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Abstract

Motorcycles are often related to transit and criminal is-

sues due to its abundance in the transit. Despite its im-

portance, motorcycles are a seldom addressed problem in

the computer vision community. We credit this problem to

the lack of large-scale datasets and strong baseline models.

Therefore, we present the first large-scale Motorcycles Re-

Identification (MoRe) dataset. MoRe consists of 3,827 in-

dividuals (i.e., the set of motorbikes and motorcyclist) cap-

tured by ten surveillance cameras placed in Brazil’s urban

traffic scenarios. Furthermore, we evaluate a deep learn-

ing model trained using well-known training tricks from the

object re-identification literature to present a strong base-

line for the motorcycle re-identification (ReID) problem.

More importantly, we highlight some crucial problems in

this topic as the influence of distractors and the domain

shift. Experimental results demonstrate the effectiveness of

the strong baseline model with an increase of at least 19.27

p.p. in the rank-1 when compared to the state-of-the-art

in the BPReID dataset. Finally, we present some insights

regarding the information learned by the strong baseline

model when computing the similarities between motorcycle

images.1

1. Introduction

Object Re-Identification (ReID) is an important task for

smart surveillance systems. For instance, a Re-ID system

can be applied to maintain a unique identity for objects,

such as cars, motorcycles and people, as they move among

surveillance cameras without superposing camera views.

Therefore, it is a crucial stage to monitor objects that are

not constrained to a single camera-view. In recent years, we

have witnessed a rapid development of ReID systems fo-

cused mainly on persons [44, 40, 41, 27, 22, 21, 20, 5, 3]

1The MoRe dataset and all the code can be

found at http://smartsenselab.dcc.ufmg.br/dataset/

more-a-large-scale-motorcycle-re-identification-dataset/ .

and four-wheel vehicles [19, 47, 41, 7, 46, 45, 2, 25, 15].

The importance of these objects is related to the increasing

demand for public safety and traffic control. However, in

this context, there is an important object that is overlooked

by the ReID community: the motorcycles. In this work, we

term motorcycle as the set motorbike and motorcyclist.

Motorcycles are abundant objects in the transit and often

related with traffic and criminal law breaking in many coun-

tries. For instance, motorcycles are used to perform rob-

and-run crimes [39] and related to an increasing number of

accidents that result in severe injuries and deaths [9]. There-

fore, it is crucial to identify the motorcycles and monitor its

behavior in wide areas, which is an overwhelming work.

Nowadays, surveillance cameras are present almost every-

where and can assist the security personnel to efficiently

attain this work. Nonetheless, it is a challenge task due to

problems as the low-resolution images, occlusion by other

vehicles, motion blur and drastic changes in the illumina-

tions conditions. More importantly, off-the-shelf license

plate recognition systems only work in specific camera-

views as most of the motorcycles only have license plate at

the rear of the vehicle. Therefore, it is important to develop

a motorcycle re-identification system based on appearance

features.

Motorcycle ReID has some remarkable differences when

compared to the classical ReID problems as person and ve-

hicle. Vehicle ReID is a very challenging task as differ-

ent cars may look very similar (inter-class similarity) when

they share the same attributes as model and color. Similarly,

person re-identification methods struggle to re-identify in-

dividuals that are using similar clothes (e.g. uniforms or

sports jersey). Differently, as the motorcycle ReID uses in-

formation about the motorbike (e.g. model and color) and

the motorcyclist (helmet, clothes and carrying objects), it

reduces considerably the inter-class similarity.

Despite its importance, motorcycle ReID is a seldom ad-

dressed problem in the literature. As far as we know, Bike-

Person Re-identification (BPReID) [42] is the unique work

that considers the motorcycle ReID problem. In this work,
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Figure 1: Some of the challenges present in the proposed MoRe dataset. Each column corresponds to the same individual

captured in distinct camera views. The only exceptions are the last two columns that display distinct individuals.

the authors proposed a database for two-wheel vehicles (i.e.

bicycles, motorcycles and electric-powered bikes) that was

captured in a university campus. In truth, a campus setting

does not resemble the challenges faced in a realistic urban

surveillance system and more than 70% of the BPReID im-

ages correspond to bikes. Therefore, there is a demand for

a large-scale motorcycle ReID dataset in the literature.

To address the above-mentioned issues and boost the re-

search in the motorcycle ReID problem, we propose the

Motorcycle Re-Identification (MoRe) dataset, which is the

first large-scale motorcycle ReID database captured by ur-

ban traffic cameras. Precisely, MoRe contains 3,827 distinct

identities and 3,478 distractors captured by ten surveillance

cameras in a total of 17,619 detected bounding-box images.

The dataset presents important challenges to the research

community due to the drastic changes of appearance that

motorcycles endure between surveillance cameras as a re-

sult of different camera resolutions and views, aligned with

the distinct illumination conditions, possible occlusions and

the inter-class similarities (see Figure 1).

To promote research, we present the evaluation of a

strong baseline model for motorcycle Re-ID in MoRe and

BPReID databases. This strong baseline consists of a state-

of-the-art model trained considering well-known tricks in

the object re-identification literature. Experimental results

in the BPReID database demonstrate the effectiveness of the

strong baseline with an improvement of at least 19.27 per-

centage points in the rank-1 when compared to the state-of-

the-art in the motorcycle ReID problem. More importantly,

we delve into the model using an explainable artificial in-

telligence (xAI) [1] method to highlight the regions of the

images that are used to compute similarity between images.

We believe that this analysis will provide valuable insights

to the research community.

We also explore two crucial problems in the object re-

identification community: the distractors [43], which are

individuals included in the gallery without a corresponding

probe image, and the domain shift [36, 28]. Experimental

results demonstrate that the obtained rank-1 diminishes as

a consequence of adding distractors. Similarly, we show

that models trained and tested in distinct datasets and even

in different camera pairs observe a huge decline in perfor-

mance due to the domain shift problem. For instance, the

model trained on BPReID and tested on MoRe decreases

the rank-1 in more than 66 percentage points when com-

pared to a model trained and tested on MoRe. We hope

that these experiments highlight these important issues in

the motorcycle ReID task.

2. Related Works

There are some works in the literature that consider prob-

lems as motorcycle detection and tracking, motorcycle hel-

met detection and motorcycle ReID using computer vision.

In the following paragraphs, we present an overview of

these works.

Motorcycle detection evolved from approaches based on

background subtraction and handcrafted descriptors [31] to

methods based on deep learning that work on dense [18] and

occluded [13, 12, 10, 13] settings. A comprehensive survey

of motorcycle detection and tracking is presented in [11].

Another topic that presented outstanding improvement

recently is the motorcycle helmet detection. Initial works

were based on constrained camera views, background sub-

traction and handcrafted descriptors [8]. Differently, recent

methods used deep learning models and are trained on large

scale databases [35, 4, 30]. As an example, Siebert and

Lin [30] trained a deep learning model that detects the mo-

torcycle, the riders position and predicts the helmet use sur-

passing human observers accuracy.

To the best of our knowledge, there is only one work

that addressed the motorcycle ReID problem [42]. Yuan

et al. [42] proposed the BPReID database and a method

based on handcrafted appearance descriptors. BPReID

contains 4,579 individuals between bikes, eletric-powered

bikes and motorcycles in a total of 200,680 bounding box

images captured by six cameras in a university campus.

Nonetheless, only 940 of these individuals correspond to

motorcycles. Differently, in this work, we propose the

MoRe dataset, the first large-scale database entirely focused

on motorcycles captured by urban traffic surveillance cam-

eras. MoRe contains 3,827 individuals captured by ten ur-

ban traffic surveillance cameras. Furthermore, we present a

4035



strong baseline that is based on state-of-the-art deep learn-

ing models and training tricks.

3. MoRe Dataset

In this section, we present the proposed MoRe dataset

and compare it with the only motorcycle ReID dataset in

literature, the Motorcycles BPReID. Motorcycles BPReID

is a subset of the BPReID that we construct containing only

motorcycles and, therefore, is suitable to compare with the

proposed MoRe dataset. Section 3.1 describes the dataset

construction and its main characteristics. Then, Section 3.2

compares the main features of MoRe, BPReID and the Mo-

torcycles BPReID datasets.

3.1. Construction

In this section, we present the dataset construction pro-

cess. First, we selected six pairs of live feeds formed by de-

vices broadcasting images of adjacent locations. This way,

it could be expected that the same subject would be pass-

ing by both cameras in a short-time interval. Then, we use

an instance of RetinaNet [23] model pre-trained in the MS-

COCO [24] to detect both motorbikes and persons in im-

ages captured between 6 a.m and 6 p.m. We consider a true

motorcycle (i.e., a motorbike with one or more riders) when

both detections are above a threshold τ and the intersection-

over-union (IoU) between motorbike and person is above a

value γ. Finally, we merge person and motorbike bound-

ing boxes, enlarge them 10% in each side and store them

in the database with the corresponding timestamp and the

camera capture information. We empirically determine the

best values of τ and γ as 0.3.

Once the data was captured, we annotated the image

matches between nearby camera pairs. To lighten this over-

whelming work, we used the timestamp to filter the po-

tential matches. The result was 3,827 distinct identities in

14,141 detected bounding boxes. Notice that we have only

few images per individual in each cameras as we employ

real-world surveillance cameras with a low FPS. In addi-

tion to the correct matches, we included 3,478 distractors

images to construct a more realistic dataset with 17,619 im-

ages. It is important to highlight that as the camera pairs

are placed in distant regions, it is not possible that the same

individual appears in more than a pair of cameras during the

data capture.

Figure 2a presents the distribution of height and width

of the detected bounding boxes, while Figure 2b shows a

histogram of aspect ratios (i.e. the ratio between width and

height). According to the figures, we notice that most of the

detections are low-resolution and are taller than wide. As an

example, 64% of the bounding boxes have resolution lower

than 256x256 pixels and the mean aspect ratio is equal 0.69.

As the camera pairs corresponds to a different urban set-

tings in Brazil, we notice that the traffic varies between

cameras and, therefore, the number of detected motorcy-

cles. Tab. 2 shows the distribution of images and exam-

ples of captures for each camera. For instance, we can

observe that the pair04 corresponds to 42.7% of the total

number of individuals. Differently, the pair01, pair02 and

pair03 are placed in regions with small movement of vehi-

cles, and when summed are equal only to 6.5% of the MoRe

dataset. Similarly, Table 2 presents the image resolution and

the number of individuals, bounding boxes and distractors

annotated in each camera pair. We believe that the com-

bination of the different characteristics of the cameras with

the imbalanced number of samples captured by each camera

make MoRe a very realistic dataset for motorcycle ReID.

3.2. Motorcycles Databases

In this section, we compare the proposed MoRe dataset

with related datasets in the literature. Specifically, we con-

sider the BPReID and the Motorcycles BPReID, which is

a subset of the BPReID that contains only the motorcycle

category. These comparisons are presented in Table 1.

To the best of our knowledge, BPReID is the only dataset

that considers motorcycles in an object re-identification sce-

nario. Despite being a large-scale dataset with 4,579 indi-

viduals, only a small segment of the dataset corresponds to

motorcycles. As we focus on the motorcycles, we consid-

ered in this work the Motorcycles BPReID containing only

940 individuals. The proposed MoRe dataset presents ad-

vantages when compared to the Motorcycles BPReID such

as the higher number of cameras and individuals (i.e. more

than four times), the urban traffic scenario and detected

bounding boxes. Nonetheless, we used real-world surveil-

lance cameras with a low FPS and, therefore, we have the

smallest number of bounding boxes and distractors images.

In fact, the obtained experimental results demonstrate that

this amount of distractor images is already enough to ob-

serve a deterioration in the performance of the model.

Datasets BPReID [42]
Motorcycles

BPReid
MoRe

#Individuals 4,579 940 3,827

#BBoxes 200,680 45,951 17,619

#Cameras 6 6 10

#Distractors 109,100 27,188 3,478

Annotation hand hand RetinaNet [23]

Environment campus campus urban

Table 1: Comparison between BPReID, Motorcycles

BPReID and MoRe datasets. #Distractors are reported as

the number of images.

4. Strong Baseline Model

In this section, we present the strong baseline model to

tackle the motorcycle ReID problem. The strong baseline
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pair01 pair02 pair03 pair04 pair05 pair06

#Individuals 137 50 63 1,635 1,166 776

#BBoxes 524 217 315 4,767 5,382 2,936

#Distractors 178 178 402 925 1,127 846

Cameras Resolution 704x480 704x480 704x480 1920x1080 704x480 1920x1080

Table 2: Features of each camera pair in the proposed MoRe dataset.

(a) Resolutions. (b) Aspect Ratios.

Figure 2: Distribution of the detected bounding boxes reso-

lutions and aspect ratios in the MoRe dataset.

Figure 3: From letf to right, examples of images in each

camera pairs (columns) from pair01 to pair06.

model is inspired in the model proposed by Luo et al. [26],

where the authors evaluated a bag of training tricks for

the person ReID problem. To accomplish that, we used

a Resnet50 [16] pre-trained on ImageNet as the backbone

model and included a fully connected layer mapping to the

N identities in the training set. In addition to the tricks

proposed in [26], we included a comprehensive evaluation

of three metric learning losses that can further improve the

obtained experimental results. In the next sections, we

describe both the tricks (Section 4.1) and metric learning

losses (Section 4.2) considered in this work.

4.1. Tricks

In this section, we describe the tricks evaluated in the

strong baseline model. In special, we focused on the follow-

ing tricks: (1) Label Smoothing [34], (2) Warmup Learning

Rate [14], (3) Last Stride [33], (4) BNNeck [26] and (5)

Center Loss [37]. Despite being broadly used in the object

ReID scenario, these tricks have not been graded in the mo-

torcycle ReID problem.

Briefly, Label Smoothing is a widely used technique that

avoids the overfitting in the training set by introducing a

small perturbation on the training labels, and the Warmup

Learning Rate improves the model convergence as it has

a warmup strategy that increases the learning rate in the

first training epochs. Similarly, the BNNeck improves the

training process by including a Batch Normalization layer

that leverages the goals of classification and metric learn-

ing losses, while the Last Stride trick adjusts the stride in

the last down-sampling operation to obtain higher spatial

resolution in the learned representation. Finally, the Center

Loss reduces the intra-class variability by minimizing the

distance of all samples of a specific class (i.e. multiple im-

ages of the same individual) from its centroid.

4.2. Metric Learning Losses

Different metric learning losses have been proposed in

the past years. In this section, we present three widely

accepted losses that are evaluated in the proposed strong

baseline model. Specifically, these losses are the triplet

loss [17], quadruplet loss [6] and margin sample mining

loss (MSML) [38]. Despite the fact that all these losses

reduce the distance between images of the same class (pos-

itive samples) and increase the distance between images of

different classes (negative samples), they still have different

working mechanisms. In fact, they employ different losses

functions and the input samples are selected based on dif-

ferent strategies.

The triplet loss constructs triplets by fixing a sample as

reference and, then, selecting a hard positive and negative

image with respect to the reference. Differently, the quadru-

plet loss enhances the triplet loss by including in the loss a

term that contemplates a negative pair of images with identi-

ties distinct from the reference image. Thus, the quadruplet

is able to further reduce the inter-class similarities. Finally,

the MSML constructs one hard positive and negative pairs

per batch as the farthest positive samples and the closest

negative samples, respectively.
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5. Experiments

In this section, we first present the training and evalu-

ation protocols. Section 5.1 evaluates the strong baseline

model in the motorcycle ReID problem. Then, we present

experiments evaluating two important issues in the object

ReID literature: the distractors (Section 5.2) and the

domain shift (Section 5.3). Finally, Section 5.4 evaluates

the strong baseline in a dataset from literature. In the fol-

lowing experiments, we consider the BPReID, Motorcycle

BPReID and the proposed MoRe datasets, described in

Section 3.2.

Training Protocol. MoRe identities were divided in 1,913

for training and 1,914 for test. In the training stage, all im-

ages were resized to 256x256 pixels. As data augmenta-

tion techniques [29], we used random erasing, brightness

transformation, horizontal flipping, rotation, translation and

zooming, each of them with 50% of probability. Also, all

images were converted to 32-bit floating point between [0,1]

and normalized using ImageNet mean and standard devia-

tion.

We first trained the feature extractor and classification

layers for 120 epochs using only cross-entropy loss. Each

training batch was built sampling two images for 16

random identities, in a total of 32 images per batch. For

training, we started with the learning rate as 3.5 × 10
−4

and decreased by a factor of 10−1 at 40th and 70th epochs.

The only exception occurred when evaluating the Warmup

Learning Rate as described in [26]. Then, we added the

metric learning loss in the learning process and trained the

model for additional 120 epochs with the same learning

rate scheme. When considering the metric learning, we

constructed the batches by randomly sampling six identi-

ties, and for each identity sampling at most four images of

that individual. Adam optimizer was used in all the training.

Evaluation Protocol. In the test set, for each pair of cam-

eras, we used images from one camera as probe and from

the other as gallery. We performed a multi-shot vs. multi-

shot experiments and used the Euclidean distance between

the learned feature representation. The only exception was

when considering the BNNeck and the features after the

Batch Normalization layer. In that case, we used the cosine

distance due to its superior performance [26]. Experimen-

tal results are reported using the rank-1 accuracy and mean

Average Precision (mAP). For real applications, both met-

rics are important as the rank-1 accounts for the capacity

of the model to return the correct identity in the first posi-

tion of the ranking of gallery images, while the mAP better

measures the performance when considering all the correct

gallery images (i.e. multiples ground truths).

5.1. Strong Baseline Evaluation

In this section, we evaluate the impact of the previously

described tricks in the motorcycle ReID problem when

considering the MoRe dataset. Besides, we assess the

effect of distinct input shapes and aspect ratios. Finally,

we investigate three widely used metric learning losses in

the literature. Based on these results, we define a strong

baseline for motorcycle ReID that researches can rely on to

improve the state-of-the-art. More importantly, we present

qualitative results showing the information learned by the

strong baseline model to match the images.

Tricks. Table 3 presents the obtained experimental re-

sults when evaluating cumulatively the different tricks on

the MoRe database. Based on these results, we notice that

the direct application of the standard baseline from litera-

ture obtains suboptimal results. It is an issue as the base-

line model struggles to highlight the still open problems

in the motorcycle ReID. More importantly, we observed

a boost in the both rank-1 and mAP metrics when includ-

ing the tricks. For instance, the rank-1 and mAP increased

25.61 and 19.93 percentage points, respectively. These re-

sults demonstrates the importance of a strong baseline when

proposing a novel database.

We credit the significant improvement in the model

performance to some factors. The smoothing of the labels

and the learning rate scheme reduced the overfitting and

improved the convergence of the learned model. Differ-

ently, the last stride increased the spatial information and

the center loss reduced the intra-class variations. Thus,

they tackle problems as the low FPS and the background

clutter present in the MoRe database.

Model r=1 mAP

Standard Baseline 57.80 64.45

+ Label Smoothing 66.71 71.86

+ Warmup Learning Rate 69.01 74.82

+ Last Stride + BNNeck 72.15 76.72

+ Center Loss 83.41 86.38

Table 3: The impact of adding tricks cumulatively to the

Standard Baseline. The model is trained and tested on

MoRe dataset.

Input Shape. Now, we evaluate the impact of the input

shape on the obtained experimental results. Precisely, we

consider the importance of the image resolution and the as-

pect ratio. To accomplish that, we consider the best model

obtained in the previous section and the MoRe database.

Table 4 presents the achieved results when alternating

the resolution with the aspect ratio fixed. These results

show that reducing the image resolution to 128x128 pixels,
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we have a decrease in the performance as consequence of

missing the fine-grained information. Similarly, the perfor-

mance is worse when considering 320x320 pixels. It can be

explained by the fact that most of the bounding box images

present low resolution, as shown in Figure 2a.

Input Shape r=1 mAP

320x320 82.65 85.42

256x256 83.41 86.38

224x224 82.18 85.32

128x128 79.61 83.03

Table 4: The impact of the different image resolutions on

the experimental results obtained in MoRe dataset.

Another important factor to consider when performing

motorcycle ReID is the aspect ratio. Therefore, in Table 5,

we evaluated different aspect ratios. In fact, we considered

the image resolution of 256x256 as reference and increased

(256x224), decreased (224x256) or selected a specific

value of aspect ratio closer to the real distribution of the

captured images (256x160), as shown in Figure 2b. Based

on these results, we notice that the aspect ratio influences

the performance of the method with worse results when

using aspect ratio different from 1:1. In fact, these results

corroborate with previous works in person ReID [26].

Input Shape r=1 mAP

256x256 (1.00) 83.41 86.38

224x256 (1.14) 81.91 85.33

256x224 (0.88) 82.70 85.82

256x160 (0.63) 81.44 84.93

Table 5: The influence of the different aspect ratios (be-

tween parenthesis) on the experimental results obtained in

MoRe dataset.

Metric Learning Losses. Table 6 shows results regarding

the different metric learning losses. Considering these re-

sults, we observed an improved performance of Quadruplet

Loss when compared to the Triplet Loss and MSML losses.

We connect these results to the advances of the Quadruplet

loss when compared to the Triplet loss as additional inputs

and terms in the loss function. More notably, as MSML

obtains a single hard positive and negative pair per batch,

it may be constrained to the same difficult pairs that may

occur in realistic scenarios. Differently, the Quadruplet

loss considers each image in a batch as reference image to

obtain the hard pairs and, therefore, is more likely to see

different pairs on the training.

Explainable AI. In the previous experiments, we presented

an extensive evaluation of the different tricks that we em-

Losses r=1 mAP

Triplet Loss 81.09 84.19

MSML 82.73 85.92

Quadruplet Loss 83.41 86.38

Table 6: The influence of the different metric learning losses

on the experimental results obtained in the MoRe dataset.

ployed to obtain a strong baseline for motorcycle ReID.

Now, we go further and show the information that the model

is learning to accomplish this task. We hope that these re-

sults provide insights to the research community in how to

tackle the motorcycle ReID problem.

Figure 4: Ranking results for different probe images (i.e.

each row) highlighted using xAI. The right matches are out-

lined in green.

We explored a visualization technique proposed by

Stylianou et al. [32] that is designed for deep similarity net-

works. In short, this method is able to calculate the contri-

bution of specific regions of the image (i.e. pixels) when

matching two images. Likewise to the authors, we consider

the layer immediately after the pooling operation (2048-D

feature) to calculate the importance.

Figure 5 shows the obtained visualization results when

considering pairs of probe and gallery that are correct (Fig-

ure 5a) and wrong (Figure 5b). According to these results,

the model is using information from both the motorcycles

and the motorcyclist to compute similarities. For instance,

in the first and third columns of Figure 5a, the similarity is

based mostly on the shorts and the motorcycle features as

the trunk and front. Even though some parts of the images

are not very discriminative (i.e. the motorcycle wheels),

they allow the correct matching of probe and gallery im-

ages when combined with the information about the motor-

cyclists as illustrated in the second column of Figure 5a.
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(a) Examples of rank-1 identities that correspond to the probe. (b) Examples of rank-1 identities that do not correspond to the probe.

Figure 5: Explainable AI (xAI) experiments obtained using MoRe dataset. The first row corresponds to the probe samples,

while the second row shows the respective rank-1 result. Regions are highlighted using the xAI method proposed in [32].

It is also interesting to observe some cases in which the

model fails. For instance, in the second column of Fig-

ure 5b, we can observe that the model matches the car in

the background with the gallery image. Differently, in the

remaining columns, we observe that the wrong matches are

very similar to the probe. Besides that, Figure 4 shows some

ranking results highlighting the information employed by

the model.

5.2. Distractors Experiments

In this section, we evaluated the robustness of the strong

baseline model to the addition of distractors in the gallery

set. These distractors correspond to a subset of individuals

that were captured and that we did not have the correspon-

dence in the probe set due to the low FPS of the surveillance

cameras. Therefore, they share many characteristics with

the gallery as the background and illumination conditions.

According to the results presented in the Figure 6, we

notice that both the rank-1 and mAP diminish as we include

more distractors. For instance, the rank-1 reduces more than

5 percentage points as we include 3,478 distractors in the

gallery set.

Figure 6: The impact of adding distractors in the gallery

when evaluating the strong baseline in the MoRe data.

5.3. Domain Shift Experiments

A central problem when dealing with object re-

identification is the poor performance of these models

when the test set is different from the training ones (i.e.

domain shift) [28, 36]. In this section, we evaluate the

impact of the domain shift in the obtained experimental

results in the MoRe dataset. In the following paragraphs,

we provide experiments considering different camera pairs

and different datasets as distinct domains, respectively.

Cross-pairs Experiments. Now, we provide an experiment

to evaluate how the strong baseline model is able to gener-

alize to unseen camera pairs. To accomplish that, we detach

one camera pair (test set) for evaluation, while training the

model on all the others camera pairs (training set).

Table 7 presents the achieved results for cross-pairs

evaluation. Some pairs as the pair01 and pair03 present

higher results due to the more similar camera viewpoints,

as illustrated in Figure 3. Nonetheless, the model struggles

to generalize to most of the unseen camera pairs. For

instance, it reaches a rank-1 of 40.33% when evaluated on

pair05. We relate these poor results to a larger gallery set,

the low-resolution images, the background clutter and the

distinct viewpoint compared to the other pairs. Similarly,

the pair02 imposes some challenges to the model due to the

low-resolution images. In fact, we hope that these results

encourage researches to tackle the domain shift problem in

the motorcycle ReID context.

Cross-dataset Experiments. In this section, we provide

experimental results considering the domain shift between

datasets captured in different scenarios (i.e., urban traffic vs

campus). To accomplish that, we trained the strong baseline

model in distinct datasets and evaluated on the test partition

of the MoRe dataset. When training in the BPReID data, we

followed the same protocol defined by the authors in [42].

The obtained experimental results are presented in Ta-

ble 8. Based on these results, we can notice that the model
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Test Set r=1 mAP

pair01 74.18 81.40

pair02 50.00 60.64

pair03 85.38 84.84

pair04 68.52 73.54

pair05 40.33 47.27

pair06 67.79 74.54

Table 7: Cross-pairs experiments in MoRe dataset.

trained on BPReID and evaluated in the MoRe dataset per-

forms poorly. It can be related to the very different charac-

teristics of images captured in urban traffic when compared

to a university campus. Interestingly, even when training

with both MoRe and BPReID datasets, we observed a dras-

tic reduction in the performance. We attribute this result to

the very different scenarios of MoRe and BPReID. More

importantly, these result reiterate the importance of MoRe

to the progress motorcycle ReID in urban traffic scenarios.

Training Set r=1 mAP

BPReID 16.94 23.08

MoRe 83.41 86.38

BPReID+MoRe 63.95 68.90

Table 8: Cross-dataset experiments. Different training sets

are used to train the strong baseline model. Then, the model

is evaluated in the test set of the MoRe dataset.

5.4. BPReid Experiments

In this section, we evaluate our strong baseline model

in the Motorcycle BPReID database. To obtain a fairer

comparison, we trained the strong baseline model using the

BPReID training data (i.e. all categories) as defined by the

authors [42]. Likewise, we consider the same evaluation

protocol, which uses aggregation (max and mean pooling)

for multi-shot evaluation and disregards the distractors.

As we focus on motorcycle ReID problem, we consider

only the Motorcycle BPReID dataset when evaluating the

methods. Table 9 presents the obtained experimental re-

sults for each camera pair of the BPReID dataset. Based on

these results, we notice that the strong baseline surpasses all

results reported in the state-of-the-art by a large margin. In

fact, this boost in the performance links to the fact that the

method proposed in [42] is based on handcrafted descrip-

tors, while the strong baseline learns the descriptors from

data using a deep learning model. More importantly, these

results validate our model as a strong baseline for the mo-

torcycle ReID task.

Dataset Yuan et al. [42] Strong Baseline

cam1-2 50.80 91.99

cam2-3 73.80 93.33

cam3-5 73.70 97.61

cam4-5 52.50 71.77

cam5-6 29.50 77.66

cam6-1 37.00 84.32

Table 9: Obtained mAP for the evaluated methods in each

camera pair of the Motorcycles BPReID.

6. Conclusions

In this work, we proposed the MoRe dataset, the first

large-scale dataset for motorcycle re-identification in urban

traffic scenarios. In addition, we trained a deep learning

model for the motorcycle ReID considering the best train-

ing practices from the object re-identification literature. The

experimental results demonstrate that our strong baseline

surpasses the state-of-the-art for a large margin. To further

understand this strong baseline model, we highlighted the

regions of the images used by the model to compute the sim-

ilarity between images. Based on this analysis, we noticed

that the model is able to incorporate information regarding

the motorbikes, the motorcyclist vests and even additional

clues as a backpack or a motorcycle trunk.

We also performed experiments that emphasized some

open issues in the motorcycle ReID problem as the impact

of distractors and the domain shift in the experimental re-

sults. Based on the results, we observed a reduction of more

than 5 percentage points in the rank-1 as we included 3,478

distractors in the gallery set. Furthermore, our domain shift

results demonstrate a drastic reduction in the performance

when training and evaluating the model in different environ-

ments (cross-dataset) and even in different pairs of cameras

(cross-pairs).

Finally, we showed as xAI can be used as a tool to

highlight where the models can be enhanced. For instance,

we noticed that the learned model can be improved to better

incorporate information about the motorcyclist helmet and

the motorcycle model. We expect that the combination of a

large-scale dataset, a strong baseline and a comprehensive

experimental evaluation of open issues in the motorcycle

ReID problem can boost the research in this important

problem.
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