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Abstract

The application of convolutional neural networks

(CNNs) and deep learning to different domains has become

increasingly popular in the last several years. In particular,

such models have been used in the agriculture domain to

identify plant species, identify plant stresses, and estimate

crop yields. Although there has been much success in apply-

ing these techniques to the agriculture domain, these works

contain many shortcomings that are hindering their chance

for adoption in practice (e.g., lack of domain knowledge,

predicting only specific stress types, etc.). We address issues

of previous works for the task of plant stress identification

by applying a hierarchical classification approach employ-

ing confidence as a means to determine the specificity of a

classification. This work is a collaboration between com-

puter science and agricultural engineering experts.

1. Introduction

In modern agriculture, plant stress identification is a crit-

ical task for protecting the crop through the growing season.

A stress is defined as an external condition that adversely

affects the growth, development, or productivity of plants

(example images of plant stresses are shown in Fig. 1).

Currently, annual yield losses due to disease (a subset of

stresses) in North America are estimated at 11% in soy-

beans and ranges from 2% to 17% in corn [18, 30]. To-

tal corn production for the U.S. and Ontario, Canada from

2012 to 2014 was almost 54 billion bushels valued at $244

billion. If the 2% loss estimate is realized, this results in

losing more than 1 billion bushels of grain costing almost

$5 billion in revenue [29]. Total soybean production from

2010 to 2014 in the U.S. was 17.2 billion bushels valued

at over $209 billion. With the estimated 11% yield loss,

this equates to over 1.9 billion bushels of yield loss, costing

farms more than $23 billion [1]. These numbers are widely

(a) (b) (c)

Figure 1: Example plant stresses. (a) Bacterial spot in

tomato plants, (b) Phosphorus deficiency in corn plants, and

(c) Stalk rot in corn fields.

regarded as understated considering they do not account for

additional costs associated with misdiagnosis, field scout-

ing, and diagnostic fees (such as laboratory or soil testing).

When coupled with the unpredictability of climate change

and modern trends in cultivation techniques, disease pres-

sure is a growing issue impacting farms across North Amer-

ica [29, 1, 32, 39, 27].

Rapid and accurate classification of plant stresses is crit-

ical for effective management, enabling precise applica-

tion of remedial measures to only the affected areas of a

field, reducing both the negative impact on yield and the

environment by minimizing the total application amount

of chemicals (e.g., fertilizer, fungicides, pesticides, etc.)

[15, 23, 37, 41, 3]. Current monitoring methods involve hu-

man experts scouting fields in person, using visual disease

estimation along with microscopic, serological, and micro-

biological techniques. However, these methods often fail to

provide results in a timely manner [24, 31, 17, 4, 26, 36].

In the time span it takes to receive results from a test, a

stress could have spread, causing further yield and revenue

loss. Furthermore, despite the need for human experts, their

number is diminishing and the ability to scale crop moni-

toring capabilities to meet modern demand is increasingly

challenging [27].

Automatic visual classification of stress symptoms us-

ing CNNs has shown substantial promise in the past few

years due to their native ability for representational learning
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[22, 7]. Numerous studies have also been published evalu-

ating the application of CNNs to this task in various forms,

such as comparing architectures, datasets, data preprocess-

ing methods, and more [28, 38, 14, 21, 2, 40, 16, 13, 12, 11,

35]. Despite this intensive study, there are still many short-

comings that prevent large-scale adoption of deep learning

models in commercial applications. Such shortcomings in-

clude the lack of incorporated domain knowledge, the lim-

ited ability to expand functionality, rigid approaches pro-

viding only specific class labels from training, and the lack

of a confidence value for predictions.

Crop stress identification poses a unique challenge partly

due to the difficulty of building a training dataset, as a do-

main expert is necessary for data annotation [20, 5, 6]. Fur-

thermore, not only is there substantial variation in the ap-

pearance of symptoms for one stress, there can also be vi-

sual overlap in symptoms between different stresses as well

as multiple stresses present in a single image. Thus exclu-

sive utilization of visual classification can be insufficient

[5].

The ability to generate more general/broader labels for

confusing or novel cases can still be useful for treatment

consideration. For example, consider an image where a fun-

gal stress and an insect-related stress are present. Instead of

committing to one specific stress, we could classify the ex-

ample with the general label of ‘biotic stress’. Along with

each prediction, some notion of confidence would also be

helpful. Whether it be a farmer needing a medium-level

of confidence to aid in determining if they should spray a

fungicide or an insurance company requiring a high-level

of confidence to help determine if they should send an ad-

juster to a field to assess crop damage, having this confi-

dence association could greatly increase the acceptance and

usability of deep learning models in agriculture.

We apply the confidence-based hierarchical approach of

[8] in a collaborative effort between domain experts in com-

puter science and agricultural engineering to address these

needs. Given a trained base classifier, the approach starts

with an initial prediction from the base classifier and ana-

lyzes it in a hierarchical manner using posterior probabili-

ties to meet a user-defined threshold of confidence, general-

izing the label as needed. We anticipate this approach to be

useful in addressing current desires for generalized labels

along with associated confidence values.

2. Related Work

Multiple techniques have been proposed for reasoning

and classifying with hierarchical representations to increase

performance, efficiency, or accuracy. However very few

have been specifically applied towards the agricultural do-

main. In [10], a visual tree is constructed using a hierarchi-

cal clustering algorithm on visual features (texture, color,

shape, and structure) extracted using SIFT features into vi-

sual bag-of-words, color histograms, color moments, and

histograms of curvatures. Then SVM classifiers for every

label in the visual tree are jointly learned. In [25], a small

hierarchy is enforced in the network architecture where they

first have a series of shared convolutional and pooling lay-

ers then multiple branches following the same convolution,

pool, and fully-connected layer architecture. One of the

branches serves as a selector for predicting the species of

the plant (apple, tomato, etc.). Based off the plant species

prediction, a stress is predicted from that species’ branch.

In both [10] and [25], their final output will always be a flat

classification (a terminal class label in their hierarchy) and

no confidence is provided with the output.

Though multiple techniques exist for performing hierar-

chical classification, we chose to adopt the approach of [8]

for its ability to generalize output labels with a confidence

guarantee on every prediction. In [8], a posterior probability

is separately computed for each node/label in the tree condi-

tioned on its (uncalibrated) softmax value, where an equiv-

alent softmax value for a non-terminal label is computed as

the sum of softmax values from its terminal descendants.

The posterior for each label is modeled non-parametrically

using a normalized histogram. Inference is conducted in a

bottom-up fashion using the argmax-selected label (a ter-

minal label in the hierarchy) from the base classifier until

meeting a confidence threshold.

These exist alternatives, such as [9], where the output

logit for each terminal node/label in a hierarchy is com-

puted by its respective SVM classifier (one SVM classi-

fier per terminal label) and posterior probabilities are esti-

mated using Platt scaling [34]. Non-terminal posteriors are

computed by summing the descendent terminal label pos-

teriors. Their approach is formulated on the maximization

of a reward function given a specified overall accuracy on

the validation set. Their final predictions are selected from

the node/label in the hierarchy that yields the maximum ex-

pected reward. However, their approach has the possibility

of “flipping” initially correct predictions to incorrect labels

(labels that do not lie on the path from the ground truth label

to root node) while [8] does not have this issue. Addition-

ally, in [9], meeting a confidence threshold is guaranteed

only on the validation set while [8] is guaranteed to always

meet the confidence threshold on any test input. It is for

these reasons that we are applying the approach of [8] and

will conduct our analysis using this approach. In addition to

our analysis experiments, we will compare the approaches

of [8] and [9].

To the best of our knowledge, this is the first time a hier-

archical classification approach with confidence guarantees

and the ability to classify an example using a non-terminal

label has been applied to the agriculture domain.
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3. Hierarchical Classification with Confidence

In this work, we apply the hierarchical classification ap-

proach presented in [8]. Given a pre-trained base classifier,

this method consists of an estimation procedure for com-

puting the posterior distributions at every terminal and non-

terminal label in a hierarchy and an inference procedure for

determining the final confident prediction label for some

test example. It should be noted that they used a validation

set to model the posteriors as to not overfit to the training

data.

3.1. Estimation

For a validation example x with ground truth label l, the

base classifier softmax value s corresponding to l is ex-

tracted then quantized into index sq . This index is used

to increment the positive histogram bin H+
l [sq]. Then for

each ancestor label a of l, the softmax value for a is found

by summing the softmax values of all terminal descendant

labels of a. This aggregated softmax value is then quan-

tized into sq and used to increment the positive histogram

bin H+
a [sq].

Negative histograms are then computed for each label d
that is not l or an ancestor of l. Still using the same valida-

tion example x, the corresponding softmax values for d are

summed, quantized into sq , and used to index and increment

the negative histogram bin H−

d [sq].
After all validation examples have been processed,

the positive and negative likelihood distributions for each

node are computed by L1-normalizing their respective his-

tograms using

P (sq|l) = H+
l /||H+

l ||1 (1)

P (sq|¬l) = H−

l /||H−

l ||1 (2)

Priors P (l) and P (¬l) are computed for each node/label

in the hierarchy and can be used to incorporate domain

knowledge (as will be discussed later). For our experiments,

we used equal priors for the terminal nodes/labels.

Finally, Bayes’ Rule (with a two-class context) is used

to compute the posterior probability distribution P (l|sq) for

label l from its corresponding prior and likelihood distribu-

tions

P (l|sq) =
P (sq|l)P (l)

P (sq|l)P (l) + P (sq|¬l)P (¬l)
(3)

3.2. Inference

The procedure begins with estimating the posterior prob-

ability of the base classifier’s initial argmax-selected label l
(a terminal label in the hierarchy) using its corresponding

softmax value s. The softmax value is quantized into sq
and indexed into the posterior distribution P (l|sq). If the

retrieved posterior value is below the confidence threshold

T , the immediate parent of l is examined. The parent’s soft-

max value is computed by summing the softmax values of

its terminal descendants, then the parent label’s aggregated

softmax value is quantized and used to index into its pos-

terior distribution. This process continues up the ancestral

path until either a sufficiently confident label is found (con-

fidence meeting T ) or the root node label of the hierarchy is

reached (having 100% confidence).

4. Experiments

In this section, we examined the approach of [8] on three

crop stress datasets. We will describe each dataset used in

our experiments and their respective base classifier and hi-

erarchy. Then we will describe each of the metrics used in

our evaluation and finally present a series of experiments

and their results.

4.1. Datasets & Base Classifiers

We evaluate the approach on Tomato, Corn, and Soy-

bean datasets that contain healthy and stressed examples of

plant leaves. The Tomato dataset is a subset of the PlantVil-

lage dataset [20] while the Corn and Soybean datasets were

recently collected by the agricultural engineering collabo-

rators on this paper. The corn and soybean imagery were

collected in stressed crop fields and were verified by our in-

stitution’s agricultural extension educators and plant pathol-

ogists to guarantee accuracy. Example images from all three

datasets are shown in Fig. 2 and the details of each dataset

will be described below.

The Tomato dataset consists of (256x256) RGB images

of tomato plant leaves in a controlled environment, with a

single leaf centered on a constant background (either a table

surface or black). It consists of 10 classes (9 stresses and

healthy) and 15,892 total images (split into 11,204 train,

3,092 validation, and 1,596 test images).

For this dataset we trained a simple CNN with 3 con-

volution layers (8, 16, and 16 channels) and one fully-

connected layer. We used a LeakyReLU activation func-

tion (to prevent any possibility of stagnant gradients) fol-

lowed by a 3x3 max-pooling layer after each convolution

layer and a global average-pooling layer before the fully-

connected layer. This network was trained for 30 epochs

and the networks weights from the training epoch that pro-

duced the lowest cross entropy loss value on the validation

set were selected. This resulted in a class-balanced accu-

racy of 82.1% (computing the accuracy for each class then

averaging). We note a larger CNN trained to a better accu-

racy level could also be used here. We chose to employ a

smaller CNN for this dataset to emphasize the benefits of

the hierarchical inference procedure.

The Corn dataset consists of RGB images of corn plant

leaves in a natural setting, a corn field with a noisy back-

ground, captured with an 18MP camera at ground level (re-
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sulting in images of size 3456x5184 or 5184x3456). In each

instance, the area of interest (the plant stress the instance is

annotated as) is at the center of the image. The dataset con-

sists of 11 classes (10 stresses and healthy) and 8,911 total

images (split into 6,232 train, 1,793 validation, and 886 test

images). It should be noted that one of the stress class la-

bels is actually a combination of two stresses (which will be

discussed in Sect. 4.2).

For this dataset we trained a modified ResNet-18 net-

work [19] for 30 epochs with final network weights se-

lected as before. The network was adapted from PyTorch’s

[33] implementation from GitHub with all ReLU activa-

tions switched in favor of LeakyReLU activations. This

resulted in a network with a class-balanced accuracy of

68.8%.

The Soybean dataset consists of RGB images of soy-

bean plant leaves in a natural setting, a soybean field with

a noisy background, captured with an 18MP camera at

ground level (resulting in images of the same size as corn).

Again, the area of interest (the plant stress the instance is

annotated as) is at the center of the image. The dataset con-

sists of 6 classes (5 stresses and healthy) and 6,635 total

images (split into 4,642 train, 1,335 validation, and 660 test

images). As with the Corn dataset, one of the stress class

labels in this dataset is also a combination of two stresses

(which will also be discussed later). For this dataset we

trained a similar modified ResNet-18 network [19] which

resulted in a class-balanced accuracy of 80.0%.

Since the plant leaf of interest is centered in every in-

stance within the Corn and Soybean datasets, each image

was center cropped (to be square) then resized to 345x345

(one-tenth resolution). Tomato images faced no cropping or

resizing operations.

All base classifiers were implemented using Python 3.7

and PyTorch 1.2 and trained on a single NVIDIA Titan GPU

using stochastic gradient descent with momentum (0.9) and

a step learning rate scheduler (initially 0.001 then multiply

by 0.1 every 5 epochs). All three datasets faced similar data

augmentation schemes during training: random horizontal

flip, random vertical flip, random rotation at 90 degree in-

crements, gamma jitter, and brightness scale. In testing, the

images were only cropped and resized (if necessary).

All three of our datasets face varying degrees of class

imbalance. To address this, we implemented a simple repli-

cation scheme during training to balance all classes. Every

batch is guaranteed to have the same number of examples

from each class and each example from the same class is

guaranteed to be different from the others in the batch. We

used batch sizes of 20, 11, and 6 for Tomato, Corn, and

Soybean, respectively. In our experiments we trained on a

balanced dataset but tested on an imbalanced dataset.

Smallest Stress Largest Stress Healthy

Tomato (Mosaic Virus, Yellow Leaf Curl Virus, Healthy)

Corn (Holcus Spot, Nitrogen Burn, Healthy)

Soybean (Bacterial Blight / Phyllosticta, Sudden Death Syndrome, Healthy)

Figure 2: Example images from each of the datasets. Small-

est and largest stress correspond to the stress class with the

least and most examples, respectively. Corn and soybean

images are center-cropped to make square.

4.2. Plant Stress Relational Trees

A plant stress relational tree will be employed for each

dataset to define the relationships between terminal label

plant stresses and more generalized stress categories. The

root node of each tree is given the ‘Unknown’ label. Each

tree is constructed using agricultural domain knowledge

based on existing diagnostic and management practices to

govern the relations. Although we construct a tree for

tomato, corn, and soybean production systems, trees can be

tailored to fit any food production system (the general prac-

tices utilized in planting, maintaining, and harvesting food

crops). Our plant stress relational trees are designed to be

application-focused where the stresses are grouped accord-

ing to basic management strategies and testing practices.

Each level of the tree aids the end user, such as a farmer, in

making some decision regarding additional diagnostic tests

or management actions. Information provided by the levels

gets increasingly generic moving from the terminal nodes

in the hierarchy to the root. While our plant stress rela-

tional trees are application-focused, these trees could also

be purely taxonomic, phylogenetic, or other depending on

the context. Our plant stress relational trees are shown in

Figs. 3-5. The terminal classes are shown in bold at the bot-

tom with the other labels being the non-terminal generalized

plant stress categories.

In the Tomato dataset, the stress categories ‘Hemi-
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Unknown

Stressed

Virus Fungal / Oomycete

Hemi-Biotroph Necrotroph

spider bacterial mosaic yellow leaf late septoria leaf target early
healthy mites spot virus curl virus blight leaf spot mold spot blight

Figure 3: Tomato stress relational tree.

Unknown

Stressed

Biotic Abiotic

Fungal Nutrient Stress

Necrotrophic Nutrient Deficiency

northern magnesium
holcus corn common grey leaf corn leaf herbicide nitrogen phosphorus nitrogen / potassium

healthy spot borer rust spot blight sensitivity burn deficiency deficiency deficiency

Figure 4: Corn stress relational tree.

Unknown

Stressed

Biotic

Fungal

dicamba bacterial blight insect sudden death frogeye
healthy damage / phyllosticta damage syndrome leaf spot

Figure 5: Soybean stress relational tree.

Biotroph’ and ‘Necrotroph’ are often difficult to differen-

tiate visually. Thus we joined these two non-terminal la-

bels to the parent label ‘Fungal / Oomycete’. We included

this super-class because, although a completely descriptive

stress label would not be provided, the user would still know

all tests and treatments that are associated with ‘Virus’ and

not ‘Fungal / Oomycete’ could be removed from consider-

ation and further analysis and testing would be required to

diagnose the specific stress.

In the Corn dataset, the ‘magnesium/potassium defi-

ciency’ class contains images of just magnesium deficiency,

images of just potassium deficiency, and images containing

both. We included this joint terminal class for evaluating

the approaches’ ability to address the issue of classifying

imagery with multiple stress symptoms.

In the Soybean dataset, the bacterial blight and phyl-

losticta stresses are indistinguishable using just their visual

symptoms. Even the foremost expert in soybeans pathology

was unable to provide a definite classification using only

images. Thus these two stresses were combined to ‘bacte-

rial blight / phyllosticta’.

4.3. Metrics

To evaluate the approach, we included metrics from [8]

and [9]. These metrics give credit for predictions that lie on

the correct ancestral path from the ground truth up to, and

including, the root [9] (no partial credit is given to predic-

tions that are off the upward path from the ground truth).

Some of the metrics are based on the sets of originally cor-

rect (C) and originally incorrect (IC) base classifier predic-

tions (given the ground truth and argmax of the logits for

test examples). We report the following:

• C-Persist [8] is the fraction of initially correct predic-

tions of the base classifier that remain at the terminal

level in the hierarchy.

• C-Withdrawn [8] is the fraction initially correct pre-

dictions of the base classifier that are assigned to the

root (‘Unknown’).

• C-Soften [8] is the fraction of initially correct predic-

tions of the base classifier that are generalized to a non-

root and non-terminal label.

• IC-Remain [8] is the fraction of initially incorrect pre-

dictions of the base classifier that remain at an incor-

rect non-root label.

• IC-Withdrawn [8] is the fraction of initially incorrect

predictions of the base classifier that are assigned to

the root (‘Unknown’).

• IC-Reform [8] is the fraction of initially incorrect pre-

dictions of the base classifier that are generalized to a

correct, non-root label.
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• avg-sIG corresponds to the depth of the generaliza-

tions in terms of Information Gain (IG), as similarly

used in [9]. The scaled IG (sIG) for a correct predic-

tion at node Ni is

sIG(Ni) = (log2|T | − (log2(|↓(Ni)|)) / log2|T | (4)

where T is the set of all terminal labels in the hi-

erarchy and ↓ (Ni) is the set of all terminal labels

that are descendants of Ni. If Ni is a terminal node:

↓(Ni) = Ni. Therefore when a correct prediction is

at the terminal level (most precise), the gain is sIG =

(log2|T | − (log21)) / log2|T | = 1. When a prediction

is withdrawn to the root (‘Unknown’), the gain is sIG

= (log2|T | − log2|T |) / log2|T | = 0. The sIG is 0 by

default for any incorrect prediction. We compute the

average sIG across all test examples to get avg-sIG.

• Accuracy is the fraction of post-inference classifica-

tion results that are correct, where any label on the path

from the ground-truth to the root node is considered a

correct label (as used in [9]).

To address data imbalance in the test set, we modify the

metrics to become class-balanced by computing the metric

for each class then averaging all classes.

4.4. Evaluation

Results at 50%, 80%, 85%, 90%, and 95% confidence

thresholds for the three datasets are provided in Tables 1-

4. We also provide the performance of the base classifiers

(with no hierarchical inference).

Evaluation results for the Tomato dataset are shown in

Table 1. We can see that at 50% confidence, 19% of initially

incorrect predictions have already been reformed to a cor-

rect non-root label and a large majority (91%) of initially

correct predictions remained at the terminal level. Large

improvements are seen moving up to 80% confidence with

67% of initially incorrect predictions being reformed to a

valid label and 71% of initially correct predictions remain-

ing at the terminal level. We also see a class-balanced ac-

curacy improvement of 8.6% over the score for 50% con-

fidence. For all confidence levels, almost all predictions

(class-balanced) remained at the non-root labels.

Results for the Corn dataset are shown in Table 2. At

50% confidence, 89% of initially correct predictions still

maintained their terminal status while 21% of initially in-

correct predictions have already been reformed to a correct

non-root label. With an 80% confidence threshold, 70% of

initially correct predictions remained at the terminal level

with 24% at a softened, non-root label. Additionally, only

39% of initially incorrect predictions remained with 21%

being withdrawn and 40% being reformed to a correct non-

root label. Even at higher confidences, the IC-Withdrawn

score does not increase much while IC-Reform continues to

Tomato

Base 50% 80% 85% 90% 95%

C-Persist 1.0 .91 .71 .66 .60 .44

C-Withdrawn - .00 .01 .02 .02 .03

C-Soften - .09 .28 .32 .38 .53

IC-Remain 1.0 .81 .29 .23 .22 .11

IC-Withdrawn - .00 .05 .05 .05 .08

IC-Reform - .19 .67 .71 .73 .80

avg-sIG - .78 .65 .61 .58 .49

% Valid (¬root) 100 99.8 98.6 97.6 97.5 96.6

Accuracy 82.1 86.0 94.6 95.8 96.1 98.2

Table 1: Tomato class-balanced hierarchical results.

Corn

Base 50% 80% 85% 90% 95%

C-Persist 1.00 .89 .70 .49 .46 .41

C-Withdrawn - .01 .06 .13 .13 .13

C-Soften - .10 .24 .37 .41 .46

IC-Remain 1.00 .77 .39 .27 .27 .13

IC-Withdrawn - .02 .21 .26 .26 .26

IC-Reform - .21 .40 .48 .48 .61

avg-sIG - .65 .56 .45 .44 .40

% Valid (¬root) 100 98.6 87.9 80.9 80.9 80.9

Accuracy 68.8 74.7 87.7 92.4 92.4 95.8

Table 2: Corn class-balanced hierarchical results.

Soybean

Base 50% 80% 85% 90% 95%

C-Persist 1.00 .92 .87 .87 .76 .33

C-Withdrawn - .04 .05 .07 .18 .18

C-Soften - .05 .07 .06 .06 .49

IC-Remain 1.00 .59 .38 .34 .28 .13

IC-Withdrawn - .09 .20 .23 .29 .29

IC-Reform - .32 .43 .43 .43 .58

avg-sIG - .76 .72 .72 .63 .40

% Valid (¬root) 100 96.3 93.0 91.9 82.1 82.1

Accuracy 80.0 81.5 84.5 85.1 85.5 98.7

Table 3: Soybean class-balanced hierarchical results.

increase. At 80% confidence, we also see that the overall

class-balanced accuracy has increased by almost 20% from

the base classifier.

We see particularly interesting results for the Soybean

dataset as shown in Table 3. This classifier tends to be

highly confident in all of its initially correct predictions,

having more predictions remain at the terminal level at 90%

confidence than the Tomato and Corn datasets. We also see

43% of initially incorrect predictions being reformed to cor-

rect non-root labels and an avg-sIG score of 0.63 which

means the predictions are tending to reside deeper in the

tree (potentially around the ‘Biotic’ label). We also see the

class-balanced accuracy increases by about 13% from 90%

confidence to 95% confidence.

An explanation for the high C-Persist values for soy-
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beans could be that four of the classes achieved a base clas-

sifier individual class accuracy of over 90%. Thus for these

four classes, the network was able to identify discriminant

features that made it confident in its initial prediction. This

is validated further by the lower C-Withdrawn values. The

predictions are highly confident without being completely

withdrawn to the root node. These high initial confidences

could also explain the accuracy increase from 90% to 95%

confidence. The Soybean dataset also contained one partic-

ularly difficult class (‘frogeye leaf spot’) that only achieved

12% base classifier class accuracy. Such low class accuracy

could be attributed to the small lesions as symptoms of the

stress, which would be difficult for a CNN to recognize.

Overall, as the confidence threshold increases, we see

more initially correct predictions generalized from their

terminal label and more initially incorrect predictions re-

formed to correct labels. Additionally, as the confidence

threshold increases we naturally see a decrease in avg-

sIG. We also see that the class-balanced accuracy increases

as confidence increases. The inverse relationship between

avg-sIG and class-balanced accuracy shows the accuracy-

specificity trade-off made when selecting a confidence

threshold.

We show some test predictions across the datasets at 90%

confidence in Fig. 6 (note the corn and soybean images

were square center cropped to better fit on the page). In

the generalized examples, the base classifier actually pre-

dicted the correct labels, though they were deemed unreli-

able and generalized by the approach. The C-Withdrawn

examples were also classified correctly by the base classi-

fier, but were again not confident or not standard instances.

The IC-Reform examples were incorrectly classified by the

base classifier, but were generalized to a reasonable, and

correct, label (in both cases the lowest common ancestor

in the tree was selected). Lastly, the IC-Withdrawn images

were incorrectly classified by the base classifier and sub-

sequently generalized to the root node label (‘Unknown’).

Although being able to classify a plant as healthy ver-

sus ‘Stressed’ provides value for determining if action is

needed, the greatest value comes when we can provide

a more specific stress label or category. Thus we eval-

uate how well each dataset experiment maintains stresses

at a “specified” label (i.e., a label that is a descendant of

‘Stressed’). To evaluate this, we compute a specified stress

metric (SpecStress) as the percentage of correctly predicted

stresses Ss that remain at a label that is a descendent of the

general plant stress label (‘Stressed’). We call any label that

is a descendent of ‘Stressed’ a “specified stress” because it

still provides useful, more narrowed information about what

stress is present in the image. We report the results of this

experiment in Table 4.

We can see across these experiments that there were

Generalized C-Withdrawn IC-Reform IC-Withdrawn

bb / p frogeye leaf spot septoria leaf spot healthy

bb / p frogeye leaf spot early blight corn borer

‘Biotic’ ‘Unknown’ ‘Fungal / Oomycete’ ‘Unknown’

nclb late blight holcus spot insect damage

nclb late blight corn borer healthy

‘Nectrotrophic’ ‘Unknown’ ‘Biotic’ ‘Unknown’

Figure 6: Example classification results at 90% confidence

from the three datasets (Ground truth / Base Classifier /

‘Final Label’). Labels bb/p and nclb correspond to ‘bac-

terial blight / phyllosticta’ and ‘northern corn leaf blight’,

respectively.

Confidence

Dataset: Base 50% 80% 85% 90% 95%

Tomato 100 94.6 76.5 72.8 71.5 59.3

Corn 100 99.8 82.5 80.4 80.4 60.2

Soybean 100 99.8 98.5 98.5 98.5 98.5

Table 4: SpecStress values for all three datasets.

more stresses at a “specified” label than generic ‘Stressed’.

This provides substantial value if we can successfully pin-

point an example to one category of stress. If successful,

and the prediction is correct, we have the ability to rule

out numerous tests or treatments because they are unneces-

sary for the provided label (this will be discussed further in

Sect. 5). As expected, as the confidence threshold increases,

more predictions are generalized further up the tree, push-

ing more predictions to the ‘Stressed’ label.

4.5. Hierarchical Comparison

We additionally compared to the related algorithm of [9]

and report the results in Table 5 for the specified metrics at a

90% confidence threshold. For [9], the learned parameters

(on the validation set) were λ90% = 0.398, 0.578, 1.011
for Tomato, Corn, and Soybean, respectively. All learned

parameters were found using confidence ǫ = 90% and ǫ̃ =
0.001.

For this comparison, we added two additional metrics.

C-Corrupt is the fraction of initially correct predictions of

the base classifier that are relabeled to an incorrect label off

the ancestral path of ground truth. Lower proportions are

desired. Note C-Corrupt will always be 0 for [8], but not [9].

The average of the final posterior values of test predictions
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Tomato Corn Soybean

[8] [9] [8] [9] [8] [9]

C-Persist .60 .52 .46 .65 .76 .75

C-Withdrawn .02 .01 .13 .03 .18 .02

C-Soften .38 .47 .41 .32 .06 .24

C-Corrupt .00 .00 .00 .01 .00 .00

IC-Remain .22 .48 .27 .71 .28 .42

IC-Withdrawn .05 .02 .26 .03 .29 .10

IC-Reform .73 .50 .48 .26 .43 .48

avg-sIG .58 .52 .44 .55 .63 .67

avg-Post .98 .66 .97 .73 .96 .89

% Valid (¬root) 97.5 98.9 80.9 97.6 82.1 97.3

Accuracy 96.1 89.4 92.4 71.7 85.5 93.4

Table 5: Comparing the approaches [8] (our approach) and

[9] at 90% confidence.

(avg-Post) are also presented. A value that meets the given

confidence threshold, but does not exceed the threshold by

a large margin, is desired (i.e., lower C-Withdrawn).

We see in 5 that [8] will correct significantly more ini-

tially incorrect predictions than [9]. The main benefit of

[8] is that there is an actual confidence guarantee for ev-

ery test prediction. This is reflected in the avg-Post scores

where the values for [9] tend to fall substantially below the

confidence threshold of 90%. The approach of [9] provides

no such guarantee on any test prediction, making the ap-

proach unreliable for our purposes. This also implies that

many of the predictions are being forced to remain deeper

in the tree, valuing specificity at the trade-off of accuracy.

Unlike [8], the approach of [9] introduces C-Corrupt errors.

Although the C-Corrupt for [9] in the Tomato dataset is re-

ported as .00, there are still initially correct predictions that

were “flipped” to incorrect labels (very small fraction). No-

ticeable corruption errors were incurred in the Corn dataset

and no corruption errors were introduced in the Soybean

dataset. To reiterate, the approach of [8] will only consider

ancestors of the base predictions for the final classification

label. This prevents the possibility of changing any orig-

inally correct (but unconfident) prediction to an incorrect

one, which could happen once we begin to consider non-

ancestral nodes as possible options. While considering non-

ancestral nodes could reduce the IC-Withdrawn value (and

potentially increase the IC-Reform value), the possibility of

a non-zero C-Corrupt value is unacceptable as this immedi-

ately results in the loss of confidence of the end user (e.g.,

farmer).

5. Discussion & Relevance

A contribution of the proposed approach is the ability

to output the root node label (‘Unknown’) or general stress

category label (‘Stressed’). Although non-descriptive, these

“worst case” output labels still provide the user (e.g., a

producer/farmer or farm manager) with useful information.

The stress in the image could be one not seen in that area be-

fore and therefore not included in the training set or a plant

resistance reaction that has yet to be documented. Regard-

less of the reason for withdrawing a prediction to the root

node or ‘Stressed’, the user knows that properly classifying

this stress will most likely require additional expertise or

testing.

Another contribution of this approach is having the capa-

bility to classify an example at any softened (non-terminal

and non-root) label. Any time an example is softened,

we are still able to exclude numerous tests and treatments

from consideration on how to properly assess and manage a

stress. This is best demonstrated in the context of the corn

stress relational tree. If an example was labeled as ‘Nutrient

Deficiency’, the user (e.g., a certified crop advisor) is able

to narrow their focus on activities that directly diagnose nu-

trient deficiencies such as soil testing and not expend time

or resources on other diagnostic approaches such as those

that would be used for biotic stresses. This narrowing of

possibilities allows for saving time, money, and effort on

effectively treating a plant stress.

As briefly mentioned in Sect. 3, one method we have in-

troduced for incorporating domain knowledge into the ap-

proach is by allowing the ability to hand-tune class priors

for individual stresses. An agricultural engineering expert

is best able to assess using additional information such as

epidemiological models, weather data, and cultivation prac-

tices to determine the likely stresses to appear. Given a set

of visually similar stresses, an expert can tune the priors to

place emphasis on a stress that is more likely to exist at a

given time. Thus external knowledge can be directly in-

jected into the approach via the use of the priors, providing

an advantage over existing approaches.

6. Conclusion

In this work, we presented an approach in the agricultural

domain to hierarchically classify various crop stresses with

a specified confidence level. Shortcomings in previous agri-

cultural applications with CNNs included being unable to 1)

generalize prediction labels and 2) make predictions with an

associated confidence. Therefore we applied the Bayesian

approach of [8] that models posteriors at every node/label in

a hierarchy. Inference starts from an initial hypothesis and

generalizes the label until meeting a particular confidence.

We evaluated the approach on Tomato, Corn, and Soybean

plant stress datasets at various confidence thresholds. Re-

sults showed this method provides a wide range of general-

ized labels and corrects many of the initially incorrect pre-

dictions, providing useful information to properly diagnose

a stress, which can lead to a quick and effective treatment.

We believe this approach has potential in future agricultural

systems, such as being deployed on drones for efficient and

effective surveillance and analysis of crop fields.
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