-5 and R-20 by 0.2% and

0.4% and achieves competitive performance on the R-1 and

mAP value.

Evaluation on DukeMTMC-VideoReID. We further eval-

uate our method on the DukeMTMC-VideoReID dataset.

Table 2 compares the performance between our network and

existing state-of-the-art algorithms and demonstrates that

our method outperforms the STGCN [37] by 0.2% in mAP.

Our methods also outperform STA [6] by 0.2%/0.8% and

GLTR by 0.1%/2.0% in R-1/mAP respectively.

Table 2. Comparison with the state-of-the-art approaches on the

DukeMTMC dataset. The 1st best in bold font. † indicates the

self-implemented network.

Methods
DukeMTMC-VideoReID

R-1 R-5 R-10 R-20 mAP

ETAP-Net [35] 83.6 94.6 - 97.6 78.3

STAR+Optical flow [34] 94.0 99.0 99.3 99.7 93.4

VRSTC [11] 95.0 99.1 99.4 - 93.5

STA [6] 96.2 99.3 - 99.7 94.9

GLTR [15] 96.3 99.3 - 99.7 93.7

STGCN [37] 97.3 99.3 - 99.7 95.7

ResNet-50 87.5 96.5 97.2 98.3 86.2

+ Set Triplet Loss (Ours) 93.4 98.4 99.8 99.2 91.9

SE-ResNet-50 90.2 97.3 98.0 98.9 89.7

+ Set Triplet Loss (Ours) 96.8 99.4 99.9 99.9 95.9

GLTR† 96.0 99.2 99.3 99.5 93.5

+ Set Triplet Loss (Ours) 97.1 99.4 99.8 99.9 95.4

4.4. Ablation Study

In this section, we will conduct extensive experiments to

evaluate the effectiveness of each component in this work.

Effect of set-aware triplet loss. We first evaluate the effec-

tiveness of set-aware triplet loss with different set distance

metrics. In this study, we use the SE-ResNet-50 as the back-

bone network and employ all three distance metrics for the

set-aware triplet loss. As shown in Table 3, the set-aware

triplet loss indeed helps the network to learn a discrimi-

native person description. Compared with the commonly-

used set distance metrics (i.e., ordinary distance, Hausdorff

distance), the proposed hybrid distance metric brings the

largest performance gain, showing that the optimization to

hard frames of anchor-positive pairs and anchor-negative

leads the network to create a discriminative video represen-

tation.

Table 3. Effect of set-aware triplet loss across the iLIDS-VID and

DukeMTMC-VideoReID datasets. SATL: set-aware triplet loss,

Do: ordinary distance, Dh: Hausdorff distance, Dhd: Hybrid dis-

tance.

Model
iLIDS-VID DukeMTMC-VideoReID

R-1 mAP R-1 mAP

SE-ResNet-50 84.0 89.5 90.2 89.7

SATL w/ Do 86.8 90.6 92.8 91.7

SATL w/ Dh 87.6 91.1 94.1 92.9

SATL w/ Dhd 88.3 91.9 94.9 93.7

Effect of hard positive set construction. We continue to

verify the effectiveness of our hard positive set construction

method. We still use the SE-ResNet-50 as the backbone

network. Table 4 shows that our network benefits from the

hard positive set construction method across two datasets.

A reasonable explanation for this improvement is that the

hard positive sample helps the network minimize the intra-

class variance, thereby improving the performance of the

network.

Table 4. Effect of hard positive set construction across the iLIDS-

VID and DukeMTMC-VideoReID datasets. HPSC: hard positive

set construction.

Model
iLIDS-VID DukeMTMC-VideoReID

R-1 mAP R-1 mAP

SE-ResNet-50 84.0 89.5 90.2 89.7

HPSC 86.2 91.4 92.4 91.9

Effect of each loss component. In the study above, we

have shown that our network achieves a performance gain

from the set-aware triplet loss and the hard positive set con-

struction method. In this study, we will verify each compo-

nent in the total loss function. SE-ResNet-50 is also used

here as the backbone network. The total loss function has

four components (i.e., Lce, Lhm
ctri, L

hpsc
ctri and Lhm

stri). Table 4

shows the effectiveness of each loss term. In this study, the

baseline model is trained by cross-entropy loss (i.e., (i)).

The rows in (ii), (iii), and (iv) show that each of the triple

losses provides complementary cues to optimize the net-

work. In addition, the terms Lhpsc
ctri and Lhm

stri will further

improve the performance of the network. In summary, this

study reveals that our method helps the network to learn

complementary information when encoding the person rep-

resentation.

Visualization of hard positive set construction. We fur-

ther visualize the hard positive set construction by Algo-

rithm 1 on the iLIDS-VID dataset. The original and con-

structed video clips/sets are framed by black and red lines,

respectively. As shown in Fig. 5, we can observe that the

frames with occlusions or distractors will be easily selected
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Figure 5. Example of hard positive set construction via Algorithm 1 on the iLIDS-VID dataset. The original and constructed video clips/sets

are framed by black and red lines, respectively. The constructed clip indicates that the frames with occlusions or distractors will be easily

selected as hard samples by our algorithm. Images are sampled from two video sequences from different pedestrians.

Table 5. Effect of each loss component across the iLIDS-VID

and DukeMTMC-VideoReID datasets. [λ1, λ2, λ3, λ4] denote the

weights assigned to each loss term in Eqn. (10).

[λ1, λ2, λ3, λ4]
iLIDS-VID DukeMTMC-VideoReID

R-1 mAP R-1 mAP

(i) [1, 0, 0, 0] 74.7 82.5 80.2 79.6

(ii) [1, 0.5, 0, 0] 84.0 89.5 90.2 89.7

(iii) [1, 0, 0.5, 0] 82.0 87.6 87.3 85.2

(iv) [1, 0, 0, 0.5] 84.7 88.9 89.2 88.3

(v) [1, 0.5, 0.5, 0] 85.2 90.4 91.4 90.9

(vi) [1, 0.5, 0.5, 0.5] 89.3 92.9 96.8 95.9

as hard samples by our algorithm. This observation is also

in line with our intuition that the hard set is constructed from

the hard frames in a batch.

(a) (b)

Figure 6. The training process of the network without set-aware

triplet loss and with set-aware triplet loss on the iLIDS-VID

dataset. (a): The R-1 value along the training process. (b): The

mAP value along the training process.

Training convergence and feature embedding. In this

part, we continue to demonstrate the superior performance

of set-aware triplets by studying the training convergence

and feature embedding of networks. In this study, we also

use SE-ResNet-50 as the baseline network. Fig. 6(a) and

Fig. 6(b) show the training curves of the network with our

set-aware triplet loss and without our set-aware triplet loss

w.r.t. the R-1 value and mAP value respectively. Fig. 7(a)

and Fig. 7(b) visualize the features extracted by the net-

work, trained without set-aware triplet loss, and with set-

aware triplet loss. Both figures clearly show that the set-

aware triplet loss indeed helps the network to learn a dis-

criminative embedding space, in which the within-class

variance is minimized and the between-class variance is

maximized jointly.

(a) (b)

Figure 7. T-SNE visualization [30] of learned features by the net-

work (a) w/o set-aware triplet loss and (b) w/ set-aware triplet loss

on the iLIDS-VID dataset. We select 20 people from the query

set and visualize the frame features. Points with the same color

denote the features of the same person. (Best viewed in color)

5. Conclusion

In this paper, we construct a triplet loss to optimize the

frame features of the video person re-ID task, by model-

ing the video clip as a set. We employ the commonly-used

distance metric to measure the distance between sets, i.e.,

ordinary distance and Hausdorff distance. Considering the

hard pairs in the triplets, we further propose a new hybrid

distance metric, which is defined for the anchor-positive

pair and the anchor-negative pair separately. In addition,

we also propose a hard positive set construction algorithm

to decrease the within-class variance. Extensive experi-

ments are conducted to verify the superior performance of

the proposed method across the standard video person re-ID

datasets.

Future work includes employing the set distances to

other general metric learning applications or other video-

related applications.
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