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Abstract

Given a target pose, how to generate an image of a spe-

cific style with that target pose remains an ill-posed and thus

complicated problem. Most recent works treat the human

pose synthesis tasks as an image spatial transformation prob-

lem using flow warping techniques. However, we observe

that, due to the inherent ill-posed nature of many compli-

cated human poses, former methods fail to generate body

parts. To tackle this problem, we propose a feature-level

flow attention module and an Enhancer Network. The flow

attention module produces a flow attention mask to guide the

combination of the flow-warped features and the structural

pose features. Then, we apply the Enhancer Network to re-

fine the coarse image by injecting the pose information. We

present our experimental evaluation both qualitatively and

quantitatively on DeepFashion, Market-1501, and Youtube

dance datasets. Quantitative results show that our method

has 12.995 FID at DeepFashion, 25.459 FID at Market-1501,

14.516 FID at Youtube dance datasets, which outperforms

some state-of-the-arts including Guide-Pixe2Pixe, Global-

Flow-Local-Attn, and CocosNet.

1. Introduction

Conditional image generation and synthesis becomes a

popular computer vision task recent years [29]. The term

“conditional” indicates that the output is restricted according

to prior knowledge, i.e. inputs that provide the subjects

or styles. One of the ordinary conditional image synthesis

task is to generate the human image with new perspective,

outfit and pose, which has been widely applied to areas

such as image editing [10, 50], movie making [2], person

re-identification (Re-ID) [21, 34, 43, 48], virtual clothes

try-on [4, 16], etc.

In this work, we focus on the human pose transfer prob-

lem. We receive one or more images of a person as well as

a specified human pose as references, and we provide the

synthesized a realistic image represents the person with the

†Equal contribution, ‡ Corresponding author.

Figure 1: (a) The inputs of the task: a reference image with a

target pose. (b) The outputs of the task: a generated human in

the target pose. From left to right: the ground truth, results

obtained using [35], results obtained using our proposed

method. The overlying parts are enlarged below.

referred pose. Researchers have proposed many approaches

to tackle this problem recently [25, 38, 51, 35, 45, 20]. The

basic idea behind these works is to firstly provide a coarse

pose transition image, then employ a Generative Adversarial

Network (GAN) based generator to obtain the realistic result.

The coarse pose transition is achieved with many differ-

ent approaches, for instance, difference map guidance [25],

feature maps deformation [38], features attention [51] and

optical flow [35, 45, 20]. These approaches address the most

essential part of this task, which is to preserve texture details
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from the reference image, thus the person synthesized would

appear to be the same.

Although these works can produce synthesized images

with great overall qualities, their reality often suffer when

the reference poses are “complicated”, for instance, the arms

are placed in front of one’s body or the legs are crossed over,

Figure 1 provides us an intuitive result. The reason for the

misshapen limbs is two-fold: firstly, the difficulty of estimat-

ing how would a new pose looks like differs according to

the correspondence between the referred and the target pose.

Second, the deep neural network systems contain several

modules with hundreds of layers, and the information about

the relationship between body parts, a.k.a the pose, is diluted.

As a result, the system is more likely to pay attention to the

appearance rather than the pose itself, and it might not be

that necessary for a hand to be connected to the wrist, to let

the GAN discriminator consider it is realistic.

In this paper, we aim to fix the aforementioned broken

limbs problem, while keeping the overall synthesis quality.

We follow the optical flow based methods [35, 45, 20] as

the baseline, and propose two modules to drive the whole

system focus more on the completeness and the reality of

the human body, namely, the Flow-Attention Network and

the Pose-Enhancer Network.

In general, the optical flow based methods predict the spa-

tial relativity between the pose obtained from the reference

image and the target pose. Thus the networks will get rough

guidance, that from which patch of the reference image they

could obtain the correct appearance for the generation of

the new image (often by a warping). However, such guid-

ance fails once the reference image does not contain perfect

information for the warping, resulting in regions with high

ambiguity, which might be synthesized as the broken limbs.

To address this problem, we employ the attention mech-

anism [42, 40, 44] to produce a mask of the fine-grained

locations of body parts. By this, we instruct the network

generate the ambiguous regions, i.e. regions without cor-

responding appearances in the reference image, using the

structure information of the human body.

On the other hand, the aforementioned optical flow-based

methods utilize the target pose only for the coarse pose tran-

sition, and the term “realistic” is guaranteed mostly on the

performance of the GAN module. However, it is difficult

for a typical GAN modeling long-range dependencies such

as the complicated structured pose information, the GAN

loss is mostly satisfied by the generation of high-resolution

appearances details that are spatially independent [44]. To

address this information dilution problem, we propose the

Enhancer Network to further emphasize the information

about the structured pose information. The Enhancer Net-

work receives both the output of the previous GAN generator

and the connected joints map of the human pose as inputs

and produces the refined result. We build the Enhancer Net-

work with stacked SPADE blocks [33], such that we can

“inject” the pose information while retaining the synthesized

semantic information from the former generator.

Our main contributions are summarized as follows:

1. We propose a novel system to improve the broken limb

problem that is observed in the previous pose transfer

studies. The system contains two extra modules, the

Flow Attention Module and the Enhancer Network,

which could provide and preserve the structured pose

information through the whole system.

2. We conduct the proposed method on three different

datasets, and also propose a new metric for the com-

pleteness of the body. We demonstrate experimental

results that are qualitatively and quantitatively superior

compared to former state-of-the-art methods.

2. Related Works

2.1. Human Pose Generation

We formulate the pose transfer task as a conditional gen-

erative problem, using the conditional generative adversarial

network(CGAN) [29] framework. Former researches apply

U-net architecture [37] network with skip-connections to

generate the target image straightforwardly [25, 26]. How-

ever, this simple approach causes feature misalignment, and

the key to human pose generation becomes finding an ac-

curacy mapping from reference pose to target pose. There

also exist works that utilize the body priors to directly warp

the reference to the target pose by a spatial transformer

or deformable skip connections in the pixel level [14, 38].

Later, the flow-based methods are widely used in the human

pose generation to transform the deformation of reference

to the target pose [9, 20, 22, 35, 41]. However, flow-based

methods struggle to learn the correct mapping between the

source and target due to body self-occlusion and large mo-

tions. Recently, several unsupervised generative frameworks

have focused on the disentanglement of object pose and ap-

pearance [24, 15, 6]. Inspired by these approaches, existing

methods attempt to supplement the region where the flow

is lost by the structure information of the human body, for

example, the features extracted from the target pose. Li et

al. [20] concatenate the flow warped features of reference

images and target pose features to generate images. Ren

et al. [35] learn an occlusion mask to select between flow

warped features and target pose features. However, those

methods are hard to handle complicated pose due to a lack

of fine-grained guidance in body details.

2.2. Generative Adversarial Networks

A generative adversarial network [8] aims to synthesize

realistic images by training a generator and a discriminator
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Figure 2: The overview of our system which consists of two networks: Flow-Attention Network and Enhancer Network.

at the same time. The generator tries to produce realistic

images to fool the discriminator, and the discriminator tries

to distinguish the images generated by the generator from

the real images. Some style-based generative adversarial

networks [18, 33] borrow the idea of style transfer using

adaptive normalization with learned coefficients to synthe-

size images. Huang et al.[12] propose Adaptive Instance

Normalization (AdaIN) to change the style of one image to

another by normalization layers. The normalization layers

adjust the mean and variance of the features of the content

image by new computed mean and variance. It is adopted in

many tasks such as StyleGAN [18] that can generate high-

quality images. SPADE [33] is another normalization layers

called spatially-adaptive normalization. It spatially modu-

lated the activation with learned scale and bias per channel

thus can hold the semantic information to generate semantic-

aligned images. We use SPADE in the enhancement render

module to maintain the body parts in the pose by enhancing

the semantic pose information.

2.3. Optical­flow

Optical flow can describe the motion of two objects by

showing the pixel displacement from one object to another.

The optical flow from two images can be estimated accu-

rately by deep neural network [5, 13, 28]. It is further used

in many computer vision tasks such as video frame inter-

polation [30, 31], multi-view synthesis [49, 32] , image in-

painting [36] etc. For the human pose transfer task, optical

flow can indicate the motion from the reference pose to the

target pose. Therefore, we use the optical flow to estimate

the corresponding patches between the reference pose and

the target pose similar to many other human pose transfer

tasks [9, 20, 22, 35, 41].

3. Our Method

3.1. Overview and Notation

Inspired by the coarse-to-fine strategy [39, 3], we di-

vide this task into two stages. The two corresponding sub-

modules are Flow-Attention Network and Enhancer Network.

The overall pose transfer framework is illustrated in Figure 2.

Given the reference image Ir and its corresponding pose

Sr, together with the target pose St, the flow-guided net-

work predicts the correspondence flow of Sr to St denoting

as f [Sr→St] and the flow attention module generates the

Flow-Attn-Mask M . Then, guided by the M , the Flow At-

tention Network makes feature fusion between pose features

Fp of St and the flow warped features Fw by f [Sr→St] to

generate coarse result Icoarse. We design an Enhancer Net-

work to refine the Icoarse with the injection of target pose

information. In our approach, we employ connected joints

map pair (Jr, Jt) of reference pose and target pose as well

as pose heat-map [25, 38] pair (Sr, St) to represent pose

information.

3.2. Flow Attention Network

Overview of Flow Attention Network We first describe

the overall architecture of the Flow Attention Network. As

shown in Figure 2, an appearance encoder Gea and pose

encoder Gep are applied to encode the reference image Ir
and the target pose (St ⊕ Jt) (the concatenation of pose

heat-map and body joint map ) into the features Fr and Fp.
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The flow-guided network takes reference pose Sr, tar-

get pose St and reference image Ir as inputs, and outputs

flow f [Sr→St]. The flow f [Sr→St] represents where the

patches of reference image should place in the target im-

age. Then reference features Fr is warped along the flow

f [Sr→St] to render the target pose as the local attention

block proposed in [35]. However, the mapping relation

f [Sr→St] between reference and target pose fails to be

found for some body parts such as arms in complicated

pose. It means that the model is unable to generate the cor-

responding limbs only relying on the warped features Fw.

The flow attention module is designed to guide the missing

region generation based on pose features Fp where the flow

f [Sr→St] loses. This module outputs a Flow-Attn-Mask

M , which is between 0 to 1 indicating the weight of pose

features Fp and the flow warped features Fw. We employ the

tuple (Fw, Fp, f [Sr→St],M) for further target image gen-

eration where Fw ∈ R
HW×C , Fp ∈ R

HW×C , f [Sr→St] ∈
R

H×W ,M ∈ R
H×W ,H ,W are feature spatial size andC is

the channel-wise dimension. The M is employed to indicate

feature fusion based on flow warped features Fw and pose

features Fp. The combination strategy is formulated as

Ffuse =M⊗ψ(Fr, Fp, f [Sr → St])+(1−M)⊗Fp (1)

where ⊗ is the element-wise multiplication operation and

ψ(Fr, Fp, f [Sr→St]) denotes warping Fr along the flow

f [Sr→St] to render the target pose by the local attention

block described in [35]. Then we feed the fusion features

Ffuse to a image decoder Gd to synthesize the coarse target

image Icoarse.

Flow Attention Module The Flow Attention Network gen-

erate the target image based on Fw warped by f [Sr→St].
However, due to the body self-occlusion or large motions,

the guided-flow network may fail to generate accurate

f [Sr→St] that maps relations between reference and tar-

get pose in some body regions, resulting in losing limbs

in generated result. Therefore, we design the flow atten-

tion module to generate Flow-Attn-Mask M , which indicate

whether the flow warped feature Fw or target pose feature Fp

𝑭𝒘𝑰𝒓 𝑭𝒑 𝑴 𝑰𝒄𝒐𝒂𝒓𝒔𝒆 𝑰𝒕
Figure 4: The visualization results of warped features Fw,

pose features Fp and Flow-Attn-Mask M .

is responsible for further translation network feature fusion.

Thus, we can accurately locate the flow-missing region by

M , and then rely on the pose features Fp to generate new

contents. The features Ff of flow-guided network roughly

implicit the mapping relationship whether the information

of a target domain exists in the references. However, coarse

information of Ff is hard to indicate each location of body

to select features between Fw and Fp. To tackle this, we

design a flow attention mechanism to constrain the flow-

missing region to specific body location. The flow attention

module is a feed-forward CNN aims to predict a Flow-Attn-

Mask M . We apply the concatenation of body joint map pair

(Js, Jt) as the input of flow attention module. Then the body

joint features FJ are extracted by the encoder. As shown

in Figure 3, the flownet features Ff and body joint features

FJ are directly concatenated due to their spatial semantic

correlation. The flow attention block Alimb consists of two

fully convolutional layers and a softmax layer. We apply

the flow attention block to the concatenation of FJ and Ff

to obtain flow attention weights Al ∈ R
H×W (H ,W are

feature spatial size). Then the flow attention flow features

F attn
f is calculated as

F attn
f = Alimb(Ff , FJ)⊗ Ff = Al ⊗ Ff . (2)

Finally, the FJ and F attn
f are concatenated for next decoder

layer as illustrated in Figure 2.

To further analyze the effect of Flow-Attn-Mask M , we

visualize the features Fw and Fp by decoding them to images

respectively using Gd (shown in Figure 4). The arm of Fw

fail to generates due to lack of flow f in arm region. However,

Flow-Attn-Mask M correctly indicates this flow missing

region (the values of arm in M are close to 0). Thus we can

obtain a limb-completeness result with the supplement of

pose features Fp.

3.3. Enhancer Network

We obtain the coarse result Icoarse by above Flow Atten-

tion Network. However, it may obtain broken limbs with

some complicated conditions because the structural pose

information fades away during the Flow Attention Network

generation stage. To address this problem, we present En-

hancer Network by injecting the pose information to recover
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the body details.

We employ the spatially-adaptive de-normalization

(SPADE) block [33] to refine the generated result Icoarse.

As illustrated in the right part of Figure 2, our Enhancer

Network architecture is composed of several ResNet blocks

with upsampling layers. The first layer of the Enhancer Net-

work is fed into the target body joint map Jt. The Enhancer

Network is injected with the the concatenation of coarse

generated result Icoarse and the target pose joint map Jt. For

each SPADE block, we use interpolation to convert the con-

catenation to the scale of corresponding feature map. Then

the concatenation is encoded by two convolutional layers

and outputs α and β to modulate the normalization layer

in the Enhancer Network. The SPADE blocks preserve the

pose structural information by projecting target body joint

map Jt to different scales of layers. Finally, the Enhancer

Network generate the refinement image Ifinal.

3.4. Losses

The loss functions we apply to train the total network

consist of four parts: the flow loss, the image-level recon-

struction loss, the face loss and the adversarial loss.

Flow Loss. The flow f [Sr→St] is constrained both in fea-

ture and image level. The flow loss of feature level computes

the similarity between the features of Ir warped by flow

f [Sr→St] and features of ground truth target image It at

the VGG [39] feature level [35]. Given the reference image

Ir and ground truth target image It, we obtain the features

VGG19(Ir) and VGG19(It) of the images encoded by pre-

trained VGG-19 model. We maximize the cosine similarity

at each coordinate (i, j) in the feature level:

LfF =
1

N

∑

i,j

exp(−T(i,j)) (3)

T = Dcos(Wθ(VGG19(It), f [Sr → St]),VGG19(It))
(4)

where N is the number of feature map positions, T ∈
R

H×W , Wθ denotes feature warping along the flow

f [Sr→St], Dcos(∗) is the cosine similarity on the channel-

wise dimension and i,j are the index of feature spatial di-

mension.

We apply ℓ1 loss to calculate the flow loss in image level,

which is is defined as

LfI = Dℓ1(Dθ(Ir, f [Sr → St]), It) (5)

where Dθ(Ir, f [Sr → St]) denotes warping image Ir along

the flow f [Sr→St] to align it with the target image It, and

Dℓ1(∗) is the ℓ1 loss. Then the flow loss is formulated as

Lflow = LfI + LfF (6)

Image-Level Reconstruction Loss. We use ℓ1 loss and

perceptual loss [17] to minimize the distance between the

generated image and the target image. Since the network

generates Icoarse and the enhanced image Ifinal, the loss is

calculated between Icoarse, It and Ifinal, It:

LI = Dℓ1(Icoarse, It) +Dℓ1(Ifinal, It)

+Dℓ1(VGG19(Icoarse),VGG19(It))

+Dℓ1(VGG19(Ifinal),VGG19(It))

(7)

where VGG19(∗) is the features extracted from pre-trained

VGG-19 model.

Face Loss. To strengthen the realism of the face generation,

we add a separate face loss to the face region. On the basis

of the generated full image, we determine the face region

according to six face pose keypoints(nose, neck, left ear,

right ear, left eye and right eye). With the same as the loss of

full image, face loss is composed of ℓ1 loss and perceptual

loss which formulated as

Lface = Dℓ1(Gθ(Ifinal),Gθ(It))

+Dℓ1(VGG19(Gθ(Ifinal)),VGG19(Gθ(It)))
(8)

where Gθ(∗) is the face region.

Adversarial Loss. The adversarial loss is calculated by the

image discriminator D and the face discriminator Df , we

use the loss format of LS-GAN [27]:

Ladv = (D(Icoarse)− 1)2 + (D(Ifinal)− 1)2

+ (Df (Gθ(Ifinal))− 1)2
(9)

Total Loss. The final loss is the weighted sum of those

losses as follow:

Lfull = λfLflow + λILI + λfaceLface + λadvLadv

(10)

where λf , λI , λface and λadv denote the weights of corre-

sponding losses.

4. Experimental Results

4.1. Datasets

DeepFashion Dataset. The DeepFashion Dataset [23] con-

tains 52,712 model images and 7,982 personal identities. We

split the dataset as [51] and select 101,966 pairs for training

and 8,570 pairs for testing. The images in the DeepFashion

are high-quality with a clean background and retrieved from

models with in-shopping clothes, which are simple in the

pose. To evaluate the performance on complicated poses, we

select 101 pairs of test datasets in hard pose (legs raise, arms

overlap torso, etc.) to evaluate the human body completeness

of generated images by PRE (introduced in Sec 4.2).

Market-1501 Dataset. The Market-1501 Dataset [47] con-

tains 32,668 images and 1,501 personal identities. The im-

ages in the Market-1501 dataset are low-resolution (128×64)
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Table 1: Results of the quality of the generated human images using different metrics.

DeepFashion Market-1501 Youtube-dance

FID LPIPS PRE JND FID LPIPS MLPIPS JND FID LPIPS PRE JND

Vid2Vid[41] 16.692 0.256 12.97 4.96% 56.635 0.348 0.187 2.50% 44.803 0.278 5.274 1.22%

GuideP2P[1] 15.658 0.245 12.06 8.04% 50.848 0.433 0.202 2.19% 18.176 0.159 4.745 4.96%

CocosNet[45] 16.493 0.238 11.23 9.48% 36.804 0.304 0.164 10.03% 17.517 0.155 4.562 2.43%

GFLA[35] 13.234 0.224 12.97 23.92% 47.425 0.338 0.202 19.61% 15.898 0.165 4.707 8.10%

Ours 12.995 0.220 10.38 26.88% 25.459 0.292 0.151 24.67% 14.516 0.148 4.228 12.91%

with wild backgrounds. We split the datasets as [51] and

select 263,632 training pairs and 12,000 testing pairs.

YouTube-Dance Dataset. We collect dance videos from the

YouTube website and extract frames from videos to build

the YouTube-Dance Dataset. The YouTube-dance dataset

contains 70,000 images and 1,400 personal identities for

training. The test dataset is composed of 2,700 images with

1,350 personal identities. We randomly selected 70000 pairs

for training and 2,700 pairs for testing. The images in the

YouTube-dance dataset vary in terms of the poses. Therefore,

we apply it to evaluate the body completeness of generated

images. In order to focus on the generation of body parts, we

remove the background to eliminate interference. Consider-

ing that the current segmentation methods are state-of-the-art,

we segment each image to retain human foreground.

4.2. Metrics

Fréchet Inception Distance (FID) [11] and Learned

Perceptual Image Patch Similarity (LPIPS) [46] are two

commonly-used evaluation metrics in the human pose trans-

fer task in recent years. The FID score compares the statistics

of generated samples to real samples, using the activations

of the Inception-v3 network. If a generated image contains

meaningful objects, the divergences between its activation

distribution and the real images’ would be small. This dis-

tance helps measure the semantic realism of generated image

samples. The LPIPS score, on the other hand, calculates the

distance of the target image and generated results by features

at the perceptual level. If the generated image is similar to

the target image, the distance of features would be small.

Therefore, we apply this metric to measure the similarity

between the generated image and target image in the feature

domain. To alleviate the interference of the backgrounds

in the Market-1501 Dataset, we also calculate Mask-LPIPS

which was applied in previous work [25]. We also conduct a

subjective test based on metric Just Noticeable Difference

(JND) to evaluate the subjective quality of generate images.

To evaluate the human body completeness of generated

images, we design a pose reconstruction error (PRE) to mea-

sure it. If an image is well-generated, the pose information

obtained by the pose estimation network should be close

to the origin pose used for image generation. Therefore,

we first obtain the poses of the generated images through

AlphaPose [7] and calculate the ℓ1 loss of pose coordinates

between ground truth and the estimation pose of generated

results. The PRE metric is defined as

PRE =
1

K

∑

i

|p̃i − pi| (11)

Here, p̃i and pi are the i-th keypoint of ground truth pose

and the generated image pose, and K is the number of pose

key-points.

4.3. Implementation

Our flow-guided translation network is built based on the

auto-encoder structures. The basic component of Gea, Gep

and Gd is residual block. For the flow-guided network, we

utilize dilated Convolutions to enlarge the receptive fields.

In the Flow Attention Network, we make features fusion

between Fw and Fp by M at resolutions of 32 × 32 and

64 × 64. The Enhancer Network consists of four SPADE

residual blocks with up-sampling layers. In our experiments,

we train the Flow-Attention Network first. Then we freeze

the Flow-Attention Network and train the Enhancer Network.

We apply the Adam [19] optimizer with learning rate 10−4.

The setting of batch size is 8 while training.

4.4. Comparison with Sota Methods

Our proposed approach is compared with several state-of-

the-art methods including Guided-Pix2Pix [1], Global-Flow-

Local-Attn [35], CocosNet [45] and Few-Shot-Vid2vid [41].

The quantitative comparison results are shown in Table 1.

It shows that our proposed approach outperforms others in

terms of metric FID and LPIPS, which means our model can

generate realistic images and detailed textures. Furthermore,

the metric PRE demonstrates that our method can preserve

better body completeness. Note that the FID and LPIPS of

Few-Shot-Vid2Vid in the Youtube-Dance Dataset are much

higher than other methods since our implementation is dif-

ferent from Few-Shot-Vid2Vid. We only use the key points

because of the inaccuracy of the UV map in dance frames.
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Figure 5: The qualitative results compared with state-of-the-art methods.

In our subjective evaluation, we random select 200 images

for each dataset and model. 5 volunteers are required to

choose the more realistic image from the data pair of ground-

truth and generated images. Table 1 shows that our model

achieves the best result in three dataset.

Further visualization comparison results of different meth-

ods in DeepFashion, Market-1501, and Youtube-Dance are

shown in Figure 5. For the DeepFashion Dataset with high-

quality images, Guided-Pix2Pix and Few-Shot-Vid2Vid are

insufficient to represent textures or color of the clothes.

Meanwhile, the generated arms of comparison methods in

row 1 of Figure 5 produce distortions when arms and clothes

3376



Table 2: Quantitative results of the ablation study that ex-

cludes different modules from the overall system.

FID LPIPS PRE

w/o Flow Attn Module 16.014 0.166 4.826

w/o Face Loss 15.451 0.151 4.386

w/o Enhancement Network 14.831 0.149 4.302

Full 14.516 0.148 4.228

Full modelReference image
w/o Enhancer 

Network
Target Pose w/o 𝑳𝒇𝒂𝒄𝒆 w/o Flow Attn

Module

Figure 6: The visualization of ablation results shown in

Table 2.

are overlapping. It can be seen that our model can generate

complete and realistic arms. Furthermore, as shown in row

2 of Figure 5, our method can preserve the details of clothes

even with complex patterns. Compared to the DeepFash-

ion Dataset, the images in the low-resolution Market-1501

Dataset vary in terms of the pose and background. We can

observe our method can generate images with the correct

pose and fewer artifacts than other competitors. The im-

ages in Youtube-Dance Dataset provide complicated poses,

and we can use it to evaluate the completeness of the gen-

erated body in complicated poses. When arms or legs are

raised, it can be seen that our model can generate complete

limbs. However, the limbs of the human body in comparison

methods fail to generate in these complicated conditions.

4.5. Ablation Study

In this section, we perform ablation studies to further

analyze our model. We evaluate the contributions of each

component by removing it from the full model. To validate

the performance of generating complete limbs in compli-

cated poses, we conduct ablation studies in the test dataset

of Youtube-Dance.

The quantitative results of removing each component

w/o Flow Attn Module w/ Flow Attn ModuleTarget Pose

MaskI_gen I_warped MaskI_gen I_warped

Figure 7: The generated masks and warped images obtained

from flow attention module.

are displayed in Table 2. We also show the visualization

results of the ablation studies in Figure 6. Column 3 of

Figure 6 shows the visualization results of the generated

results without face enhancement. With face loss, Lface, and

discriminator, the face region is focused, which facilitates

the face synthesis clearer. We can observe that our model

can generate realistic faces even with low-quality reference

images of Youtube-Dance.

The flow attention module is further analyzed in Figure 7.

We visualize the Flow-Attn-Mask M and the warped results

through flow f of reference images Ir. We also show the

mask generated only based on flow features. Compared with

the mask without a flow attention module, the Flow-Attn-

Mask can generate as a human form to indicate each location

of the body. It can be seen that the arms fail to be generated

when encountering complex dance poses without Flow-Attn-

Mask (such as the torso and the arms overlap). When the

flow does not find the corresponding relationship between

target and reference, the Flow-Attn-Mask M indicates the

pose feature Fp to generate that region (the values of M

in arms region are close to 0). Therefore, our model can

generate complete limbs even with body self-occlusion.

The Enhancer Network is applied to refine some cases

which have a color mixture of clothes and body or the in-

correct occlusion relationship of clothes and body. with the

injection of pose joint map, we further enhance the structural

pose information to recover some artifacts.

5. Conclusion

In this study, we aim to complement the generation results

of former optical-flow based methods, in which the limbs

might be broken under complicated pose conditions. We

propose a flow-attention network and an enhancer network

to provide the necessary details for generator to synthesize

the detailed limbs properly. The experimental results over

three different datasets demonstrate the effectiveness of our

proposed method.
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