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Abstract

Localization and reconstruction of underground targets,

the problem of estimating the position and geometry of the

objects from Ground Penetration Radar (GPR), still lies at

the core of non-destructive testing (NDT). In this paper, we

present MigrationNet, a learning-based approach to detect

and visualize subsurface objects. Compared with the exist-

ing learning-based method of GPR, our proposed approach

could not only detect the hyperbola feature in the raw B-

scan image but also interpret hyperbola features into the

cross-section image of subsurface pipes. Furthermore, to

compare the proposed method with the conventional back-

projection methods for GPR data interpretation, a synthetic

GPR dataset that mimics the real NDT environment is also

introduced in this work. The study indicates the effective-

ness of our method, it uses less GPR data for underground

pipes reconstruction, produces better GPR imaging results

with less computation, and shows the robustness to noise.

1. Introduction

Ground Penetration Radar (GPR) is a geophysical re-

mote sensing method that has been widely used as a non-

destructive testing (NDT) technique, thanks to its high res-

olution and fast detection capability. As a context of smart

cities, GPR serves as a NDT tool for infrastructure applica-

tions [6, 29], it evaluates the subsurface location and condi-

tion such as concrete rebars, buried utilities and other pipe-

shaped objects. [3, 4, 8, 21]. In the meanwhile, GPR could

also reveal the relative size of the subsurface objects since a

larger pipe-shaped object would reflect as a wider hyperbola

feature in the B-scan image.

In the current practice of GPR inspection, the surveys

would be performed in pre-defined straight line routes and

each survey would generate a B-scan image. However, due

to the difficulties of GPR signals analysis, there are two

major challenges in underground objects reveal when us-

ing GPR. The first one is that GPR B-scan data still re-

lies heavily on human efforts and experienced experts to

identify because of the abstract hyperbolic feature. How to

take advantages of the GPR raw data is significant in NDT.

Secondly, the conventional migration methods, which aim

at GPR data interpretation, are either theoretically compli-

cated or computationally costly. An approach to design in-

tuitive and simple migration method to interpret raw GPR

data is crucial as well.

(a) Ground-Truth of a slab with 5 rebars of different size and location

(b) GPR B-scan image

(c) Migration result of conventional back-projection method

(d) Migration result of our DNN-based migration method

Figure 1. GPR imaging: a) ground truth of a slab, b) GPR B-

scan image, c) migration result using conventional back projection

method, d) migration result of our proposed DNN-based migration

method.

Our work is inspired by the above challenges, we pro-

pose a learning-based method which mimics the migration

process to reconstruct the focused subsurface targets from

B-scan image in both geometry and size metric. As illus-

trated in Fig.1, the conventional back projection method
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represents the migration result as focused target point in the

energy map cannot reveal the size of the object, while our

proposed DNN-based migration method can reveal both the

location and size of the underground target in a binary im-

age.

The paper is organized as follows. Section 2 introduces

the related works in GPR researches while Section 3 in-

troduces basic concepts on GPR data. In Section 4 our

proposed new DNN-based migration method is discussed

in details. Section 5 presents some experimental results

and Section 6 concludes the paper and discusses the future

work.

2. Related Works

Conventional Migration Methods Various migration

methods are used to transform the unfocused raw GPR B-

scan data to a focused matter which reveals the position of

the objects [24]. In the 1970s, back-propagation [18] based

methods such as the Kirchhoff method [28], the phase-shift

method [12] and Fourier finite-difference method [7] are in-

troduced to achieve migration. In [15,16], the authors intro-

duced 3D migration methods by obtaining the spatial sam-

pling of GPR measurements that is significant for the com-

prehension of GPR data. In this paper, the back-projection

algorithm [9] is implemented for migration as a baseline

method because it is widely used in industry, which will be

discussed in detail in Section 3.2.

Machine Learning in Migration In addition to the

many studies that have been carried out on the conventional

GPR migration methods, machine learning based methods

are also widely researched for automatic detection of GPR

data. In [1], a Hough transform based approach on GPR

signals is first proposed for underground targets detection.

SVM applications in GPR studies are also widely imple-

mented for the analysis of GPR B-scan images, [10] pro-

posed a SVM-based method in order to classify materials

of buried structures. In the meantime, [25] also proposed a

SVM method for GPR images analysis which achieved an

improved classification task while maintaining a low com-

putational complexity.

Deep Learning in Migration Compared with the tra-

ditional machine learning based methods, the advantage of

DNN-based method gives a better performance in terms of

representing GPR images with multiple levels of abstrac-

tion. By implementing Faster R-CNN, [5,19,26,33] extract

useful structures from 2D GPR raw images and use them to

detect subsurface objects. [2] proposed two new CNNs to

classify GPR B-scan features such as depth and dielectric

information. In [20,32], DNN-based methods are also used

as a solution for hyperbolic feature and real target detection.

Furthermore, in order to obtain the sparse representations of

GPR data, [13] proposed a dictionary learning method for

better feature extraction and classification.

However, the above methods are constrained only to de-

tection and classification on GPR B-scan image rather than

interpretation of the intrinsic of GPR B-scan data. To the

best of the authors knowledge, such DNN-based GPR data

interpretation and migration work was rarely reported.

3. GPR Data Preliminary

In this section, we will introduce the principle of GPR

scan data and demonstrate basis data processing of GPR.

3.1. GPR Scans

GPR antenna transmits a pulse of polarized high-

frequency radar wave and waits for the signal to echo back –

the result is called an A-scan. The A-scan measures the am-

plitudes of the electromagnetic (EM) energy and the trav-

eled time of the reflected signal. As depicted in Fig.2, when

the GPR moves on the ground over a rebar along a trajec-

tory, it produces a series of A-scans at different positions

and this ensemble of A-scans forms a B-scan, which is usu-

ally displayed in gray scale image as a hyperbola.

(a) Each A-scan measures ampli-

tude of the refelcted EM wave

(b) B-scan displayed in gray scale

image as a hyperbola

Figure 2. An illustration of GPR working principle, (a) the star

represents a GPR antenna move along straight line over a rebar

that take A-scan measurement at each position; (b) the ensemble

of A-scan forms a B-scan displayed as a hyperbola.

EM wave attenuates as it travels in medium and reflects

when it encounters a change in material. EM wave propa-

gates fast in materials with low dielectric, and slow down in

materials with high permittivity. Since each different ma-

terial has different electrical conduction properties, the am-

plitude and strength of the reflection will be influenced too.

3.2. Back Projection

As one of the most representative GPR imaging algo-

rithms, back projection (BP) is a practical method widely

used in industry. As we discussed in the previous section,

the essence of A-scan represents amplitude of EM energy,

while back projection is a process of aggregation which

would convert the different amplitude of energy into a semi-

sphere format at different depth. As illustrated in Fig.4, the

brighter semi-sphere indicates the higher amplitude part in
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(a) Slab design with 5 PECs buried (b) Slab design with 4 PECs buried

Figure 3. Slab design with different number of PECs and different PEC intervals.

A-scan, in the meanwhile, the radius of each semi-sphere

in BP image indicates the depth of the A-scan pulse. By

implementing the BP algorithm in B-scan data, the back-

projected data could be represented in Equ.1 [22].

∀Ak
q ∈ Bk, (x−a)2 +(y−b)2 = (at ∗ t)2, y < 0 (1)

where a,b represents the specific position of each A-scan

measurement in a slab. Ak
q = {at |t = 1, ...,nq} represents the

q-th A-scan measurement in k-th B-scan data, while t and at

indicate the traveling time and amplitude of A-scan signal

respectively, then nq means the total samples in a A-scan

measurements. Meanwhile, we also have Bk = {Ak
q|q =

1, ...,nk}, which represents the k-th B-scan consisting of nk

A-scans.

Figure 4. The implementation of BP algorithm which would con-

vert the A-scan raw data into several semi-spheres.

3.3. GPR Migration

GPR migration aims at transferring the unfocused raw

B-scan data to a focused target, a normal migration process

is usually composed of the following steps:

• Take raw B-scan data as input

• Time-zero correction (adjust the response so that the

time-zero corresponds to the reflection from the sur-

face of the ground)

• Background removal (remove the direct coupling area

between GPR transmitter and the ground surface)

• Back projection processing

• Hilbert transformation (filter out noise for more fo-

cused single spot of target location)

4. DNN-Based Migration

In this section, we firstly propose a synthetic GPR

dataset for non-destructive testing and introduce the details

of this dataset. Then, we demonstrate how we prepare the

data for experiment study. At last, the architecture of our

proposed DNN-based migration process is illustrated in de-

tails.

4.1. Dataset Setup

gprMax Data Generation

Since it is hard to get the ground truth of underground

objects from real environment in non-destructive testing, by

taking advantages of gprMax [31], we build a synthetic test-

ing environment which simulates the real NDT condition.

For those objects need to be evaluated in real under-

ground environment, most of them are pipe-shaped with a

round cross section, for example, rebars, utilities and PVC

pipes. Our simulated environment mimics this property and

involves pipe-shaped objects with different location as well

as the size. Notice that all of the simulated objects have a

round cross section. Furthermore, in order to match the data

collection in commercial GPR, our synthetic GPR B-scan

dataset are finally generated along the line route.

Specifically, we build 12 different synthetic concrete

slabs, 6 of the slabs have 4 while the rest have 5 perfectly-

conducting (PEC) circular-section reinforcing bars inserted,

sharing different size and placed at different depth with re-

spect to the surface of slab. These slabs have the same

dimension in height and width, which is 0.25m and 1m

respectively, and different dimensions in length, which

are 0.7m,0.9m,1.1m,1.3m,1.5m,1.7m in each slab respec-

tively. Notice the length of the slab decides the number of

A-scan measurements per B-scan, this property makes our

B-scan dataset have a better versatility which meets the real

GPR data collection condition.

Similar to [23], we use Gaussian norm wave as the pulse

emitted from GPR in all our simulations, which have a cen-
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tral frequency f c = 2.4GHz. The distance between trans-

mitter and receiver of the antenna is set to 5cm, while time

window is 5ns. The antenna in all simulations is moving

along the line orthogonal to the direction we set up the

PECs. To match with the commercial GPR data collection

frequency, a time sampling measurement is conducted on

every consecutive traces with 2mm. Note that the relative

dielectric in all our slabs is set to 7, which matches with

the concrete dielectric in real environment. The front view

figure of our synthetic slabs is shown in Fig.3.

After the simulations, it generates 628 B-scan data thus

our proposed dataset includes these B-scan data which

could convert into images, as well as their cross section im-

ages as the ground truth.

Sparse Back Projection Aggregation

There are some limitations in the conventional migration

process. First of all, it needs to process all A-scan data into

back-projected data (which are usually more than thousand)

from each GPR B-scan. Moreover, in order to indicate the

potential target area, those back-projected data should be

overlapped together one by one, which makes the compu-

tation too heavier and brings a lot of noise in the output

migration image.

Nevertheless, in MigrationNet, we propose a multiple

spatial resolution input where the resolution denotes the

number of the A-scan measurements to generate back-

projected data. Specifically, since each B-scan has different

number of A-scan measurements in our dataset, for any B-

scan data whose A-scan measurements are less than 1024,

256, 128 and 64 A-scan measurements are selected to be

back-projected and stacked in each independent channel as

the input, to distinguish the different spatial resolution. Oth-

erwise, for those B-scan data have more than 1024 A-scan

signals, we take a sliding-window crop operation on B-scan

raw data and separate it into several parts, this operation

is equivalent of the Equ.2. Note that the length of sliding-

window is fixed to 1024 while the width is as same as the

raw B-scan data, which represents the sampling number of

an A-scan measurement.

m = ⌊N/1024⌋ (2)

where N is the number of A-scan measurements in a B-scan

and m is the number of cropping B-scans have 1024 A-scans

after the trim operation.

By this way, several M ∗N ∗C 3D stack input is created,

where M demonstrates the number of A-scans in the related

B-scan, N indicates the number of the sample data in an A-

scan measurement and C is the number of BP data in each

stack group.

The reason we choose to sparsely aggregate the back-

projected data is that our encoder-decoder based Migra-

tionNet, as will introduce in next section, has a good ability

to learn the spatial relationship of the stack input data and

could transfer/migrate it into a focused image. Furthermore,

this input data with a sparse resolution in spatial domain can

not only decrease the computational cost, but also provide

a richer input information with multiple resolution in spa-

tial domain. More details will be shown in Section 4.2 and

Section 5.1.

4.2. MigrationNet

As shown in Fig.6, our DNN-based migration process

contains two steps. First is noise removal process which

would filter the raw B-scan data through a segmentation

model in order to only keep the hyperbola feature, and stack

the filtered 2D data into the 3D form. Then our proposed

encoder-decoder network would take the input 3D stack

data and output the cross section image corresponding to

the raw B-scan image, without implementing time-zero cor-

rection, background removal and Hilert transformation op-

erations we demonstrated in Section 3.3.

Noise Removal As introduced in Section 3.1, GPR sig-

nal would respond to materials which have different dielec-

tric property so that it is important to us to remove those

weak radar responses which caused by noise. Inspired by

the related works [11, 27], the details of noise removal are

as depicted in Fig.5: 1) by taking advantages of a segmen-

tation model, UNet, we get hyperbolic mask from the input

raw B-scan images; 2) we then filter the raw B-scan data

with mask B-scan features, the filtered data only keep the

strongest response; 3) finally, as demonstrated in Section

4.1, we stack each filtered A-scan signal into back-projected

data.

Figure 5. Noise removal process on GPR raw B-scan image. Raw

B-scan data is firstly processed by an segmentation model to show

the mask area, then the B-scan data get filtered by only keeping

the data inside the mask region. At last, the back-projected data is

generated from the filtered B-scan and stacked together.

Multiple Spatial Resolution Encoder The encoder

takes charge of interpreting the intrinsic information in the

input stacked back-projected data as a migration image. Our

proposed encoder is an extended version of UNet, it inher-

its the context capture ability by a spatial down-sampling
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Figure 6. Schematic of the proposed DNN-based migration framework. The input is the stacked BP data with 256 channels, and further

down-sampling into 128 and 64 channels in spatial domain. Then, the global features are extracted through the multiple spatial resolution

encoder and further concatenated into 1536 channels. The encoder consists of several de-convolutional groups, the global feature is

combined with local features from MSRE through skip-connection operation indicated by ⊕ while ① to ⑨ present the last layer feature in

each de-convolutional group, and finally decoded into a binary migration image.

group, which is a combination of two convolution layers

and one max-pooling layer.

We first introduce our feature extractor, named as Multi-

ple Spatial Resolution Encoder (MSRE) while the common

feature extractor in most related works [17, 27, 35] take no

advantage of resolution information of the input data. As

depicts in Fig.6, our input BP data is stacked with different

channels to indicate multiple resolution in spatial domain.

Thus, our method could make good use of sparse stack BP

data, which would reveal the rich local structure informa-

tion in spatial domain.

Specifically, the multiple input to our encoder is a

stacked BP data with 256 channels, 128 channels and 64

channels respectively. In addition, for those B-scan contains

more than 1024 A-scans, we crop it and back-projected the

A-scans into the stack format as introduced in Section 4.1.

Notice those BP data to create the input are selected ran-

domly from B-scan signal, in order to have a better percep-

tion to the local feature. These multiple spatial resolution

input will be mapped by three independent feature extrac-

tor, MSRE, to generate the latent feature.

In MSRE, according to the input data with differ-

ent channels and spatial resolution, we follow the down-

sampling group to encode them into a feature map f with

the same size, where size = [M x N x 512]. In details, to

get the same size of output feature, the 256 channels dense

input data follows a down-sampling group where the ker-

nel size of max-pooling layer is 8. In the meanwhile, for

128 channels input, the kernel size of the first max-pooling

layer is 4 while the rest of pooling layers’ kernel size are all

equal to 2. As 64 channels sparse input, all the kernel size

of max-pooling layers in the down-sampling groups are 2

and it allows the final output feature map f has the same

size in each input.

At last, all three feature maps are then concatenated to-

gether as F , where size = [M x N x 1536]. This design

brings the combined latent feature ability to contain better

spatial information of the input BP data.

Decoder The decoder takes concatenated global feature

map F as input and aims to predict a [M x N x 1] migra-

tion binary image, with the white indicates the pipe and the

black indicates the back ground.

In details, our decoder consists of 5 up-sampling group,

and each group contains two convolutional layers and one

deconvolutional layer. Besides, we also take the advantage

of skip connections. As illustrated in Fig.6, we concate-

nate the encoder’s layer with decoder’s layers of each cor-

responding group. As for those encoder layers which have

multiple resolutions, we first take an average on those fea-

ture maps and then concatenate with encoder’s layer.

4.3. Loss Design

To constrain the shape and size of the pipe, we develop a

joint loss in two-level hierarchy – pixel and structure-level,

which is able to capture fine structures with clear bound-

aries. Our hybrid loss function is composed by following
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two terms:

Firstly, since most of the non-destructive testing objects

have a round shape cross-section (i.e., rebars, utilities, PVC

pipes, etc.) as claimed in Section 4.1, it is crucial for us to

compare structure similarity between predicted image and

the ground truth in order to maintain the proper size and

shape. Thus, inspired by [14, 30, 34], we demonstrate the

structure comparison loss between predicted image X and

ground truth Y as follows:

L1 =
σxy +C

σxσy +C
(3)

note that σx and σy are the standard deviation as an esti-

mate of the image contrast, C is a constant value while σxy

represents the covariance which is:

σxy =
1

N −1

N

∑
i=1

(xi −µx)(yi −µy) (4)

where µx and µy are mean intensity of the predicted image

and ground truth respectively, N is the number of pixels in

the image.

The second loss expression is a common cross entropy

loss as proposed in [27]

L2 = ∑
xi∈M

w j(x)log(p(xi, j)) (5)

where xi indicates an element in given input while M, p(xi, j)
is the element xi probabilistic prediction over class j, and w j

is the weight of each classes.

Finally, our loss function could be illustrated as follow-

ing:

L = λiL1 +λ jL2 (6)

where λi and λ j are the weight of cross entropy loss and

structure loss which satisfy the relation as λi + λ j = 1.

5. EXPERIMENTAL STUDY

We evaluate our DNN-based migration method on the

dataset we prepared in Section 4.1. The effectiveness and

robustness of our proposed MigrationNet are discussed in

details. All the tests are conducted on a server with Intel

Core i9-9900K 3.2GHz CPU, GeForce RTX 2080 Ti GPU,

and 32GB RAM.

The weights governing the terms in loss function is set

to λi = 0.1 and λ j = 0.9, we also use the stochastic gradient

descent (SGD), select momentum as 0.9 and weight decay

as 1e−8. As for the initial learning rate (LR) and input

scale, a comparison under different weight setting is given

in Table.1. There are three sets of different initial param-

eters listed, which might affect the training performance.

In this three comparative parameters, we select the input

Table 1. Initial Parameter Effects To The MigrationNet On training

data, AC: average accuracy, AP: average precision, AR: average

recall, F1: the F-score

MigrationNet

Init Param Init Param Init Param

Scale LR Scale LR Scale LR

0.25 5e-6 0.5 5e-6 0.25 5e-5

AC 95.70 91.44 93.47

AP 93.90 87.79 91.23

AR 91.41 83.54 91.46

F1 92.64 85.61 91.34

scale and initial learning rate at (0.25, 5e−6), (0.5, 5e−6),

(0.25, 5e−5) respectively. By evaluating the average accu-

racy, average precision, average recall as well as F1 score

in training dataset, we could conclude that with a learning

rate at 5e− 6 and an input scale 0.25, our model could get

a better training performance with a converged final loss at

7.7045e−3.

5.1. Ablation Study

How the number of input channels matters?

One interesting topic is that how does the channel of

stacked BP data, that is, the number of A-scan measure-

ments in the spatial domain, affects the migration perfor-

mance. It is known that the more A-scan data used, the

better migration result (i.e., sharper, brighter and more fo-

cused target point in the energy map achieved, however, it

is also computation costly to process such a large amount of

data.

To access the effectiveness of our multiple spatial reso-

lution encoder and investigate what would be the best spa-

tial resolution for input data, we conduct this experiment to

verify the encoder performance with different resolution of

input. Given a raw B-scan data, we extract different num-

ber of A-scan measurements to back-project them into stack

BP data format with different spatial resolution, such as the

sparse input with 64 and 128 channels BP data, semi-sparse

input with 128 and 256 channels BP data as well as raw in-

put with all the BP data. In addition, we also provide single

resolution input such as 64 channels input, 128 channels in-

put and 256 channels input respectively. We still take mean

IOU and pixel accuracy as the evaluation index. The results

are summarized in Table.2.

We find that pixel accuracy of our proposed input gains

a boost which is between 4% to 9% compared to other in-

put groups with multiple spatial resolution, it also gets a

better performance compared with single spatial resolution

input, even if the raw input with all A-scan measurements.

Notice that when the input channel number decreases to

64, it will beyond the MigrationNet’s ability to learn spa-
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(a) Raw B-scan image (b) Traditional migration result with full data input

(c) Filtered B-scan image (d) Predicted migration result multiple resolution input data

(e) Sparse-BP image aggregated in time domain (f) Ground-Truth of migration result

Figure 7. Migration results comparison between our proposed migration method and conventional migration method.

tial features from such a sparse input. What we expect is

that the local geometrical and semantic feature of back-

projected data could be better extracted through the com-

bined multi-resolution encoder. The result also indicates

that our method has a better understanding of detailed in-

formation.

Table 2. Evaluation Performance Comparison with Different Spa-

tial Resolution Input.

Multi-Res. Input Channels Mean IOU Pixel Acc%

256+128+64 89.97 95.70

256+128 83.46 91.31

128+64 66.47 84.29

256 74.95 86.63

128 51.57 76.90

64 - -

raw 88.64 94.25

How the structure similarity loss matters? To verify

the effectiveness of our joint loss, we still make a com-

parison on the Mean IOU and pixel accuracy, with/without

structural similarity loss. As shown in Table.3, our joint loss

has a better performance compared with the single Cross

Entropy loss, which reveal the fact that this hybrid loss de-

sign is able to capture both segmentation information and

fine strictures with clear boundaries.

Table 3. Performance Comparison between our joint loss and

Cross Entropy loss

Mean IOU pixel Acc%

Joint Loss 89.97 95.70

Cross Entropy Loss 87.65 94.65

Table 4. Processing Duration Comparison with Conventional Mi-

gration and MigrationNet

Con. Migration MigrationNet

Avg. Time Cost (s) 3.47 0.0347

5.2. Effectiveness of MigrationNet

Migration Methods Comparison

As depicted in Fig.7, our proposed method firstly fil-

tered the potential background noise in raw B-scan data,

Fig.7 (c) shows the filtered image which kept our ROI area

with a highlighted jetmap format. Since our back-projected

data is stacked into different channels in the spatial domain

and thus could not be visualized, in Fig.7 (e), we repre-

sented the back-projected data in the time domain which

only has one channel, the BP images are displayed with a

highlighted jetmap format. At last, our predicted migration

result, which is illustrated in Fig.7 (d), shows the high per-

formance compared with the traditional migration method.
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(a) Predicted Migration result with speckle-noised input, noise variance

= 0.05

(b) Predicted Migration result without speckle-noised input

(c) Conventional Migration result with speckle-noised input, noise vari-

ance = 0.05

(d) Conventional Migration result without speckle-noised input

Figure 8. Noise Robustness Comparison between conventional and proposed migration method. The subsurface ground truth image is

illustrated in Fig.1.

Table 5. Noise Robustness Evaluation Comparison Between Conventional Migration and MigrationNet, root-mean-square error (RMSE)

is taken as the evaluation criteria in the following tests.

Conventional Migration MigrationNet

Gaussian Salt & Pepper Speckle Gaussian Salt & Pepper Speckle

Without Noise 37.3491 3.3500

Variance & Noise density = 0.05 54.3589 51.6030 56.1675 11.4624 11.2508 10.2708

Variance & Noise density = 0.1 62.2094 61.1385 61.8539 17.8093 16.3628 16.0731

Variance & Noise density = 0.2 75.3084 77.7894 76.1743 32.1583 30.9074 29.5939

Variance & Noise density = 0.5 92.4765 90.1059 92.0384 45.3853 42.8437 41.2759

In addition, we also compare the processing time for

each single migration process between the conventional

method and MigrationNet. The result is shown below in Ta-

ble.4, which indicates that MigrationNet also gains a boost

in computation processing duration due to the heavy com-

putation cost in traditional method.

Noise Robustness

We also tested noise robustness in MigrationNet. In

this section, we choose to add Gaussian white noise, salt

& pepper noise and speckle noise respectively to the GPR

raw data and our stacked 128 channels BP data. We per-

formed 12 sets of experiments on conventional migration

method while another 12 sets of experiments on our pro-

posed method. There are 4 different variance and noise

density parameters being compared for each of the noise

type. The parameter settings are 0.05, 0.1, 0.2 and 0.5
respectively in each of the four tests. After adding differ-

ent noises respectively to the input for each test, we com-

pared root-mean-square error (RMSE) for predicted results

between the noised-input and raw data input in proposed

method testing, and migration results between noised data

input and raw data input in conventional method testing.

As illustrated in Table.5 and Fig.8, we could find our

proposed method has a high noise robustness while in con-

ventional method, the noise would significantly influence

the migration results.

6. CONCLUSIONS

We have presented a new approach to reveal and localize

subsurface pipes or bars in non-destructive testing. To this

end, we firstly design a GPR B-scan dataset which matches

with both the commercial GPP data collection method and

real collecting environment. Then, we process the B-scan

data into a stacked 3D format , which provides a better

spatial perceptive ability. At last, we propose a encoder-

decoder based MigrationNet, which is able to interpret the

input stacked data and output the migration result. Our

method is effective across multiple spatial resolution input

comparison tests. In addition, it shows a good robustness

on noise data which would impact conventional migration

method extremely. At last, our method could acquire a low

cost both in computation and processing time.
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