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Abstract

Plant disease is a major factor in yield reduction. Thus,

plant breeders currently rely on selecting disease-resistant

plant cultivars, which involves disease severity rating of a

large variety of cultivars. Traditional visual screening of

these cultivars is an error-prone process, which necessitates

the development of an automatic framework for disease

quantification based on field-acquired images using un-

manned aerial vehicles (UAVs) to augment the throughput.

Since these images are impaired by complex backgrounds,

uneven lighting, and densely overlapping leaves, state-of-

the-art frameworks formulate the processing pipeline as

a dichotomy problem (i.e. presence/absence of disease).

However, additional information regarding accurate dis-

ease localization and quantification is crucial for breed-

ers. This paper proposes a deep framework for simulta-

neous segmentation of individual leaf instances and corre-

sponding diseased region using a unified feature map with a

multi-task loss function for an end-to-end training. We test

the framework on field maize dataset with Northern Leaf

Blight (NLB) disease and the experimental results show a

disease severity correlation of 73% with the manual ground

truth data and run-time efficiency of 5fps.

1. Introduction

Recent awareness to meet the projected food produc-

tion demands has underlined the importance of effective

plant breeding strategies [13]. Despite the improvement in

molecular breeding strategies, the plant yield is currently

limited by the biotic stress factor i.e. diseases [32]. There-

fore, to reduce yield loss, the current breeding strategy is

based on the selection of disease-resistant plant cultivars

from a large population of cultivars [12]. Traditional visual

scoring of the diseased region by domain experts is time-

consuming and error prone due to inter/intra rater variabil-

ity [5]. To augment this screening strategy, various image

based sensors such as visible light imaging, thermal and hy-

perspectral imaging have been utilised [31]. This, in con-

junction with computer vision based methods (also termed

as plant disease phenotyping) permits an automatic, accu-

rate and high-throughput disease quantification. In recent

years, many methods for plant disease phenotyping have

been developed based on visible spectrum (RGB) imaging

in contrast to other imaging modalities such as (hyperspec-

tral, thermal etc.), since they require an expensive and so-

phisticated computational pipeline [19].

Notably, current disease phenotyping methods based on

RGB images can be classified into two different problem

formulations [31]: (i) Disease detection: defined as an ab-

sence or presence of disease region in an image and (ii)

Disease quantification: defined as the extent to which in-

dividual leaf has been affected. Various computer vision

techniques have been used to detect a wide variety of plant

diseases [31]. For example, authors in [40] adopted the

Hough transform and random forest algorithm to detect

early powdery mildew disease. Similarly, machine vision

system based on Support vector machine with a radial ba-

sis function [7], artificial neural networks [17] and Gaussian

mixture models [8] have been developed to detect angular

blight, orchid disease and wheat streak mosaic virus respec-

tively. With the advancement of deep learning in computer

vision tasks, many recent studies [11, 33] also utilised con-

volutional neural networks (CNNs) for plant disease detec-

tion. Amara et al. [2] used the LeNet model to detect ba-

nana leaf diseases whereas Mohanty et al. [25] utilised the

GoogleNet model to detect various biotic stress diseases.

The previously discussed methods classifies an image in

terms of presence or absence of a disease. However, ad-

ditional information regarding the disease’s location and

severity plays a pivotal role in current breeding strategies.

Thus, the main focus of the paper is disease quantification.

Prior work on disease quantification utilise leaf-level im-

ages to extract disease segments. For example, authors

in [1, 38] perform Otsu’s segmentation algorithm to ex-

tract the diseased region from single leaf images. Simi-
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larly, Phadikar et al. [27] employed Otsu’s segmentation

algorithm in excess green and excess red images [14] for

diseased region segmentation. Deep learning based models

have also been utilised for this purpose, [19] employed U-

net to segment the powdery mildew regions whereas, [36]

adopted VGG-16 model to classify the severity of the dis-

ease into four stages. The aforementioned methods address

a less challenging problem, based on destructive sampling

of plant leaves and standardized image acquisition condi-

tions [5]. This results in images with single leaves and

uniform background. However, the controlled experiments

for disease region segmentation are low-throughput and re-

stricts the temporal study of disease progression. Thus, for

precise breeding strategies, a processing pipeline based on

field images is desirable. In this respect, unmanned aerial

vehicles (UAVs) are used to capture the field images at low

altitudes in a high throughput manner.

Field images captured with UAVs suffer from complex

backgrounds with densely overlapped leaves, high variabil-

ity in lighting and perspective conditions. With the advance-

ment of deep learning, especially convolutional neural net-

works (CNNs), higher recognition accuracy in object detec-

tion and segmentation have been achieved [18, 42]. There-

fore, to tackle the aforementioned irregularities in field im-

ages, we present a deep learning framework (shown in Fig-

ure 2) that extracts phenotypic traits (such as area, length,

etc. of the diseased region) for precise detection and quan-

tification of disease based on field images of maize [39]

with Northern Leaf Blight (NLB) disease. However, the

dataset presented in [9] does not contain the disease region

and leaf instance masks; thus, these labels were generated

under the supervision of the experts (details presented in

the following section). The proposed framework simul-

taneously generates segmentation masks for each leaf in-

stance and its corresponding diseased region with a unified

feature map and a multi-task loss function for an end-to-

end training. The source code is available as a GitHub

repository at https://github.com/kanishgarg/

Cascade-MRCNN. Within the limited literature on this

dataset, authors in [9] presented a pipeline based on CNNs

for automatic identification of Northern leaf blight (NLB).

Notably, this method formulates the disease phenotyping

pipelines as a dichotomy case, yielding the presence or ab-

sence of disease based on field images. In contrast, an-

other study [35] on NLB dataset utilities Mask-RCNN to

only segment the disease region, while the proposed frame-

work also extracts leaf level details in addition to disease

segments to capture the extent to which each leaf has been

infected, necessary for quantitative evaluation.

In summary, this paper has the following contributions:

• The generation of disease region and leaf instance

masks in the existing dataset [39].

• An end-to-end deep learning framework with multi-

task loss function for simultaneous segmentation of

leaf and diseased region using unified feature maps.

• To the best of our knowledge, this is the first study to

quantify disease severity corresponding to individual

leaves from UAV field images.

Although the results of the deep learning framework have

been shown on maize plants, this end-to-end architecture

can be easily generalized for localization and quantification

of stress on other field plants. The rest of the paper is orga-

nized as follows: Section 2 describes the data annotations

steps and in section 3, the proposed methodology is eluci-

dated. Experimental results and analysis are given in Sec-

tion 4 and section 5 concludes the paper.

2. Dataset

The UAV images of NLB infected maize plants [39] are

used to show the effectiveness of our proposed framework

for disease quantification. The first step of the phenotyping

pipeline is the extraction of leaf instances. The leaf instance

masks for these images were generated in a semi-automated

fashion- Phenotiki [24]. This automated tool yields ac-

ceptable instances with input image and its corresponding

segmented image. Thus, for precise leaf-level annotations,

foreground segmentation (i.e. region of interest are plant

leaves) of the field images was performed. In plant phe-

notyping literature, the majority of the algorithms assume

strict conditions in terms of background content and utilise

simplified heuristics for plant segmentation [22]. However,

as previously mentioned, field images have complex back-

grounds (soil), uneven illumination and perspective vari-

ability; thus these approaches fail for field images. Various

texture-based algorithms [3, 22, 23] results in missed fore-

ground regions with uneven illuminations. In addition, the

color similarity between the diseased regions and soil re-

sults in the over-segmentation of the leaves in these regions.

Thus, for a robust and accurate plant leaves segmentation,

a statistical method, Mean-shift Bandwidths Searching La-

tent Dirichlet Allocation (MSBS-LDA) [37] was employed.

Figure 1 shows the qualitative comparison of different seg-

mentation algorithm, K-means [4] segmentation algorithm

was also used, due to its widespread adoption in intensity-

based plant segmentation.

Precise disease localization is essential to extract the

phenotypic traits that quantify the disease’s severity for each

leaf instance. However, the dataset and its corresponding

labels generated by the authors in [39] are in the form of

line markers corresponding to the main axis of the disease

spots, not directly applicable for the disease quantification

pipeline. Thus, the diseased regions were manually labeled

with the help of VGG Image Annotator (VIA) [10], guided

with the aforementioned line annotations [9].
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Field Image Samples Ground-Truth K-Means Clustering Texture+Otsu+LevelSet MSBS-LDA

Figure 1. Qualitative comparison of different segmentation algorithms on field image data.

3. Methodology

The proposed deep learning architecture also termed as

Cascaded MRCNN (shown in Figure 2) consists of a two-

level approach for segmenting instances (leaves in our case)

and the corresponding part segmentation (lesion spots for

each leaf instance) in an end-to-end manner. We describe

the design of the proposed framework in detail in the fol-

lowing subsection.

3.1. Cascaded MRCNN

Given the UAV field images and the corresponding an-

notated images containing leaf instances and diseased re-

gion, one approach to extract the phenotypic traits based

on the segmented diseased region corresponding to an in-

dividual leaf is to (i) firstly segmenting the leaf instances

using state-of-the-art architecture Mask R-CNN [16] fol-

lowed by (ii) segmenting the diseased region for each leaf

instance using Fully Convolutional Networks (FCN) [20],

that is trained on the instances obtained from Mask R-CNN.

However, this results in an additional overhead of training

two networks and repetitive feature extraction. To overcome

the aforementioned limitations, Cascaded MRCNN is de-

signed that efficiently utilize the feature maps obtained dur-

ing the leaf instance segmentation task. An additional mask

branch (Cascaded Mask Branch) is introduced along with

the Primary Mask Branch of Mask R-CNN architecture that

learns to semantically segment the object sub-parts (dis-

eased regions corresponding to leaves) from the encoded

feature maps of the object regions (leaves). In contrast to

cascading the feature maps presented in PSDet [41], the

feature maps is re-utilised to generate both the object and

sub-object masks.

Training: To train our Cascaded MRCNN in an end-

to-end fashion, a multi-task loss (LCascade) is used, defined

as:

LCascade = Lcls + Lbox + Lprimary−branch

+ Lcascaded−branch (1)

The classification loss Lcls, bounding box loss Lbox and

primary mask branch loss Lprimary−branch are identical as

those defined in [16]. For each RoI, the cascaded mask

branch outputs a m×m mask (M̂ ) on which per pixel sig-

moid is applied. A weighted pixel-wise cross entropy loss

Lcascaded−branch is used, defined as:

Lcascaded−branch =
∑

y∈M,ŷ∈M̂

[w1ylog(ŷ) + w0(1− y)log(1− ŷ)] (2)

where M and M̂ are the ground truth and predicted sub-

object masks. w0 and w1 are the class weights introduced

because of the intra-class data imbalance. The values of w0

and w1 depends on the sub-object size. In our case, as the

diseases region (class-1) on an average spans a small part

of the leaf (empirically observed), thus we set w0 = 0.15
and w1 = 0.85. We trained our Cascaded MRCNN in an

end-to-end manner on NLB infected field images of maize

data (172 samples, 80:10:10 split, annotation details given

in Section 2). To further increase the variability of the data,
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Figure 2. Cascaded MRCNN framework. Given an input image (i) Primary mask branch predicts individual leaf segments (Leaf instance

segmentation) and a (ii) Cascaded mask branch is added that utilises the feature maps corresponding to leaf instances for generating

diseased region mask

various geometric and color based augmentations were also

applied.

An NVIDIA Quadro P5000 with 16 GB GDDR5 mem-

ory and 2560 Cuda cores was utilized for training.

4. Experimental Results

In this section, we show the effectiveness of the proposed

framework evaluated using the following measures [29]:

Dice Accuracy: Dice Accuracy score is used to mea-

sure the degree of overlap between the predicted result

(P pr) and ground truth (P gt) binary segmentation masks.

DiceAccuracy(%) =
2|P pr ∩ P gt|

|P pr|+ |P gt|
(3)

Symmetric Best Dice (SBD): To estimate the average leaf

instance segmentation accuracy symmetric best dice is used.

For each leaf instance the ground truth label yielding the

maximum dice accuracy score is used and averaged over all

the leaves.

BD(Lpr, Lgt) =
1

M

M∑

i=1

max
1<=j<=N

2|Lpr
i ∩ L

gt
j |

|Lpr
i |+ |Lgt

j |
(4)

SBD(Lpr, Lgt) =

min{BD(Lpr, Lgt), BD(Lgt, Lpr)} (5)

where Lpr and Lgt are predicted and ground truth leaf

instance labels and | · | represents the area or the pixel count.

Difference in Count (DiC): To evaluate the precision

of the algorithm in determining the correct number of

leaves DiC is used.

DiC = #Lpr −#Lgt (6)

Latency: To evaluate the runtime efficiency of the pipeline,

latency (Inference time taken by 1 sample image ) is evalu-

ated. For deep learning models, reported Latency values are

calculated using the NVIDIA Quadro P5000 GPU machine.

4.1. Baseline Method

Firstly, a disease phenotyping pipeline consisting of two

steps: (1) leaf instance segmentation and (2) disease region

segmentation is designed, where the deep neural networks

corresponding to the two tasks (details given in the follow-

ing subsections) are trained independently. We show the im-

proved disease severity quantification performance in com-

parison with this baseline approach.

4.1.1 Leaf Instance Segmentation

In plant phenotyping literature, current methods for leaf

instance segmentation primarily rely on either (i) extract-

ing information from Euclidean distance map (EDM) of

the segmented plant image or (ii) extracting leaf instances

based on shape matching [29]. In addition, methods based

on active shape models or deformable templates have been

also been proposed [21, 34]. However, these solutions were

proposed for plant images captured in a controlled environ-

ment and for specific leaf shape characteristics, thus these

methods fails in dense overlapping scenarios. To deal with
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Figure 3. Leaf instance segmentation results of the proposed Cascaded MRCNN

occlusion, various deep neural networks based on recur-

rent neural network [28] and Mask R-CNN [16] have been

proposed. Mask R-CNN achieved a Symmetric Best Dice

(SBD) similarity score of 73% with the ground truth test

data. The Non-Maximum Suppression (NMS) threshold is

kept relatively high because of high degree of overlapped

leaves. In contrast to Mask R-CNN, instance segmentation

with recurrent attention performs sequential analysis of the

input image to deal with complex object distributions and

make predictions that are coherent with each other. A SBD

similarity score of 76% on the same test data was obtained

using this network. The symmetric best dice (SBD), differ-

ence in count (DiC) and the latency values along with corre-

sponding standard deviations are reported for each method

in Table 1 and a qualitative comparison is shown in Figure

4.

4.1.2 Diseased Region Segmentation

Within the phenotyping literature, segmentation algorithm

proposed for disease region segmentation [19] were utilised

for comparison with the proposed framework. Conventional

machine learning algorithms like K-means [15] and Gaus-

sian mixture model (GMM) [26] with color and texture fea-

tures generated noisy images, as shown in Figure 5; this is

due to the similarity of the diseased region with the back-

ground (soil). Also, in some of the images with uneven il-

luminations and mosses, these algorithms fail to give the

desired results. Compared to the deep learning models,

these previously discussed approaches have low represen-

tation ability, consequently we also compared the proposed

framework with Fully Convolutional Networks (FCN) [20]

& SegNet [6]. These networks trained with our annotated

data augmented with various noises were able to segment

the diseased region with a dice accuracy of 92%.

Methods ( leaf instance ) SBD DiC Latency

Marker Controlled Watershed 0.61 ± .08 3.4 ± 1.7 1.9 ± .38

Mask-RCNN 0.73 ± .10 1.6 ± 1.2 0.2 ± .05

Recurrent Attention 0.76 ± .09 0.9 ± .51 0.5 ± .14

Cascaded MRCNN 0.74 ± .12 1.1 ± .7 0.2 ± .09

Table 1. Symmetric Best Dice, Difference in Count and Latency

values of the different methods and the Primary Mask Branch of

the proposed Cascaded MRCNN.

Methods ( Diseased Region ) Dice Accuracy Latency

K-means 0.49 ± .08 0.94 ± .32

Texture + Otsu 0.51 ± .07 0.07 ± .028

GMM 0.64 ± .05 1.08 ± .46

SegNet 0.91 ± .04 0.06 ± .03

FCN 0.92 ± .03 0.08 ± .02

Cascaded MRCNN 0.91 ± .06 0.2 ± .09

Table 2. Dice Accuracy and Latency of different baseline methods

and Cascaded Mask Branch of the proposed Cascaded MRCNN

for disease region segmentation.
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Figure 4. Example instance segmentation results of different methods

Figure 5. Selected result with different segmentation algorithms to extract the diseased region (Top right shows the Dice Accuracy scores)

4.2. Cascaded MRCNN

To reduce the overhead of training two networks for this

task and to efficiently reuse the features extracted from the

image, we designed an end to end pipeline Cascaded MR-

CNN. The proposed framework follows a single stream ap-

proach i.e extracting the disease regions from the feature

maps of each leaf instance. Cascaded MRCNN success-

fully segments the leaf and diseased regions from the image

with a Dice accuracy of 91% for disease region segmenta-

tion and an SBD similarity score of 74% for leaf instance

segmentation.

4.3. Disease Quantification

Disease severity has been defined as the ratio of the area

of the diseased region to the area of the infected leaf [30],

given as follows:

Severity Index (SI) =
Diseased region area

Leaf area
(7)

In this paper, an ablation study with respect to the state-

of-the-art algorithms for leaf instance and diseased region

segmentation was conducted to design an efficient archi-

tecture for severity quantification. The correlation and the

mean square error (MSE) between the predicted and ground

truth SI were used as evaluation metrics. Experimental anal-

ysis and comparisons with different model selection in the

parallel pipeline show that the recurrent attention module

(for Leaf Instance Segmentation) with the FCN (for dis-

eased region segmentation) achieves a correlation of 71%

and MSE of 3.0094. Whereas the SI computed with the

Figure 6. Correlation plot of predicted SI with ground truth SI

proposed framework shows a 73% correlation and MSE

(2.0437). Figure 6 shows the correlation plot and Table 3

summarizes the correlation and MSE metrics.

5. Conclusion

In this paper, we introduced a deep learning framework

(Cascaded MRCNN), for disease quantification based on

field images. In contrast to the current disease phenotyp-

ing methods, that classify the presence or absence of dis-

eases in the field images, our proposed framework yield dis-

ease severity based on segmentation of diseased region cor-

responding to each leaf instance in an end-to-end manner,

that permits high-throughput and non-invasive screening of

fields, crucial for the selection of disease-resistant crops.
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Leaf Instance Segmentation Diseased Region Segmentation Design MSE Correlation

Mask R-CNN FCN Parallel 4.4423 0.68

Mask R-CNN SegNet Parallel 4.3053 0.67

Recurrent attention model FCN Parallel 3.0094 0.71

Recurrent attention model SegNet Parallel 4.0219 0.62

Cascaded MRCNN – End to End 2.0437 0.73

Table 3. Correlation and MSE based on predicted SI and ground truth SI
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