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Abstract

Learning discriminative features for Facial Expression

Recognition (FER) in the wild using Convolutional Neu-

ral Networks (CNNs) is a non-trivial task due to the sig-

nificant intra-class variations and inter-class similarities.

Deep Metric Learning (DML) approaches such as center

loss and its variants jointly optimized with softmax loss have

been adopted in many FER methods to enhance the discrim-

inative power of learned features in the embedding space.

However, equally supervising all features with the metric

learning method might include irrelevant features and ul-

timately degrade the generalization ability of the learn-

ing algorithm. We propose a Deep Attentive Center Loss

(DACL) method to adaptively select a subset of significant

feature elements for enhanced discrimination. The pro-

posed DACL integrates an attention mechanism to estimate

attention weights correlated with feature importance using

the intermediate spatial feature maps in CNN as context.

The estimated weights accommodate the sparse formulation

of center loss to selectively achieve intra-class compactness

and inter-class separation for the relevant information in

the embedding space. An extensive study on two widely used

wild FER datasets demonstrates the superiority of the pro-

posed DACL method compared to state-of-the-art methods.

1. Introduction

Analyzing facial expressions is an active field of re-

search in computer vision. Facial Expression Recognition

(FER) is an important visual recognition technology to de-

tect emotions given the input to the intelligent system is

a facial image. FER is widely used in Human-Computer

Interaction (HCI), driver monitoring for autonomous driv-

ing, education, healthcare, and psychological treatments.

Recently, Deep Neural Network (DNN) approaches have

demonstrated significant performance in visual recogni-

tion tasks. Notably, Convolutional Neural Network (CNN)
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Figure 1. The high-level overview of our proposed Deep Attentive

Center Loss (DACL) method: A Convolutional Neural Network

(CNN) yields spatial convolutional features and a feature pooling

layer extracts the final d-dimensional deep feature vector for soft-

max loss and sparse center loss. The last convolutional features

are fed to an attention network as context to estimate the attention

weights. The estimated weights guide the sparse center loss mod-

ule to achieve intra-class compactness and inter-class separation

for an adaptively selected subset of feature elements. ⊛ indicates

a linear combination of softmax loss and sparse center loss.

methods [4, 12, 31, 23], as prominent deep learning tech-

niques that automatically extract deep feature representa-

tions, have significantly outperformed conventional meth-

ods in FER [28, 37, 39, 40].

For any visual recognition system with a fixed set of

classes, the input space (i.e., a 2D image) is mapped to

a high-dimensional feature representation vector that cap-

tures the input image’s semantics. Deep CNN-based meth-

ods extract spatial features that capture the input image’s

abstract semantics by composing features from lower levels

to higher levels. A pooling layer then converts the spatial

features into a single deep feature vector. In practice, a soft-

max loss estimates a probability distribution over all classes

in the final stage.

Intuitively, a better recognition system is built on an ef-

ficiently discriminated space of embedded deep features.

On the other hand, real-world FER applications require a

massive corpus of annotated images acquired in an uncon-

strained environment, namely wild FER datasets [24, 14].

Accordingly, for the task of FER in the wild, where the

images exhibit significant intra-class variation and inter-

class similarity, feature discrimination is a critical super-
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vision step. However, the widely used softmax loss is in-

capable of yielding discriminative features in wild scenar-

ios. To address this shortcoming, Deep Metric Learning

(DML) approaches constrain the embedding space to obtain

well-discriminated deep features. Specifically, DML meth-

ods achieve intra-class compactness and inter-class sepa-

ration by maximizing the similarity between deep features

and their corresponding class prototypes in the embedding

space.

In a typical DML problem, the deep feature equally con-

tributes to the DML’s objective function along all dimen-

sions. Therefore, DML methods are prone to discriminate

redundant and noisy information along with important in-

formation encoded in the deep feature vector. This leads

to over-fitting and hinders the generalization ability of the

learning algorithm.

To address the aforementioned shortcomings, we design

a modular attention-based DML approach, called Deep At-

tentive Center Loss (DACL), to selectively learn to discrim-

inate exclusively the relevant information in the embedding

space. Our method is inspired by visual attention described

in cognitive neuroscience as the perception of the most rel-

evant subset of sensory data. As shown in Figure 1, given

the last convolutional spatial feature map as a context, our

attention network produces attention weights to guide the

DML objective function with the most relevant information.

A reformulation of the center loss [35], called sparse center

loss, is further proposed as the DML objective function with

the advantages of simplicity and straightforward computa-

tion. Since our proposed method is designed to be modular,

it can be easily developed and integrated with other DML

approaches.

The main contributions of our work are summarized as

follows:

• We propose a novel attention mechanism that

yields context-based attention weights to estimate the

weighted contribution of each dimension in the DML’s

objective function.

• We propose the sparse center loss as the DML’s ob-

jective function that uses the estimated weights ob-

tained by the attention mechanism to selectively dis-

criminate deep features along its dimensions in the em-

bedding space. Sparse center loss is jointly optimized

with softmax loss and can be trained using the standard

Stochastic Gradient Descent (SGD).

• We show that the modular DACL method, which con-

sists of the attention network and the sparse center loss,

can be trained using the standard SGD algorithm and

can therefore be promptly applied to any state-of-the-

art network architectures and DML methods with min-

imal intervention.

• We conduct extensive experiments on two popular

large-scale wild FER datasets (RAF-DB and Affect-

Net) to show the improved generalization ability and

the superiority of the proposed modular DACL method

compared to other state-of-the-art methods.

2. Related Work

In this section, we review the methods in Facial Expres-

sion Recognition (FER) from two perspectives: 1. Methods

that particularly enhance FER with Deep Metric Learning

(DML) and 2. FER methods that tackle the wild dataset

challenges.

2.1. FER with DML

DML enhances the discrimination power of softmax loss

function to tackle the large intra-class variation and inter-

class similarity. Although most of the existing DML meth-

ods are developed for Face Recognition applications, FER

has also enjoyed the DML benefits. Meng et al. [22]

develop an Identity-Aware Convolutional Neural Network

(IACNN) that jointly discriminates expression-related and

identity-related features. Contrastive loss [8] is applied to

the extracted deep features to pull those with similar la-

bels together and push those with different labels away from

each other. Similarly, Liu et al. [20] propose (N+M)-tuplet

clusters loss function adapted from (N+1)-tuplet loss [29]

and Coupled Clusters Loss (CCL) [19] to address the the

difficulty of anchor selection in triplet loss [6]. Particu-

larly, inputs are mined as a set of N positive samples and

a set of M negative samples. During training, the sam-

ples in the negative set are moved away from the center of

positive samples, and the positive samples are simultane-

ously clustered around their corresponding center. Locality-

Preserving loss (LP-loss) [13], inspired by center loss [35],

is embedded in a Deep Locality-Preserving CNN (DLP-

CNN) to enforce intra-class compactness by locally clus-

tering deep features using the k-nearest neighbor algorithm.

Cai et al. [1] improve on center loss by adding an extra

objective function called Island loss to achieve intra-class

compactness and inter-class separation simultaneously. Is-

land loss maximizes the cosine distance between the class

centers in the embedding space. Similarly, Li et al. [15]

propose separate loss as a cosine version of center loss and

Island loss. The intra loss and inter loss in separate loss

maximize the cosine similarity between the features belong-

ing to a class and minimize the cosine similarity between

the class centers in the embedding space. Li et al. [18]

propose a multi-scale CNN with an attention mechanism

to learn the importance of different convolutional receptive

fields in the network. Additionally, softmax loss is jointly

supervised with a regularized version of the center loss to

incorporate a distance margin while discriminating features

in the embedding space. Farzaneh and Qi [3] propose a
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discriminant distribution-agnostic loss (DDA loss) to im-

plicitly enforce inter-class separation for both majority and

minority classes under extreme class imbalance scenarios.

Specifically, DDA loss regulates the Euclidean distance of

a sample among all classes in the embedding space during

forward propagation.

2.2. FER in the Wild

Methods that are developed for real-world FER appli-

cations use a large-scale dataset with a wild attribute that

exhibit a diverse spectrum of subjects in an unconstrained

environment. Li et al. [16, 17] propose CNN methods with

attention mechanism, namely patch-based Attention CNN

(pACNN) and global-local-based Attention (gACNN), to

tackle the face occlusion challenge associated with wild

FER datasets. The attention mechanism estimates a weight

for each local patch in the feature space correlating to their

obstructed-ness and a global weight for the whole fea-

ture map. Intuitively, occluded patches are assigned with

small weights. pACNN concatenates only the weighted lo-

cal patches while gACNN also incorporates the weighted

global feature in concatenation to represent the input image.

Alternatively, Zhao et al. [38] introduce a Feature Selec-

tion Network (FSN) that automatically filters out irrelevant

features in the network. FSN calculates the local influence

of features to yield a filter mask. Additionally, a face mask

that filters out the features corresponding to the areas be-

yond the face is generated. The two generated masks adjust

the final feature to represent the input image. Pan et al.

[25] tackle occlusion by training a CNN on non-occluded

images to guide the output of an identical CNN on their

corresponding occluded image. The output of the former

network guides the latter network’s output using the joint

supervision of four different loss functions in the label space

and the feature space. Wang et al. [34] design a Region At-

tention Network (RAN) to address pose and occlusion in

wild FER datasets by passing regions around facial land-

marks for a single image to a CNN. The final feature vec-

tor is obtained by combining weighted feature vectors of

cropped regions using a self-attention module.

Florea et al. [5] combine semi-supervised learning and

inductive transfer learning into an Annealed Label Trans-

fer (ALT) framework to tackle the label scarcity issue.

ALT transfers a learner’s knowledge on a labeled wild FER

dataset to an unlabeled face dataset to generate pseudo la-

bels. The pseudo label’s confidence is increased to enhance

the primary learner’s performance in recognition. Zeng et

al. [36] propose Inconsistent Pseudo Annotations to Latent

Truth (IPA2LT) to address label noise issue and alleviate

prediction bias to a specific wild dataset. IPA2LT trains a

Latent Truth Network (LTNet) to extract the true latent label

for a sample using the inconsistency between the labels gen-

erated with a prediction model and manual labels. Wang et

al. [33] address label uncertainty by proposing a Self-Cure

Network (SCN) to re-label the mis-labeled samples. A self-

attention mechanism estimates a weight for each sample in

a batch based on the network’s prediction and identifies la-

bel uncertainty using a margin-based loss function.

3. Proposed Method

In this section, we briefly review the necessary prelim-

inaries related to our work. We then introduce the two

building blocks of our proposed Deep Attentive Center Loss

(DACL) method, namely, the sparse center loss and the at-

tention network. Finally, we discuss how DACL is trained

and optimized with the standard Stochastic Gradient De-

scent (SGD).

3.1. Preliminaries

Given a training mini-batch of m samples Dm =
{(Xi, yi)|i = 1, ...,m}, where Xi is the input, and

yi ∈ {1, ...,K} is its corresponding label for a K-class

classification problem, let the spatial feature map x∗
i ∈

R
NC×NH×NW be the output of a Convolutional Neural Net-

work (CNN). A pooling layer P (e.g., fully-connected layer

or average pooling layer) takes x∗
i as input and extracts a

d-dimensional deep feature xi ∈ R
d.

The conventional softmax loss combines a fully-

connected layer, softmax function, and the cross-entropy

loss to estimate a probability distribution over all classes

and measures the prediction error. The deep feature xi as

input to the fully-connected layer is mapped to a raw score

vector zi = [zi1, ..., ziK ]T ∈ R
K×1 through a linear trans-

formation as follows:

zi = WTxi +B (1)

where W = [w1, ..., wK ] ∈ R
d×K and B = [b1, ..., bK ] ∈

R
K×1 are the class weights and bias parameters for the

fully-connected layer, respectively. A probability distribu-

tion p(y = j|xi) is then calculated over all classes using

the softmax function. Finally, the cross-entropy loss func-

tion computes the discrepancy between prediction and the

true label yi to formulate the softmax loss function LS as

follows:

LS = −
1

m

m∑

i=1

K∑

j=1

yi log p(y = j|xi)

= −
1

m

m∑

i=1

log
ew

T
yi

xi+byi

∑K
j=1

ew
T
j xi+bj

(2)

3.2. Sparse Center Loss

Center loss is a widely adopted DML method where the

similarity is measured between the deep features and their
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Figure 2. The illustration of the proposed DACL method. An input image Xi is fed to the CNN to yield the convolutional spatial feature

map x∗

i . DACL is a hybrid combination of an attention network A and a sparse center loss. The CE-Unit in DACL’s attention mechanism

takes the spatial feature map as a context and yields an encoded latent feature vector ei to eliminate noise and irrelevant information. A

multi-head binary classification module then calculates the attention weight aij corresponding to the j-th dimension in the deep feature xi.

Finally, the sparse center loss LSC calculates a weighted WCSS and is fractionally accumulated with the softmax loss LS to compose the

final loss L.

corresponding class centers (class prototypes). The objec-

tive function in center loss minimizes the Within Cluster

Sum of Squares (WCSS) between the deep features and

their corresponding class centers. That is, it aims to par-

tition the embedding space into K clusters for a K-class

classification problem. Given a training mini-batch of m
samples, let xi = [xi1, xi2, ..., xid]

T ∈ R
d be the i-th sam-

ple deep feature vector belonging to the yi-th class, where

yi ∈ {1, ...,K} and cyi
= [cyi1, ..., cyid]

T ∈ R
d be its

corresponding class center. Center loss minimizes the fol-

lowing criterion defined as:

LC =
1

2m

m∑

i=1

d∑

j=1

‖xij − cyij‖
2

2
(3)

where WCSS is minimized by equally penalizing the Eu-

clidean distance between the deep features and their corre-

sponding class centers in the embedding space.

We argue that not all the elements in a feature vector are

relevant to discrimination. Our goal is to select only a sub-

set of elements in a deep feature vector to contribute in the

discrimination. Accordingly, to filter out irrelevant features

in the discrimination process, we weight the calculated Eu-

clidean distance at each dimension in Eq. 3 and develop a a

sparse center loss method as follows:

LSC =
1

2m

m∑

i=1

d∑

j=1

aij ⊙ ‖xij − cyij‖
2

2

subject to 0 < aij ≤ 1 ∀j, (j = 1, ..., d).

(4)

where ⊙ indicates element-wise multiplication and aij de-

notes the weight of the i-th deep feature along the dimen-

sion j ∈ {1, ..., d} in the embedding space. Intuitively, the

sparse center loss calculates a weighted WCSS. It should be

noted that Eq. 4 reduces to the standard center loss in Eq. 3

if ai1 = ... = aid.

3.3. Attention Network

We design an auxiliary attention network attached to the

CNN to dynamically estimate the weights ai ∈ R
d for the

sparse center loss based on the input. Specifically, we seek

an adaptive and flexible approach to estimate the weights

for the sparse center loss that adjusts to the task and the in-

put data. Ideally, we require the weights to be determined

by a neural network. For this purpose, we propose an at-

tention network A that adaptively computes an attention

weight vector to govern the contribution of deep feature xi

along the j-th dimension in Eq. 4. This attention network

together with the sparse center loss comprises the two build-

ing blocks of the proposed DACL method. Figure 2 presents

the proposed attention network in DACL. It has two ma-

jor components: 1. The Context Encoder Unit (CE-Unit),
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which takes the spatial feature map from the CNN as input

(context) and generates a latent representation and 2. The

multi-head binary classification module that takes the latent

representation and estimates the attention weights. It should

be emphasized that the context for the attention network is

at the convolutional feature-level to preserve the spatial in-

formation.

We build a dense CE-Unit by stacking three trainable

fully-connected linear layers to extract exclusively relevant

information from the context as follows:

ei = tanh(BN(WT
3 relu(BN(WT

2 relu(BN(...

...WT
1 ♭(x∗

i ) + b1)) + b2)) + b3))
(5)

where x∗
i is the last convolutional feature map in the CNN

i.e., the context feature for the i-th sample, the operator

♭ : R1×NC×NH×NW → R
1×NCNHNW flattens the convolu-

tional feature map, Wl and bl are respectively the weights

and biases for l-th linear layer in the attention network

where l = 1, 2, 3. Layers are interjected with batch nor-

malization BN(.) [11] and rectified linear units relu(.) to

capture non-linear relationships between layers. The final

hyperbolic tangent function tanh(.) as element-wise non-

linearity preserves both positive and negative activation val-

ues for a smoother gradient flow in the network. We ini-

tialize the linear layer weights using the He initialization

method [9], and the biases are initialized to 0. The CE-

Unit defined in Eq. 5 extracts an encoded latent feature

vector ei ∈ R
d′≪d for the i-th sample in a lower dimen-

sion to eliminate irrelevant information while keeping the

important information. The CE-Unit is adjustable in terms

of layer parameters to match a specific task.

To estimate the attention weight of the j-th dimension

correlating to the d-dimensional deep feature xi at dimen-

sion j, we attach a multi-head binary classification (in-

clusion/exclusion) module to the CE-Unit. The latent d′-
dimensional feature vector ei is shared among d linear units,

i.e., heads with two outputs each, to calculate two raw

scores for the deep feature xi along dimension j as follows:

pijin = AT
jin

ei + bjin

pijex = AT
jex

ei + bjex
(6)

where Aj ∈ R
d′×2 and bj ∈ R

2 are the learnable weights

and biases for each classification head with subscript in
representing inclusion and subscript ex representing exclu-

sion, and pijin and pijex denote the inclusion and exclusion

scores for the j-th dimension in xi, respectively. A soft-

max function is applied on each head’s output to normalize

the scores subject to the constraint in Eq. 4. Finally, the

corresponding attention weight aij is calculated as follows:

aij =
exp(pijin)

exp(pijin) + exp(pijex)
(7)

The differentiable softmax function employed on the raw

scores limits the value of the estimated attention weights in

the range (0, 1].

3.4. Training and Optimization

Our proposed DACL method as illustrated in Figure 2

is trained in an end-to-end manner, where the sparse center

loss is jointly supervised with softmax loss to compose the

final loss as follows:

L = LS + λLSC (8)

where λ controls the contribution of the sparse center loss

LSC to the total loss L. The parameters associated with

DACL can be optimized using the standard SGD algorithm.

The gradient of the sparse center loss with respect to the

deep features are obtained as follows:

∂LSC

∂xi

=
1

m
ai ⊙ (xi − cyi

) (9)

and the gradient of the sparse center loss with respect to the

attention weights are obtained as follows:

∂LSC

∂ai
=

1

2m
‖xi − cyi

‖
2

2
(10)

The centers ck are initialized using the He initialization

method and are updated according to a moving average

strategy as follows:

∆ck =

∑m
i=1

δyijai ⊙ (cj − xi)

ǫ+
∑m

i=1
δyij

(11)

where the Kronecker delta function is defined as δij = 1
for i = j and 0 otherwise. The gradients with respect to the

context feature x∗
i is trivially calculated according to the

chain rule. We summarize training a supervised learning

algorithm (e.g., prediction model) with DACL in Algorithm

1.

4. Experiments

In this section, we first describe two publicly available

wild FER datasets, i.e., Affect from the Internet (Affect-

Net) [24] and Real-world Affective Face Database (RAF-

DB) [14]. Then, we conduct extensive experiments on these

two widely used wild Facial Expression Recognition (FER)

datasets to demonstrate the superior performance of our

proposed Deep Attentive Center Loss (DACL). We evalu-

ate our method on the wild FER datasets compared with

two baselines (softmax loss and center loss) and various

state-of-the-art methods. Finally, we visualize the learned

attention weights to interpret our model intuitively.
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Algorithm 1 Training a supervised learning algorithm (e.g.,

prediction model) with DACL.

Input: Training dataset D = {(Xi, yi)|i = 1, ..., N}; Ini-

tialized CNN parameters θC , pooling layer parameters

θP , attention network parameters θA, softmax loss FC

layer θS , and centers C = {ck|k = 1, ...,K}; Hyper-

parameters α, λ, and learning rate µ; The number of

iterations t← 0.

Output: Updated parameters θC , θP , θA, θS , and C.

1: while not converged do

2: Sample a mini-batch of size m from the training

dataset Dm = {(Xi, yi)|i = 1, ...,m};
3: Compute the context features {x∗

i |i = 1, ...,m} us-

ing the CNN.

4: Compute the deep features {xi|i = 1, ...,m} with

the pooling layer.

5: Compute the attention weights {ai|i = 1, ...,m} by

Eq. 5 - 7.

6: Compute the softmax loss Lt
S by Eq. 2.

7: Compute the sparse center loss Lt
SC by Eq. 4.

8: Compute the total loss by Eq. 8: Lt = Lt
S +λLt

SC .

9: Compute the softmax loss gradients:

ĝtS ←
∂Lt

S

∂θS
10: Compute the pooling layer gradients:

ĝtP ←
1

m

∑m
i=1

∂xt
i

∂θP

∂Lt
S

∂xt
i

+ λ
∂Lt

SC

∂xt
i

.

11: Compute the attention network gradients:

ĝtA ←
1

m

∑m
i=1

∂at
i

∂θA
(
∂Lt

SC

∂at
i

).

12: Compute the CNN gradients:

ĝtC ←
1

m

∑m
i=1

∂x∗t
i

∂θC
( ∂At

∂x∗t
i

+ ∂Pt

∂x∗t
i

).

13: Compute ∆ck by Eq. 11.

14: t← t+ 1.

15: Update ck for each k: ct+1

k = ctk − α∆ck.

16: Update the model parameters:

θt+1

{C,P,A,S} = θt{C,P,A,S} − µtĝt{C,P,A,S}

17: end while

4.1. Datasets

Compared to lab-controlled datasets such as CK+ [21],

MMI [26], and Oulu-CASIA [30], wild FER datasets are

acquired in an unconstrained setting offering a broad diver-

sity across pose, gender, age, demography, image quality,

and illumination. RAF-DB and AffectNet are two widely

used wild FER datasets in research.

RAF-DB contains 30,000 facial images acquired using

crowd-sourcing techniques. Images are annotated with cat-

egorical and compound expressions by 30 trained human

annotators. For our RAF-DB experiments, we only use

the 12,271 training images and 3,068 images in the test set

with six discrete basic expressions identified by Ekman and

Friesen [2] (i.e., happy, sad, surprise, anger, fear, and dis-

gust) and neutral expression.

AffectNet is the largest publicly available wild FER

dataset with 450,000 facial images acquired from the in-

ternet and manually annotated with categorical expressions

and dimensional affect (valence and arousal). For our exper-

iments, we use 280,000 training images and 3,500 images in

the validation set annotated with six basic expressions and

neutral expression. Since the test set is not released by the

authors, we use the validation set for our evaluations. Fol-

lowing state-of-the-art FER methods, we exclude the con-

tempt expression in our experiments.

4.2. Implementation Details

We use ResNet-18 [10], a standard Convolutional Neural

Network (CNN), as our backbone architecture in our exper-

iments. Since FER’s domain is close to the Face Recogni-

tion task, we pre-train ResNet-18 on MS-CELEB-1M [7],

a face dataset with 10 million images of nearly 100,000

subjects. We use the standard Stochastic Gradient Descent

(SGD) optimizer with a momentum of 0.9 and a weight de-

cay of 5 × 10−4. We augment the input images on-the-fly

by extracting random crops (one central, and one for each

corner and their horizontal flips). At test time, we use the

central crop of the input image. Crops of size 224 × 224
are extracted from the input images with size 256 × 256.

We train ResNet-18 on RAF-DB for 60 epochs with an ini-

tial learning rate of 0.01 decayed by a factor of 10 every

20 epochs. Alternatively, we train ResNet-18 on AffectNet

for 20 epochs with an initial learning rate of 0.01 decayed

by a factor of 5 every five epochs. We use a batch size of

128 for both datasets. The hyper-parameters α and λ are

empirically set as 0.5 and 0.01, respectively.

With our specific backbone architecture setup, the deep

feature xi is 512-dimensional, the last convolutional feature

map x∗
i is of size 512×7×7 and the pooling layer is the stan-

dard 2D average pooling layer in ResNet-18. The CE-Unit

in DACL is designed by stacking three fully-connected lay-

ers with 3,584, 512, and 64 channels, respectively. Hence,

the latent feature vector ei is 64-dimensional. Accord-

ingly, we have 512 heads in our multi-head binary clas-

sification module that yields a 512-dimensional attention

weight vector. We train our models using the PyTorch deep

learning framework [27] on an NVIDIA 2080Ti GPU with

11GB of V-RAM. The source code is publicly available at

https://github.com/amirhfarzaneh/dacl.

4.3. Recognition Results

We present wild FER results in Table 1 and Table 2 for

RAF-DB and AffectNet, respectively. Unlike AffectNet,

RAF-DB’s test set is imbalanced. Therefore, we report the

average accuracy, which is the mean of diagonal values in

the confusion matrix alongside the standard accuracy across

all classes for RAF-DB.
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Table 1. Expression recognition performance of various methods

on RAF-DB test set in terms of standard accuracy and average

accuracy.

Method Acc. (%) Avg. Acc. (%)

FSN [38] 81.10 72.46

pACNN [16] 83.27 -

DLP-CNN [14] 84.13 74.20

ALT [5] 84.50 76.50

gACNN [17] 85.07 -

separate loss [15] 86.38 77.25

IPA2LT [36] 86.77 -

RAN [34] 86.90 -

DDA loss [3] 86.90 79.71

SCN [33] 87.03 -

softmax loss 86.54 79.43

center loss [35] 87.06 79.71

DACL 87.78 80.44

Our DACL method outperforms our baseline methods

and other state-of-the-art methods and achieves a recogni-

tion accuracy of 87.78% and an average recognition accu-

racy of 80.44% on RAF-DB. Similarly, DACL outperforms

the baseline methods and other-state-of-the-art methods on

AffectNet with an accuracy of 65.20%. We also notice that

DACL improves both baseline methods by a larger mar-

gin compared to the margin of improvement by center loss

over softmax loss. In other words, center loss improves on

softmax loss, but the generalization ability is sub-optimal.

However, our proposed DACL significantly improves the

generalization ability of the center loss. We depict some

correctly classified and misclassified sample images from

both wild FER datasets by the DACL method in Figure 3.

We present the confusion matrices obtained by the base-

line methods (softmax loss and center loss) and our pro-

posed DACL framework on both wild FER datasets in

Figure 4 to evaluate the recognition accuracy of individ-

ual classes. DACL boosts the recognition accuracy of all

classes in RAF-DB’s test set except for surprise and dis-

gust when comparing with softmax loss. The overall per-

formance of DACL on RAF-DB is better since the recog-

nition accuracy of surprise, fear, and disgust is signifi-

cantly higher than center loss. We notice that DACL outper-

forms the baseline methods on AffectNet except for the an-

gry class while the recognition accuracy of sad and disgust

classes are significantly higher than both baselines. Over-

all, DACL outperforms baseline methods across all classes

in RAF-DB and AffectNet.

4.4. Attention Weights Visualization

To demonstrate the interpretability of our proposed ap-

proach, we illustrate the 512-dimensional attention weights

Table 2. Expression recognition performance of various methods

on AffectNet validation set in terms of accuracy.

Method Accuracy (%)

pACNN [16] 55.33

IPA2LT [36] 57.31

IPFR [32] 57.40

gACNN [17] 58.78

separate loss [15] 58.89

DDA loss [3] 62.34

softmax loss 63.86

center loss [35] 64.09

DACL 65.20

in Figure 5. We randomly select two learned attention

weight vectors from the neutral class, and three learned

attention weights from the surprise class. It is clear that

the learned attention weights from the same classes follow

very similar patterns, and the attention weights from differ-

ent classes are not similar. For instance, both neutral sam-

ples exhibit attention weights that are filtered out around

dimensions 0, 150, 190, 480, and 500. On the other hand,

all samples from the surprise class depict attention weights

that are filtered out around dimensions 50, 140, 220, and

480. Evidently, the surprise 2 and surprise 3 samples have

learned almost identical attention weights. Consequently,

we can verify that DACL adaptively learns the contribution
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Figure 3. Sample correctly classified and misclassified images

from RAF-DB and AffectNet from the model trained with DACL

method. ”p” is for prediction and ”t” is for true label.
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Figure 4. Confusion matrices obtained by baseline methods (softmax loss and center loss) and the proposed DACL framework on : top

row: RAF-DB’s test set, and bottom row: AffectNet’s validation set.

of features along each dimension in the DML’s objective

function.
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Figure 5. Illustration of learned attention weights for five different

samples.

5. Conclusions

In this paper, we propose a flexible method called

Deep Attentive Center Loss (DACL) for Facial Expression

Recognition (FER) under wild scenarios. Our hybrid ap-

proach takes advantage of a sparse re-formulation of center

loss to adaptively control the contribution of the deep fea-

ture representations in the Deep Metric Learning’s objective

function. Additionally, an attention mechanism that is fully

parameterized by a customizable neural network estimates

the probability of contribution along all dimensions by pro-

viding attention weights to the sparse center loss. We em-

pirically show that DACL outperforms our baseline meth-

ods (softmax loss and center loss) and other state-of-the-art

methods on two wild FER datasets, namely RAF-DB and

AffectNet.

DACL can be easily customized to solve other classifi-

cation tasks to increase feature discrimination. Moreover,

the proposed approach is easily extensible with other deep

metric learning (DML) objective functions.
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