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Abstract

Few-shot Learning (FSL) aims to classify new concepts

from a small number of examples. While there have been an

increasing amount of work on few-shot object classification

in the last few years, most current approaches are limited to

images with only one centered object. On the opposite, hu-

mans are able to leverage prior knowledge to quickly learn

new concepts, such as semantic relations with contextual

elements.

Inspired by the concept of contextual learning in educa-

tional sciences, we propose to make a step towards adopting

this principle in FSL by studying the contribution that con-

text can have in object classification in a low-data regime.

To this end, we first propose an approach to perform FSL on

images of complex scenes. We develop two plug-and-play

modules that can be incorporated into existing FSL meth-

ods to enable them to leverage contextual learning. More

specifically, these modules are trained to weight the most

important context elements while learning a particular con-

cept, and then use this knowledge to ground visual class

representations in context semantics. Extensive experiments

on Visual Genome and Open Images show the superiority of

contextual learning over learning individual objects in iso-

lation.

1. Introduction

Whereas Convolutional Neural Networks are currently

the state-of-the-art models for object recognition tasks, they

generally require a large number of examples from each

class to perform well. In the last few years an increasing

amount of effort has been done in zero-shot learning (ZSL)

and few-shot learning (FSL) to develop approaches that

reduce the number of examples required to train efficient

models. Progress in this direction is important for solving

many real-world problems for which labeling is hard, and

for enabling new applications, such as robots that actively

learn new concepts on the fly from their environment [29].

However, most current FSL methods focus on visual fea-

tures and tend to only consider objects in isolation [1, 6, 19,

33, 34, 38, 40, 43, 45]. These methods are therefore primar-

ily evaluated on datasets of images with only one centered

object (e.g. miniImagenet [38], Omniglot [18], CUB-200

[41]). On the other hand, images in real-world applications

can be more complex, containing many different objects.

This scenario has been neglected so far, and while it can be

more relevant for real applications, we argue that complex

scenes also offer an interesting opportunity to supplement

visual information with contextual and semantic relations

between concepts. This idea is motivated by the principle of

contextual learning [15] in educational sciences, and more

specifically by the first functional feature of context defined

by Dohn et al. [7]:

Supplementary role of context. [Context] is brought in,

or added to, the understanding of a phenomenon—the focal

object—that would not have been adequately understood

had it been considered in isolation. A context thus com-

pletes the conditions for understanding the focal object. [7]

In the few-shot setting, the model has access to a set

of base classes with many examples and is evaluated on

its ability to learn novel classes from few examples. This

means that when a novel class is presented in its context to

the model, some base classes can also appear in the scene.

This is similar to when humans see an unknown object in

a familiar scene, for instance a corkscrew in a kitchen. To

learn this new label, our brain will not only process the ap-

pearance of the object, but also the contextual and seman-

tic relations with other objects [3], for instance a bottle of

wine. This is fundamental to learn quickly and for continual

incremental learning in humans, as new concepts are gener-

ally not learned in isolation, but often in relation to already

known concepts [3, 27]. We apply this principle to FSL by

proposing a method to add contextual semantic information

in visual representations: our model learns to refine class

prototypes according to the context in which training exam-

ples appear.

However, this low-data setting poses the challenge of

context generalization: How to model the context such that

this can generalize to novel classes with only few examples

of scenes? Intuitively, one could represent the context of a
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class i by co-occurrence counts, i.e. by counting how many

times the class i occurs in the same scene as all other classes

in the training set. However, this is restrictive for at least

two reasons. First, co-occurrence counts assume that the

training set is a sufficient sample to estimate the large va-

riety of co-occurrences that can happen, which is certainly

not the case in a few-shot setting. Second, co-occurrence

counts are limited to statistical regularities and they ignore

the potential semantic relations within each class, which

could help building powerful representations.

Instead, we make use of transfer learning from a text

model pretrained on large corpora to represent the seman-

tics of classes. Previous work has shown that word embed-

dings implicitly encode high-level relations between enti-

ties [11, 25, 44], which could help context generalization in

a few-shot setting by enabling the model to capture higher-

order relations. For instance, if in the small training set

plates co-occur with forks, a semantic-aware model could

infer that plates are also likely to co-occur with spoons be-

cause of the semantic similarity between forks and spoons.

On the other hand, if there are irrelevant entities in the

scene, such as “wall”, which is generally not very infor-

mative, or out-of-context objects that could induce confu-

sion [31], an ideal context-aware model should ignore them.

These aspects of contextual learning are defined by the sec-

ond functional feature of context of Dohn et al. [7]:

Relative role of context. The context is centered around

the object. The context is not a neutral layout of things

or properties near the focal object, nor is it a set of cir-

cumstances or an indefinite “background”. It is ordered

and organized by its relations to the focal object, which co-

determines what properties of the surroundings are relevant

and thus part of the context. [7]

We integrate this principle in our approach by proposing

a Class-conditioned Context Attention Module (CCAM)

such that our model can learn to attend to context elements

that are relevant to the focal object. Psychological stud-

ies showed that contextual cueing in humans improves ob-

ject classification in scenes, by capitalizing on the fact that

most objects co-occur more often with certain objects and

not others [27]. But additionally, the relative role of con-

text specifies that not all co-occurrences are equal [7]. Our

experiments show that CCAM effectively weights discrim-

inative contextual objects more strongly.

In summary, our main contributions are the following:

• We propose a few-shot model that learns class repre-

sentations grounded in contextual semantics. To this

end, we propose a gated visuo-semantic unit (GVSU),

a flexible module to combine visual prototypes with

contextual semantic information.

• We propose CCAM, an attention module applied on

context elements that automatically learns to attend to

the most important entities in scenes relatively to the

focal object.

• We conduct extensive experiments on Visual

Genome [16] and Open Images [17], which are

large-scale datasets of complex scenes with hundreds

of classes. Our results support that using context is

valuable in a few-shot setting.

• As an auxiliary result, we observe that our model im-

plicitly learns semantic word embeddings grounded in

scene context.

2. Related Work

FSL approaches can be divided into gradient-based

methods [8, 9, 13] and metric learning based methods

[4, 10, 20, 33, 34]. Gradient-based methods aim to improve

the training procedure, which MAML [8] is a typical ex-

ample. MAML is a meta-learning algorithm that aims to

generalize such that new tasks can be learned with few up-

date steps. On the opposite, metric learning approaches aim

to learn a metric space where support (train) examples are

embedded such that query (test) examples can be classified

based on a distance metric (e.g. euclidean distance [33], co-

sine similarity [10], or Mahalanobis distance [4]) without

requiring any parameter update to learn novel classes. Our

work is more closely related to metric learning and that is

why we focus on this family of approaches for the rest of

this section.

Few-shot image classification. Several FSL approaches

build on Prototypical Networks [33]. This method learns

a metric space by computing class centroids from the ex-

amples in the support set. It then compares query image

embeddings with these prototypes and assigns a class by

performing nearest neighbor search. Other approaches con-

sider different ways to compare support and query embed-

dings, such as Relation Networks [34] that automatically

learn the distance function with a neural network, or the ap-

proach of Li et al. [20] that compares support and query

images based on several descriptors.

Other approaches leverage relations between classes to

transfer visual features of base classes to novel ones. For

instance, Wang et al. [39] proposed to use a Graph Convolu-

tional Network to transfer features between classes based on

a knowledge base that encodes relations between these cate-

gories. Li et al. [19] developed an approach that learns from

predicting class hierarchies, which facilitates feature trans-

fer. A similar idea has been proposed to transfer explicit

attributes between classes [1]. In our work, we use another

form of transfer learning between classes. We leverage the

presence of base classes when novel classes are presented

in a scene to adapt their representation in metric space. By
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doing so, our model can benefit from contextual cueing [27]

when a new instance is seen in a complex scene.

Auxiliary semantics in FSL. Recently, additional cues

that were only considered in ZSL have proved to be also

useful in FSL, especially when the quantity of examples for

each class is very low. Xing et al. [43] built on Prototyp-

ical Networks [33] by adding word embeddings in the for-

mation of class prototypes in their approach called AM3.

This improves the accuracy in 1-shot by almost 10% on

miniImagenet [38] and by 5% on CUB-200 [41]. Further-

more, Schwartz et al. [32] built on AM3 by additionally

using text descriptions of classes extracted from WordNet,

and thereby improved 1-shot accuracy by an additional 2%
on miniImagenet.

Context semantics. All the FSL work cited above focus

on visual information. Indeed, even the attributes, word em-

beddings and text descriptions that are used in these work

need to encode features that can be detected visually from

the appearance of a new concept. However, this is not

the only form of semantic information that can be avail-

able in images. The presence of other objects in a scene

can also inform which classes are more or less likely to

appear [3, 27, 44]. The context has been used recently to

improve object detection within deep learning models in a

standard setting with large datasets [5, 22, 26, 42].

Recently Zablocki et al. [44] introduced the use of scene

context in ZSL. They showed that their model, with the

use of Word2vec [25] embeddings, could learn to rank un-

seen classes according to their likelihood of appearing in an

image given the presence of other objects. This suggests

that word embeddings implicitly encode co-occurrences of

other classes in real visual scenes, even if they have been

trained on text corpora [25]. This is closely related to

the distributional hypothesis [12], which states that words

that appear in similar contexts often have similar mean-

ings. This is exploited by skip-gram and continuous bag-

of-words (CBOW) models, and the results from Zablocki

et al. [44] suggest that this principle could also generalizes

to visual scenes: items denoted by words that have simi-

lar meanings tend to occur in similar scenes. This idea has

been explored by Lüddecke et al. [24], where they pro-

posed a method to learn semantic word embeddings explic-

itly from images showing objects in context.

To the best of our knowledge, scene context has not been

used in previous FSL work. In this paper, we argue that

FSL would benefit from considering objects with their con-

text, because it places new concepts in relation with previ-

ously acquired knowledge. FSL models could then lever-

age these relations to benefit from contextual cueing [27] in

new scenes. We introduce this idea of using scene context

in FSL to perform object classification in complex images

by building on Prototypical Networks [33] and by learning

class prototypes grounded in context. Unlike Zablocki et

al. [44], our model jointly learns to embed visual informa-

tion with context semantics and word embeddings of class

labels. Furthermore, whereas some recent semantic-based

approaches use relations between classes to share common

visual features, our use of scene context with word embed-

dings exploit a different form of semantic relation which is

complementary and orthogonal to visual features.

3. Our model

3.1. Preliminaries

FSL aims to solve the problem of M -way K-shot clas-

sification, where M is the number of classes in a given task

and K is a small number of examples for each class. Gen-

erally, few-shot models are trained on a large dataset Dtrain

with a set of base classes that is disjoint from the novel

categories in Dtest. The goal is to learn a representation

model fθ on Dtrain such that it can learn to recognize novel

categories with only K examples. This is generally done

by simulating the episodic test scenario of M -way K-shot

classification during training. That is, even if a large num-

ber of examples are available for each class at train time, fθ
is trained by sampling at each episode e (1) a support set

Se = {(xi, yi)}M×K
i=1 that contains K examples for each M

class and (2) a query set Qe = {(qj , yj)}nq

j=1 containing nq

images of the same classes sampled in the support set. The

model is then trained according to the cross-entropy loss:

L(θ) = − 1

nq

nq∑

t=1

log pθ(yt|qt,Se) (1)

Prototypical networks [33] offer a simple and efficient

way to model pθ(y|q,Se). Each of the images in the support

set are embedded by a CNN denoted by fθ : RD → R
dx .

Then a prototype is built for each class by averaging the K
vector embeddings from the same class:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fθ(xi) (2)

Finally, the class distribution of a query image q is as-

signed by computing the softmax over the euclidean dis-

tances d of its embedding fθ(q) and all class prototypes ck:

pθ(y = k|q,Se) =
exp(−d(fθ(q), ck))∑
k′ exp(−d(fθ(q), ck′))

(3)

3.2. Context­Aware prototypes learning

Following previous work on the supplementary role of

context in learning [7] and classification [3, 27], we pro-

pose to learn class prototypes that embed knowledge about
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CCAM

S = {''Water'', ''Eagle'', ''Sand''}

w = ''Fish''

Image embeddings

Context embeddings

Context-Aware embeddings

Multi-semantics
 class prototypes
Query image
 embedding

Query Context-
 Aware embedding

Legend

Word embeddings

Context-Aware
 class prototypes

CCAM

QKT

=

A

S

w

AS

=

c

Sq = {''Water'', ''Bear''}
avg cq

Support

Query

Gated visuo-semantic unit

Figure 1: Overview of our model. The focal object (red box with solid lines) is cropped and embedded by a CNN. CCAM computes the

relative role of support context elements according to the word embedding w of the class label. Image and context embeddings are projected

in a same space (represented by a circle and a square, respectively), and our GVSU produces context-aware embeddings (represented by

a star). All context-aware embeddings for a given class are averaged to produce context-aware class prototypes (black dots). Finally

multi-semantics class prototypes (light dots) are obtained by refining them with their word embeddings.

their context. To achieve that, we augment the support and

query sets with scene context S, Se = {(xi, Si, yi)}M×K
i=1 ,

Qe = {(qj , Sj , yj)}nq

j=1, and we adapt the formulation of

each prototype ck as:

ĉk =
1

|Sk|
∑

(xi,yi)∈Sk

φ(f(xi), g(ci)), (4)

where ci is the context representation of object i obtained

from CCAM (see below for more details), g(ci) is a small

neural network projecting ci in the same space than the

image embedding, and φ(·, ·) is a function that adapts the

image embedding according to the scene context (see sec-

tion 3.4). An overview of our approach is shown in Fig. 1.

We now describe these components in more details.

3.3. Class­conditioned Context Attention Module
(CCAM)

Scene context. We model the scene context by converting

surrounding objects from base classes into semantic vector

representations. This is done by leveraging word embed-

dings learned from a semantic model such as Word2vec [25]

pre-trained on Wikipedia. Therefore, the scene context of

an object is represented by the matrix S ∈ R
dw×ns , where

dw is the word embeddings dimension and ns is the number

of surrounding objects.

Class-conditioned Context Attention. The relative role

of context [7] suggests that some elements are more impor-

tant than others when understanding a particular object. For

instance, the concept of bathroom might be important with

respect to a toilet, but could dupe the model while learning

the concept of cat’s paw, even if in the few support exam-

ples cats are observed in bathrooms (e.g. see Fig. 2c). To

respect this phenomenon, we propose a Class-conditioned

Context Attention Module (CCAM) that enables our model

to weight the importance of each context elements in S
while learning a particular concept w (see CCAM in Fig. 1).

This is done by computing a scaled dot-product attention

score A [37] between the word embedding w of the class

label and each element in S after linear transformations:

K = WKS

Q = WQw (5)

A = softmax(
K⊺Q√

dc
)

c = SA,

where WK ,WQ ∈ R
dc×dw are weights matrices, and 1√

dc

is a scaling factor proposed in [37] to obtain smoother

scores. A reflects the relative role of each object in S, which

is used to weight the contribution of context entities with re-

spect to the focal object.

Context averaging Cavg . Note that the attention mecha-

nism in CCAM is exclusively applied on context from the

support set since it depends on the class category w, which

is unknown in queries. For query instances, the context rep-

resentation cq is simply obtained by averaging all class em-

beddings wq in Sq:
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cq =
1

ns

∑

wq∈Sq

wq (6)

3.4. Gated visuo­semantic unit (GVSU)

To combine visual embeddings with context semantics

according to the supplementary role of context [7], we pro-

pose a gated visuo-semantic unit, a module to adaptively

combine each feature individually from both representa-

tions based on a gating mechanism. This is modeled by:

φ(f(x), g(c)) := z · f(x) + (1− z) · g(c)
hv = tanh(Wv · f(x))
hc = tanh(Wc · g(c))
z = σ(Wz · [hv, hc]),

(7)

where Wv ∈ R
dz×dx ,Wc ∈ R

dz×dc ,Wz ∈ R
dx×2dz are

weights matrices, and σ is the sigmoid function.

Our fusion mechanism is in the same vein than the Gated

Multimodal Unit (GMU) [2] that proved to be successful

with multimodal representations. Our module slightly dif-

fers in that the output representation of the original GMU is

h = z · hv + (1 − z) · hc, whereas in our formulation

the intermediate representations hv and hc are used to com-

pute the weighting factors to apply on each dimension of

f(x) and g(c). The goal of our GVSU is to move the image

embeddings in the semantic space according to the context

representation, such that objects of the same class will clus-

ter together based on their appearance and their contextual

semantics.

3.5. Multi­semantics prototypes

Lastly, we add the word embedding of the class label to

further refine each prototype. We adopt a similar mecha-

nism that Xing et al. [43] proposed to combine visual pro-

totypes with their word embeddings, since it proved to be

particularly useful in settings with less data. Our context-

aware prototypes are thus refined by:

c′k = λ · ĉk + (1− λ) · ŵk (8)

where ŵk is a transformation of the word embedding wk

and λ is a coefficient between 0 and 1. Both ŵk and λ are

obtained with a two-layer neural network that uses wk as

input.

Finally, the class distribution of a query image q is com-

puted as:

p(y = k|q, Sq,Se, w) ∝ exp(−d[φ(f(q), g(cq)), c′k]) (9)

In summary, the intuition of our approach is to model the

prototypes c′k according to the appearance of support exam-

ples, the context in which they appear, and the semantics

of the class. Moreover, the context of support examples is

represented as a weighted sum of the word embeddings of

the base classes that co-occur in the scene. To perform in-

ference, a query q is compared to these prototypes c′k based

on their euclidean distance. The appearance of the query

object is fused with the context of the scene, which is mod-

eled as the average of the word embeddings of base classes

in the scene.

3.6. Assumptions

Note that our approach assumes that the context is

known, similar to [44] did in a zero-shot setting, as the

detection of objects is another task upstream to the FSL

problem on which our work focuses. One could remove

this assumption by replacing ground-truth annotations with

an object detection module. Indeed, note that we form the

context with base classes only, for which training examples

can be in large number during the metric-learning phase.

Our approach could also be complementary to the growing

number of work on few-shot object detection [14, 21, 30],

where classification is generally performed for each object

individually without considering the context.

4. Experiments

4.1. Dataset and settings

Traditional FSL datasets such as miniImagenet [38] and

CUB-200 [41] mainly contain images with only one object

and little context. Therefore, we rather experiment on Vi-

sual Genome [16] and Open Images [17], which are large

datasets of scenes with several objects in each image.

Visual Genome [16]. We randomly split the images in

70%/10%/20% train, validation and test sets, respectively.

We start by using the public splits by Zablocki et al. [44]

that keep 50% of classes for base+val classes and 50% for

novel classes. However, a closer look at those sets showed

that some novel classes are very similar to base classes,

which could bias generalization evaluations. For instance,

“bottle” and “television” are in the base set, but “bottles”

and “TV” are novel classes. To solve this issue, we filter

the novel classes whose Word2vec [25] embeddings have

a cosine similarity higher than 0.75 with any of the base

or val classes. It effectively removes singular/plural nouns

and closely related concepts such as “police” (base class)

and “policeman” (novel class). This will prevent our model

from picking on those biases that would overestimate FSL

performance.

We use the bounding box annotations to crop image parts

that correspond to objects, and we remove examples whose

smallest side is less than 25 pixels. Following this, we re-

move the classes that appear in less than 10 images. We also

form a set of validation classes for hyper-parameter search.

3283



Table 1: Average Top-1 accuracy (%) with 95% confidence intervals on Visual Genome and Open Images . Results are averaged over

4000 test episodes for Visual Genome and 1000 test episodes for Open Images. V: Uses visual information; W: Uses word embeddings; C:

Uses contextual information.

Dataset Model V W C 5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot

Visual Genome

PN [33] ✓ 52.23± 0.76 69.37± 0.63 25.71± 0.29 42.61± 0.70
AM3 [43] ✓ ✓ 62.50± 0.66 72.07± 0.74 34.36± 0.32 44.84± 0.61
Ours ✓ ✓ ✓ 71.54 ± 0.57 78.50 ± 0.55 46.13 ± 0.47 54.72 ± 0.49

Open Images

PN [33] ✓ 64.60± 1.43 80.44± 1.25 34.93± 0.98 52.73± 1.02
AM3 [43] ✓ ✓ 69.87± 1.00 80.43± 1.02 40.25± 0.47 52.59± 0.94
Ours ✓ ✓ ✓ 77.42 ± 1.22 87.70 ± 0.95 51.61 ± 0.99 67.53 ± 0.88

This finally results in 969 base classes, 242 val classes and

829 novel classe.

Open Images v6 [17]. We start by using the original

train/val/test splits1 of images. Then, we randomly sample

400/100/100 base/val/novel classes, respectively. Classes

that appear less than 10 times in their respective split of

images are removed and the novel classes are also filtered

based on the Word2vec [25] cosine similarity with base

and val classes (see above). This results in 371/38/57
base/val/novel classes.

4.2. Implementation details

We employ a ResNet-12 CNN backbone as described

in [28] and we train it from scratch. It is made of 4 blocks

with 3 layers of 3× 3 convolutions and a 2× 2 maxpooling

operation at the end of each block. The first block has 64
filters in each layer, and this number is doubled after each

block. The last feature map is vectorized by Global Average

Pooling, which results in an embedding of 512 dimensions.

Image crops from bounding box annotations are rescaled

to 84× 84× 3.

Each model is trained for 30, 000 episodes with Adam

optimizer initialized with a learning rate of 10−3 and is di-

vided by a factor of 10 every 10, 000 episodes. The vali-

dation set is used every 3000 episodes to evaluate the mean

accuracy of 500 random episodes and early stopping is done

based on the best validation accuracy.

5. Results

Since we want to study the contribution of using context

information and class semantics in addition to the appear-

ance of objects, we compare our approach to the follow-

ing models that build on a Prototypical Networks (Protonet)

backbone [33]. ProtoNet is our implementation of Proto-

typical Networks [33]. AM3 is our implementation of the

Adaptive Modality Mixture Mechanism [43], which supple-

ment the support prototypes with the word embeddings of

their corresponding class.

1https://storage.googleapis.com/openimages/web/download.html

Table 2: Average Top-5 accuracy (%) for 50-way and 100-way

classification on Visual Genome (VG) and for 50-way and 57-way

(† all novel classes) on Open Images (OI).

50-way 100-way/57-way†

D Model 1-shot 5-shot 1-shot 5-shot

VG

PN [33] 39.68 59.52 27.98 47.23
AM3 [43] 51.78 64.14 38.22 51.57

Ours 64.10 72.86 50.49 61.19

OI

PN [33] 52.60 73.16 49.15 70.69
AM3 [43] 59.94 73.03 56.10 69.91

Ours 69.93 86.11 68.99 84.08

Table 1 shows the results of few-shot episodes on Visual

Genome and Open Images. We also show Top-5 accuracy

for 50-way and 100-way classification on Visual Genome

and 50-way and 57-way classification on Open Images in

Table 2.

We can observe that the use of context information out-

performs the visual-only ProtoNet [33] and the multimodal

AM3 [43] by large margins. Even in the 1-shot setting,

where there is a risk of overfitting a particular context since

there is only one example of scene, our results on both

datasets show that it is still promising to use the context.

Interestingly, our results support the benefits of using word

embeddings as Xing et al. [43] did with AM3, especially

in the 1-shot setting. Indeed, using word embeddings in-

creases the accuracy in 5-way and 20-way by 10.27% and

8.65% on Visual Genome, respectively, and by 5.27% and

5.32% on Open Images, respectively. Our use of context

further improves these results by an additional 9.04% and

11.77% on Visual Genome, and by 7.55% and 11.36% on

Open Images for 5-way and 20-way classification, respec-

tively.

Our model also performs reasonably well on larger-scale

experiments shown in Table 2. With only one example

per class in 100-way classification on Visual Genome, our

model almost doubles the Top-5 accuracy of ProtoNet [33],

with 50.49% compared to 27.98%.
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(a) carrot

'water'           
'bear'       
'head'       
'ear' 
'arm' 

:41.25
:32.22
:10.27
:5.44
:4.97

'leg'           
'hill'
      
 
 

:2.94
:2.91

(b) fish

'cat'
'mat'
'tail'
'lid'
'ledge*'

:41.03
:14.89
:  7.34
:  5.44
:  4.04

'toilet'
'book'
'pack*'
'bathroom*'
'tiles'

:2.01
:1.18
:0.09
:0.03
:0.02

(c) paw

'players*'
'umpire*'
'shirt*'
'player*'
'coach'

:39.78
:34.73
:  5.00
:  3.60
:  3.44

'grass'
'sand'
'plate'
'base'
'rolls*'

:0.19
:0.09
:0.06
:0.03
:0.02

(d) spectator

Figure 2: Illustration of the relative role of context estimated by CCAM. Five most important and least important co-occurrent concepts

are shown in green and red, respectively, with associated weights (%). Asterisks indicate that the word is a novel class. Heatmaps are for

visualization purposes. They are computed by summing the weight scores inside their respective bounding box annotations.

Table 3: Average Top-1 accuracy (%) during an ablation study for

5-way classification on Visual Genome. V: Uses visual informa-

tion; W: Uses word embeddings; C: Uses contextual information.

V W C Cavg CCAM 1-shot 5-shot

1 ✓ 52.23 69.37
2 ✓ ✓ 62.50 72.07
3 ✓ ✓ ✓ 61.20 76.66
4 ✓ ✓ ✓ ✓ 69.10 76.63
5 ✓ ✓ ✓ 63.56 77.16
6 ✓ ✓ ✓ ✓ 71.54 78.50

Ablation study. We then performed an ablation study to

examine the contribution of each modality and their inter-

actions, shown in Table 3. Interestingly, we observe a syn-

ergy between the use of word embeddings and contextual

information, which is stronger in the 1-shot setting. For in-

stance, lines 2 and 3 show that the use of word embeddings

or context alone perform similarly in 1-shot, with 62.50%
and 61.20% respectively; but when word embeddings and

context and taken together, the accuracy significantly in-

creases to 69.10% (line 4) and even further to 71.54% when

CCAM is used (line 6).

The ablation study also supports the benefits of consid-

ering the relative role of context [7], as weighting the con-

text elements with CCAM obtains better results than sim-

ply considering all of them equally (compare lines 3-4 with

lines 5-6). We now investigate this aspect qualitatively.

Relative role of context [7]. The relative role of context

states that the importance of context elements is function

of the focal object, which is supported by our results (see

above). Fig. 2 shows examples of CCAM outputs when our

model needed to learn the concepts “carrot”, “fish”, “paw”

and “spectator”, respectively. To further examine the abil-

ity of CCAM to meta-learn the importance of co-occurring

concepts based on semantic similarity, we also included

novel classes in the formation of the context for these exam-

ples. We can see that CCAM correctly gives more weight

to semantically relevant co-occurring concepts, even those

that were never encountered during training (e.g. vegetable,

players or umpire that are novel classes). On the other hand,

CCAM also ignores background elements such as “tiles” in

Fig. 2c and “grass” in Fig. 2d, as they are unlikely to help

recognizing new instances of paw and spectator in query

images.

To further study the contribution of context and CCAM,

we show in Fig. 3 a t-SNE visualization [36] of embeddings

produced by our model using different amount of informa-

tion. Visual embeddings (Fig. 3a) seem to produce ambigu-

ous clusters, similar to context averaging (Fig. 3b) which

considers each contextual item equally. On the opposite,

our CCAM produces good clusters (Fig. 3c), which shows

its ability, and the importance, to attend to discriminative el-

ements. Also, some visually different objects seem to share

similar contexts, as shown by the mixed cluster in the cen-

ter of Fig. 3c. This problem is mostly solved by our GVSU

that combines visual and contextual information (Fig. 3d).

Robustness to noise. Since we aimed to study the poten-

tial contribution of context in a low-data regime, we used

an oracle to annotate the context elements. In real applica-

tions, one would need to employ an object detection module

to classify base classes in query images and ideally in the

few support examples also, although these could be manu-

ally annotated. While this aspect is left for future work, we

evaluated the robustness of our model while adding noise in

support and query context annotations to simulate an object

detection module that makes a certain percentage of errors.

With a probability pnoise, we randomly swap context ele-

ments by another base class. The results for 20-way 5-shot
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(a) Image embeddings (b) Context averaging (c) CCAM (d) Context-Aware embeddings

Figure 3: t-SNE visualization of different embeddings.

Figure 4: Robustness to noise in 20-way 5-shot tasks. Context

elements in support and query sets are randomly swapped by an-

other base class label with a probability pnoise.

classification with noise are shown in Fig. 4. Protonet

and AM3 are showed as reference but they are not influ-

enced by noise in context annotations since they only use

visual and visual+semantic information, respectively. In-

terestingly, our model seems reasonably tolerant to out-of-

context objects. With pnoise = 0.5, our model still outper-

forms AM3 [43] and ProtoNet [9].

Learning semantic word embeddings through visual

scenes. Our approach also offers an auxiliary result that

could be further investigated: CCAM implicitly learns and

enriches semantic word embeddings by acting similarly to

a CBOW model. To evaluate this aspect, we inputted to

CCAM a matrix S that contains all base classes and we con-

ditioned its attention on a few words w to see how CCAM

would weight S. We show in Table 4 a few examples.

Interestingly, the contextual concepts defined by CCAM

strongly differ from those obtained with Word2vec [25] em-

beddings, which shows that CCAM captures different se-

mantic relations between concepts.

6. Conclusion and Future work

In this work, we proposed a few-shot learning model that

uses scene context semantics to improve class representa-

Table 4: Examples of words and concepts that received the high-

est score by CCAM. Underlined words are also in the Top-10 of

Word2vec [25] cosine similarities.

Word Contextual words

bike

cyclists, skateboards, snowboards, guardrail,

pedestrians, mopeds, snowmobile, tricycle,

kiteboard, motorcycles

rocks
treetops, dunes, thickets, grassy, vegetation,

hill, grasslands, sky, cliff, pines

game
referee, softball, scoreboard, basketball, jersey,

volleyball, matches, baseball, frisbee, football

rope
boater, surfing, lifeguard, spear, ladders, fisher-

man, horseback, ropes, cliff, sandals

sandwich
plate, plates, breads, dough, sandwiches, flat-

bread, cutlery, pork, pancakes, steak,

tions. Our approach integrates the supplementary role of

context [7] by building context-aware class prototypes, and

we apply the relative role of context [7] with our CCAM, a

module that proved to be able to focus on disciminative el-

ements in the scene with respect to the class semantics (see

Fig. 2, Fig. 3c and Table 4).

Our experiments on Visual Genome and Open Images

showed promising results of using context information, by

increasing the accuracy of Prototypical Networks [33] and

AM3 [43] by large margins. More generally, our multi-

semantics model is a step towards holistic approaches of

few-shot object classification that can be applied in chal-

lenging real scenarios.

As future work, we plan to replace ground-truth class

annotations of context by automatic object detection and

classification of base classes in queries. Our experiment on

robustness to noise suggests that even with many labeling

errors, our method could still outperform models that ig-

nore the context. We also plan to explore the ability of our

model to learn semantic word embeddings through visual

scenes. This could be further investigated in line with work

on learning multimodal word embeddings [23, 24, 35].
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