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Abstract

This paper focuses on weakly-supervised action align-

ment, where only the ordered sequence of video-level ac-

tions is available for training. We propose a novel Dura-

tion Network1, which captures a short temporal window of

the video and learns to predict the remaining duration of a

given action at any point in time with a level of granularity

based on the type of that action. Further, we introduce a

Segment-Level Beam Search to obtain the best alignment,

that maximizes our posterior probability. Segment-Level

Beam Search efficiently aligns actions by considering only a

selected set of frames that have more confident predictions.

The experimental results show that our alignments for long

videos are more robust than existing models. Moreover, the

proposed method achieves state of the art results in certain

cases on the popular Breakfast and Hollywood Extended

datasets.

1. Introduction

Activity analysis covers a wide range of applications

from monitoring systems to smart shopping and entertain-

ment, and it is a topic that has been extensively studied in

recent years. While good results have been obtained in rec-

ognizing actions in single-action RGB videos [5, 7, 10, 11,

37, 43], there are many real-life scenarios where we want

to recognize a sequence of multiple actions, whose labels

and start/end frames are unknown. Most work done in this

area is fully supervised [15, 17, 21, 26, 28, 32, 35, 38, 40],

requiring each frame in the training videos to be annotated.

Given the need of deep learning algorithms for ever-larger

training datasets, frame-level annotation can be expensive

and unscalable. “Weak supervision” is an alternative, where

each training video is only annotated with the ordered se-

quence of actions occurring in that video, with no start/end

frame information for any action [3, 6, 8, 12, 18, 19, 29, 31].

This paper focuses on weakly-supervised action align-

1Code available at: https://github.com/rezaghoddoosian/DurNet

Figure 1. An overview of our proposed method. Based on the

context of the temporal window, pour water is selected and its

duration is predicted to align the given video-level actions

ment, where it is assumed that the sequence of video-level

action labels are provided as input for training and infer-

ence, and the output is the start and end time of each action.

A key challenge in weakly supervised action alignment

is correctly predicting the duration of actions. To achieve

this goal, we propose a Duration Network (DurNet) that,

unlike previous methods, takes video features into account.

Video features contain valuable information that existing

duration models ignore. As an example, video features can

capture the pace (slow or fast) at which an action is per-

formed. As another example, video features can capture the

fact that an ongoing “frying” action is likely to continue for

a longer time if the cook is currently away from the fry-

ing pan. Our duration model learns to estimate the remain-

ing duration of an ongoing action based on the current vi-

sual observations. More specifically, the proposed DurNet

mainly consists of a bi-directional Long Short-Term Mem-

ory (LSTM), which takes as inputs the set of frame features

in a short temporal window at a given time, a hypothesized

action class and its elapsed duration. The network outputs

the probability of various durations (from a discretized set)

for the remainder of that action.

We also introduce a Segment-Level Beam Search al-
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gorithm to efficiently maximize our factorized probability

model for action alignment. This algorithm modifies the

vanilla beam search to predict the most likely sequence

of action segments without looping through all possible

action-duration combination in all frames. Instead, it pre-

dicts the action and duration of segments by selecting a

small subset of the frames that are significant enough to

maximize the posterior probability. The time complexity

of our Segment-Level Beam Search is linear to the num-

ber of action segments in the video, which is theoretically

better than that of other Viterbi based alignment meth-

ods [19, 28, 31, 22]. In particular Richard et al. [31] con-

sidered visual and length models’ frame-level outputs and

their combinations over all the frames for action alignments.

More recently [22] extended Richard et al.’s work [31] by

incorporating all invalid action sequences in the loss func-

tion during training, but follows the same frame-level infer-

ence technique as in [31].

The main contributions of this paper can be summarized

as follows: (1) We introduce a Duration Network for ac-

tion alignment, that is explicitly designed to exploit infor-

mation from video features and show its edge over the Pois-

son model used in previous work [31, 22]. (2) We propose

a Segment-Level Beam Search that can efficiently align ac-

tions to frames without exhaustively evaluating each video

frame as a possible start or end frame for an action (in con-

trast to [18, 19, 31, 22]). (3) In our experiments, we use

two common benchmark datasets, the Breakfast [16] and

Hollywood Extended [3], and we measure performance us-

ing three metrics from [8]. Depending on the metric and

dataset, our method leads to results that are competitive or

superior to the current state-of-the-art for action alignment.

2. Related Work

Weakly-Supervised Video Understanding. Existing

methods for video activity understanding often differ in the

exact version of the problem that they aim to solve. [9, 34]

aim to associate informative and diverse sentences to differ-

ent temporal windows for dense video captioning. [25, 39,

42] aim to do action detection, and are evaluated on videos

that consist of typically a single unique action with a large

portion of background frames.

Weakly-supervised action segmentation and alignment

have been studied under different constraints at training

time. Some works utilize natural language narrations of

what is happening [2, 20, 24, 33, 44]. [30] use only un-

ordered video-level action sets to infer video frames. Our

work is closest to [3, 6, 8, 12, 18, 19, 29, 31, 22], where

an ordered video-level sequence of actions is provided for

training.

Our paper focuses on the task of weakly-supervised ac-

tion alignment, where the video and an ordered sequence of

action labels are provided as input, and frame-level annota-

tions are the output.

Duration Modeling. One of the key innovations of

our method is in weakly supervised modeling and predic-

tion of action duration. Therefore, it is instructive to re-

view how existing methods model duration. Some meth-

ods [6, 8, 12, 29] do not have an explicit duration model;

the duration of an action is obtained as a by-product of

the frame-by-frame action labels that the model outputs.

[23, 1, 13] studied long term duration prediction. However

they are fully supervised methods whose results are highly

sensitive to ground-truth observations.

Most related to our duration model in action alignment

are existing methods that model action duration as a Poisson

function [31], or as a regularizer [3, 4, 19, 28] to penalize

actions that last too long or too short. Specifically [31] and

[22] integrated an action dependent Poisson model into their

system which is characterized only by the average duration

of each action based on current estimations. The key inno-

vation of our method is that our duration model takes the

video data into account. The video itself contains informa-

tion that can be used to predict the remaining duration of

the current action, and our method has the potential to im-

prove prediction accuracy by taking this video information

into account.

3. Method

In this section, we explain what probabilistic models

our method consists of and how they are deployed for our

Segment-Level Beam Search.

3.1. Problem Formulation

Our method takes two inputs. The first input is a video

of T frames, represented by x
T
1 , which is the sequence of

per-frame features. Feature extraction is a black box, our

method is not concerned with how those features have been

extracted from each frame. The second input is an ordered

sequence τ = (τ1, τ2, ..., τM ) of M action labels, that list

the sequence of all actions taking place in the video.

A partitioning of the video into N consecutive segments

is specified using a sequence c
N
1 of action labels (cn speci-

fies the action label for the n-th segment) and a sequence lN1
of corresponding segment lengths (ln specifies the number

of frames of the n-th segment). Given such a partition, we

use notation πn for the first frame of the n-th segment.
Given inputs xT

1 and τ , the goal of our method is to iden-

tify the most likely sequence cN1 of action labels cn and cor-

responding sequence l
N

1 of durations ln:

(cN1 , l
N

1 ) = argmax
cN
1

,lN
1

p(cN1 , l
N
1 |xT

1 , τ ) (1)

We note that N (the number of segments identified by our

method) can be different than M (the number of action la-

bels in input τ ). This happens because our method may
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Figure 2. A sample segmented (N = 7) video given its video-

level labels τ (M = 4). One ground-truth action label τ can

correspond to multiple consecutive segments

output the same action label for two or more consecutive

segments, and all consecutive identical labels correspond to

a single element of τ . We use Ωn to denote the earliest seg-

ment number such that all segments from segment Ωn up

to and including segment n have the same action label. For

example, in Fig. 2, Ω4 = Ω3 = Ω2 = 2.

Consider a frame πn, that is the starting frame of the n-
th segment. We assume that the remaining duration of an
action at frame πn depends on the type of action cn, the
elapsed duration l

n−1
Ωn

of cn up to frame πn, and the visual
features of a window of α frames starting at frame πn. We
denote this window as wn = x

πn+α−1
πn

. Also, we decom-
pose each action label cn into a corresponding verb vn and
object on. For example the action “take cup” can be rep-
resented by the (take, cup) pair, where take and cup are
the verb and object respectively. Working with “verbs” in-
stead of “actions” lets us benefit from the shared informa-
tion among “actions” with the same “verb”. This specif-
ically helps in analyzing any weakly-labeled video where
the frame-level pseudo ground-truth is inaccurate. Based
on the above, we rewrite p(cN1 , lN1 |x

T
1 , τ ) as:

p(cN1 , l
N
1 |xT

1 , τ ) =

N∏

n=1

p(ln|wn, l
n−1

Ωn
, cn) · p(cn|x

T
1 , τ ) (2)

=

N∏

n=1

p(ln|wn, l
n−1

Ωn
, vn, on) · p(cn|x

T
1 , τ )

(3)

=
N∏

n=1

p(ln|wn, l
n−1

Ωn
, vn) · p(cn|x

T
1 , τ ) (4)

We should note that, in the above equations, in the bound-

ary case where Ωn = n, we define l
n−1
Ωn

to be 0. The Du-

ration and Action Selector Network, described next, will be

used to compute the probability terms in Eq. 4. Then, using

our Segment-Level Beam Search, the most likely segment

alignment will be identified.

3.2. Duration Network(DurNet)

Previous work [19, 31, 22] has tried to model the du-

ration of actions. Richard et al. [31] have used a class-

dependent Poisson distribution to model action duration, as-

suming that the duration of an action only depends on the

type of that action. In contrast, we propose a richer duration

Figure 3. Architecture of the Duration, Object and Verb Selector

Networks

model, where the length of an action segment depends not

only on the type of that action, but also on the local visual

features of the video, as well as on the length of the imme-

diately preceding segments if they had the same action label

as the current segment (Eq. 4).

The proposed model allows the estimate of the remain-

ing length of an action to change based on video features.

For example, our model can potentially predict a longer re-

maining duration for the action “squeeze orange” if the lo-

cal visual cues correspond to a person just picking up the

orange, compared to a person squeezing the orange.
In our method, the range of possible durations of a given

action depends on the verb of that action. For example,
one second could be half of a short action associated with
verb “take” and only one-hundredth of a longer action as-
sociated with verb “frying”. We model this dependency by
mapping time length to progress units for each verb. We
denote by γv the median length of verb v across all train-
ing videos, and by L the number of time duration bins. We
should note that the system cannot know the true value of
γv , since frame-level annotations are not part of the ground
truth. Instead, our system estimates γv based on pseudo-
ground truth that is provided using an existing weakly su-
pervised action alignment method, such as [8, 31]. Given
this estimated γv , we discretize the elapsed and remaining
time lengths into verb-dependent bins; i.e. the bin width bv
is calculated based on the type of each verb:

bv =
γv

⌊
L

2
⌋+ 1

(5)

The above equation assures that the median length of a

verb falls on or around the middle bin, which creates a more

balanced distribution for learning.

In our method, p(ln|wn, l
n−1
Ωn

, vn) is modeled by a Bi-
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LSTM network preceded by a fully-connected layer and

followed by fully connected layers and a softmax function

σ as shown in Fig. 3. The input to this network, for any

segment n at a given time πn , is the one-hot vector rep-

resentation of the verb vn ∈ R
V of a given action cn and

its discretized elapsed duration dcn ∈ R
L as well as the

local visual features wn ∈ R
Γ×F . Here, V is the total

number of verbs, F is the input feature dimension, and Γ
is the number of temporally sampled features over α frames

starting with frame πn. At the end, this network outputs

the corresponding verb-dependent future progress probabil-

ity corresponding to each bin. This probability is expressed

as an L-dimensional vector kvn
, whose i-th dimension is

the probability that the duration of action cn falls in the i-th

progress unit for verb vn, given the inputs described above.

During training, we used a Gaussian to represent the

progress probability labels as soft one-hot vectors. This rep-

resentation considers the bins that are closer to the true bin

more correct than the further ones. The resulting labels are

used to compute the standard cross-entropy loss, as the Dur-

Net loss function.
Finally, we translate this progress indicator back to

time expressed as number of frames, according to verb-
dependent steps sv:

sv = ⌊
γv

L
⌋ (6)

lv,i = (i+ 1) ∗ sv, i ∈ {0, 1, ..., L− 1} (7)

Thus, the i-th discretized duration lv,i for verb v corre-

sponds to the i-th dimension of vector kvn
, and the value

of kvn
in the i-th dimension gives the probability of dis-

cretized duration lvn,i.

3.3. Action Selector Network

This network selects the label of the action occurring
at any time in the video. Each action is decomposed as a
(verb, object) pair. The importance of objects and verbs in
action recognition has been studied before [36, 44]. For ex-
ample, the verb “take” in both “take bowl” and “take cup”
is expected to visually look the same way. These two ac-
tions only differ in their corresponding objects. This ap-
proach has the advantage that not only the network can ac-
cess more samples per class (verb/object), but also classifi-
cation is done over fewer number of classes, because several
actions share the same verb/object. This is specifically help-
ful in weakly-labeled data as the frame-level ground truth is
not reliable. The probability of the selected action is ob-
tained by the factorized equation below:

p(cn|x
T
1 , τ ) := η[p(on|vn,wn, τ )

ζ
p(vn|wn, τ )

β
p(cn|x

T
1 )

λ]
(8)

η[ ] is a normalization function that assures :

∑

cn∈τ

[p(cn|x
T
1 , τ )] = 1 (9)

The Action Selector Network consists of three compo-

nents: i) The verb selector network. ii) The object selector

network. iii) The main action recognizer (Fig. 1). The in-

fluence of each network is adjusted by the ζ, β and λ hyper

parameters.

i) The Verb Selector Network(VSNet): It focuses only

on the local temporal features during the given time frame

[πn, πn+α−1] to select the correct verb vn for segment n.

The video-level verb labels vτ ∈ {0, 1}
V are also given as

input to the network, where for every i ∈ {0, 1, ..., V − 1},
vτ i = 1 if vτ i is present in the video-level verbs, otherwise

vτ i = 0.

ii) The Object Selector Network(OSNet): Similar to

the VSNet, using the local temporal features, this module

selects the correct segment object on from the set of video-

level objects oτ ∈ {0, 1}
O, where O is the number of avail-

able objects in the dataset. Selecting the target object is

also influenced by the type of the verb for a given action ac-

cording to Eq. 8. In order to model this dependency, latent

information from the VSNet flows into the OSNet (Fig. 3).

iii) The Main Action Recognizer(MAR): Unlike the

other two components, this module produces frame-level

probability distribution for the main actions. This network

is more discriminative than the other two and particularly

helpful in videos with repetitive verbs and objects. Note

that the MAR module can be replaced by any baseline neu-

ral network architecture like CNNs or RNNs.

Finally, as shown in Eq. 8, the probability of a segment

action is defined by fusing the output of the three above-

mentioned networks. In the special case of ζ, β = 1 and

λ = 0, the definition of Eq. 8 would be truly probabilistic,

and there would be no need for the normalization function

η. The contribution of each network is quantitatively shown

in Sec. 4.2.3. It is noteworthy to mention that our method is

equally applicable without the verb-object decomposition

assumption. In case there is no specific object associated

with actions, our formulation still stands by setting ζ = 0
and working with the actions as our set of verbs.

3.4. Segment­Level Beam Search

We introduce a beam search algorithm with beam size B

to find the most likely sequence of segments, as specified

by a sequence of labels c
N
1 and a sequence of lengths l

N
1 .

By combining Eq. 1 with Eq. 4 we obtain:

(cN1 , l
N

1 ) = argmax
cN
1

,lN
1

{

N∏

n=1

p(ln|wn, l
n−1

Ωn
, vn) · p(cn|x

T
1 , τ )}

(10)

In frame-level beam search, different sequences of action

classes are considered at every single frame until the end

of the video. In contrast, our Segment-Level Beam Search
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Figure 4. Our proposed Segment-Level Beam Search of beam size

B during the estimation of the third segment (n = 3). For each

alignment, different possibilities of next action and its predicted

duration are evaluated. At each point in our method, all B hypoth-

esized alignments consist of the same number of segments

allows the algorithm to consider such sequences only at the

beginning of every segment. This technique is inspired by

the fact that actions do not change rapidly from one frame

to another.

We introduce the notation Ai(c, l, ti) to represent the

probability of segment-level alignment i until frame ti for

each video, where c and l are the action class and length

of the last segment. We also define maxB{a1, a2, ..., an}
as the set of B greatest ai, and calculate Ai(c, l, ti) of

alignment i recursively for every action cn and length ln
of segment n. Then, the B most probable alignments with

n segments are selected over all combinations of cn and

ln. Algorithm 1 summarizes the procedure for our pro-

posed Segment-Level Beam Search with the following con-

straints:

• c1 = τ1, cN = τM

• ti ≤ T, ∀i ∈ {1, 2, ..., B}

φ(cn−1) refers to the set of possible actions for segment

n. φ(cn−1) is either a repetition of the action cn−1 of the

previous segment or the start of the next action in τ . The

final segment labels cN1 and l
N
1 are derived by keeping track

of the maximizing arguments cn and ln in the maximization

steps.

Note that p(cn|x
T
1 , τ ) in Algorithm 1 is factorized ac-

cording to Eq. 8, and every cn ∈ φ(cn−1) is broken down

to its corresponding (vn, on) pair. This factorization ap-

proach encourages segments that cover the whole duration

of an action to avoid the penalty each time a new segment

is added. This results in faster alignments with a smaller

number of unreasonably short segments.

Time complexity of our Segment-Level Beam Search,

for each video, depends on the beam size B, number of

segments N and number of length bins L. As B and L

Algorithm 1 Segment-Level Beam Search

Input: Video features x
T
1 and video-level labels τ , beam

size B

Output: Action label and length sequences cN1 and lN1 .

n←1, ⊲ first segment

for l1 ∈ {lv1,0, ..., lv1,L−1} do:

A1(τ1,l1,l1)=p(l1|x
α
1 ,0,v1)·p(τ1|x

T
1 ,τ )

A(n)=maxB
l1
{A1(τ1,l1,l1)}, ⊲ set of candidate alignments

while ti < T , ∀i ∈ {1, 2, ..., B} do:

n←n+1,

for i←1 to B do:

for all cn ∈ φ(cn−1); ln ∈ {lvn,0 ... lvn,L−1} do:

Ai(cn,ln,ti+ln)= ⊲ Ai(cn−1,ln−1,ti)∈A(n−1)

Ai(cn−1,ln−1,ti)·p(ln|x
ti+α−1

ti
,l
n−1

Ωn
,vn)·p(cn|x

T
1 ,τ ),

A(n)=maxB
cn,ln

{Ai(cn,ln,ti+ln), ∀i∈{1,2,...,B}}

Afinal(cN ,lN ,T )=max1
cN ,lN

{Ai(cN ,lN ,ti), ∀i∈{i|ti=T}}

are constant values, the time complexity for the algorithm

above would be O(N), and only limited to the number of

segments per video. Based on our experiments, for the cur-

rent public action alignment datasets, Nmax ≈ 70 is two or-

ders of magnitude less than Tmax ≈ 9700. This makes the

proposed beam search more efficient than the Viterbi algo-

rithms used in [31, 22] and [19], which have the complexity

of O(T 2) and O(T ) respectively.

4. Experiments

We show results on two popular weakly-supervised ac-

tion alignment datasets based on three different metrics. We

compare our method with several existing methods under

different initialization schemes. Further, the contribution of

each component of our model is quantitatively and qualita-

tively justified.

Datasets. 1) The Breakfast Dataset (BD) [16] consists

of around 1.7k untrimmed instructional videos of few sec-

onds to over ten minutes long. There are 48 action labels

demonstrating 10 breakfast recipes with a mean of 4.9 in-

stances per video. The overall duration of the dataset is

66.7h, and the evaluation metrics are conventionally calcu-

lated over four splits. 2) The Hollywood Extended Dataset

(HED) [3] has 937 videos of 17 actions with an average of

2.5 non-background action instances per video. There are in

total 0.8M frames of Hollywood movies and, following [3],

we split the data into 10 splits for evaluation.

There are four main differences between these two

datasets: i) Actions in the BD follow an expected scenario

and context in each video. However, the relation between

consecutive actions in the HED can be random. ii) Cam-

era in the BD is fixed while there are scene cuts in the HED,
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making the duration prediction more challenging. iii) Back-

ground frames are over half of the total frames in the HED,

while the percentage of them in the BD is about 10%, and

iv) The inter-class duration variability in the BD is consid-

erably higher than the HED.

Metrics. We use three metrics to evaluate performance:

1) acc is the frame-level accuracy averaged over all the

videos. 2) acc-bg is the frame-level accuracy without the

background frames. This is specifically useful for cases

where the background frames are dominant as in the HED.

3) IoU defined as the intersection over union averaged

across all videos. This metric is more robust to action label

imbalance and is calculated over non-background segments.

Implementation. For a fair comparison, we obtained the

pre-computed 64 dimensional features of previous work [6,

31, 22], computed using improved dense trajectories [41]

and Fisher vectors [27], as described in [17]. A single layer

bi-directional LSTM with 64 hidden units is shared between

the DurNet and VSNet, and a single layer LSTM with 64

hidden units for the OSNet. We followed the same frame

sampling as [22], [8] or [31], depending on the method we

use for initialization. We use the cross-entropy loss function

for all networks, using Adam optimization [14], learning

rate of 10−5 and batch size of 64. L in the DurNet was

set to 7 and 4 for the BD and HED respectively. In our

experiments on the BD, we used an alpha of 60 frames and

ζ, β, and λ were adjusted to 1, 30, and 5 respectively for

our selector network. Beam size in our beam search was

set to 150 and other hyperparameters were picked after grid

search optimization (refer to supplementary material).

Training Strategy. During training, alignment results

of a baseline weakly-supervised method, e.g. CDFL [22],

NNViterbi [31] or TCFPN [8], on the training data is used

as the initial pseudo-ground truth. We also adopt the pre-

trained frame-level action classifier (visual model) of the

baseline (CDFL, NNViterbi or TCFPN) as our main ac-

tion selector component. The initial pseudo-ground truth

is used to train our duration and action selector networks.

Then, new alignments are generated through the proposed

Segment-Level Beam Search algorithm on the training

videos. We call these new alignments the “new pseudo-

ground truth”. The adopted visual model is finally retrained

based on our “new pseudo-ground truth”, and used along-

side our other components to align the test videos.

4.1. Comparison to State­of­the­Art Methods

Comparison Settings. In addition to evaluating existing

methods, we also evaluate some combinations of existing

methods, as follows: 1,2) Ours/ [31] pg and Ours/ [22]

pg: Ours initialized with NNviterbi [31] and CDFL [22]

pseudo-ground truth respectively, and a single layer GRU

as the MAR. 3) Ours/ [8] pg: Ours initialized with the

training results of [8] as our pseudo-ground truth, and the

Table 1. Weakly-supervised action alignment results of existing

methods on two main datasets. (* from [8], † best results ob-

tained after running the author’s source code multiple times,** af-

ter slight changes to the original source code for the specific task.)
Breakfast (%) Hollywood Extended (%)

Models acc acc-bg IoU acc acc-bg IoU

HTK [18]∗ 43.9 - 26.6 49.4 - 29.1

ECTC [12]∗ ∼35 - - - - -

D3TW [6] 57.0 - - 59.4 - -

TCFPN [8]† 51.7 48.2 33.0 57.6 46.1 28.2

[8]/ [31] pg∗∗ 56.4 53.4 36.2 - - -

NNViterbi [31]† 63.5 63.0 47.5 59.6 53.2 32.4

[31]/ [8] pg∗∗ 63.4 62.8 47.3 - - -

CDFL [22] 63.0 61.4 45.8 65.0† 63.7† 40.2†

Ours/ [8] pg 55.7 56.1 36.3 50.1 64.1 31.4

Ours/ [31] pg 63.7 65.0 42.5 56.0 64.3 34.3

Ours/ [22] pg 64.1 65.5 43.0 59.1 65.4 35.6

TCFPN [8] network as the MAR. 4) [8]/ [31] pg: The

ISBA+TCFPN method [8] initialized with NNViterbi [31]

pseudo-ground truth. 5) [31]/ [8] pg: The NNViterbi

method [31] initialized with [8] pseudo-ground truth.

Action Alignment Results. Table 1 shows results for

weakly-supervised action alignment. Our method produces

better or competitive results for most cases on both datasets.

Initialized with CDFL, our method achieves state-of-the-art

in two of the three metrics for the Breakfast dataset and

in one metric on the Hollywood. We compare our method

with CDFL [22], NNViterbi [31] and TCFPN [8] more ex-

tensively, because they are the best open source methods

that follow a similar pseudo-ground approach for training.

Also for better comparison, in Table 1 we present the re-

sults of training NNViterbi on the pseudo ground-truth from

TCFPN and vice versa.

In direct head-to-head comparisons with CDFL,

NNViterbi and TCFPN, the proposed method often out-

performs the respective competitor, and in some cases the

head-to-head performance improvement by our method is

quite significant. Our method improves action alignment

results of TCFPN [8] and NNViterbi [31] in 5 (Table 2a)

and 4 (Table 2b) out of 6 metrics respectively. In addition,

we outperform CDFL in frame-level accuracy with and

without background on the Breakfast dataset, and when

tested on the Hollywood dataset, CDFL accuracy without

background is improved while the inference complexity is

decreased to O(N) from CDFL’s O(T 2) (Table 2c).

In Table 2, our Segment-Level Beam Search achieves

consistent improved results in frame accuracy for both

datasets when the background frames are excluded. Con-

sidering acc-bg is essential especially for the Hollywood

dataset as on average around 60% of the video frames are

background, so acc values can be misleading.

There are two plausible explanations on why the per-

formance of our method for non-background actions is not

equally repeated for the background segments. First, there
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Figure 5. Weakly-supervised action alignment accuracy for videos

of different lengths. Unlike the other two baselines, ours is more

robust to longer videos. We obtained the results on four equal

intervals considering the shortest and longest videos. The number

of videos for each interval is mentioned in parentheses

Table 2. Head-to-head action alignment comparisons of the pro-

posed model with the baselines († as specified in Table 1).

(a)

Breakfast (%) Hollywood Extended (%)

Models acc acc-bg IoU acc acc-bg IoU

TCFPN [8]† 51.7 48.2 33.0 57.6 46.1 28.2

Ours/ [8] pg 55.7 56.1 36.3 50.1 64.1 31.4

(b)

Breakfast (%) Hollywood Extended (%)

Models acc acc-bg IoU acc acc-bg IoU

NNViterbi [31]† 63.5 63.0 47.5 59.6 53.2 32.4

Ours/ [31] pg 63.7 65.0 42.5 56.0 64.3 34.3

(c)

Breakfast (%) Hollywood Extended (%)

Models acc acc-bg IoU acc acc-bg IoU

CDFL [22] 63.0 61.4 45.8 65.0† 63.7† 40.2†

Ours/ [22] pg 64.1 65.5 43.0 59.1 65.4 35.6

is a lack of defined structure in what background can be,

which makes it harder to learn. Second, there are cases

where background depicts scenes where a person is still or

no movement is happening. It is a tough task for even hu-

mans to predict how long that motionless scene would last,

so the DurNet can easily make confident wrong predictions

resulting in inaccurate alignments of background segments.

Fig. 5 shows how alignment results vary with video

length on the Breakfast Dataset. The performance of our

method compared to NNViterbi and TCFPN improves as

video length increases. In longer videos, the DurNet can

maintain the same action longer depending on the context,

while in [31] any duration longer than the action average

length gets penalized.

4.2. Analysis and Ablation Study

All analysis and ablation study is done using the

TCFPN [8] pseudo ground-truth initialization. We also

ran our ablation study experiments on the Breakfast dataset

mainly, because it consists of videos with many actions and

high duration variance, so the impact of learning duration

can be measured more effectively.

Table 3. Comparison between our Duration Network and statistical

Poisson length model on the breakfast dataset.
Alignment

Models acc acc-bg

Ours+Poisson 54.56% 54.95%

Ours+Duration Net 55.70% 56.10%

Figure 6. Split-wise frame accuracy on the Breakfast dataset. The

number of training videos for each split is indicated in parentheses.

4.2.1 DurNet vs. Poisson Duration Model.

We compare our Duration Network with the Poisson length

model used in [31, 22]. To compare the two models, we re-

placed the DurNet in our Segment-Level Beam Search with

the Poisson model in [31, 22], while keeping all other parts

of our method unchanged.

Table 3 quantitatively shows the advantage of using the

context of the video, as it has improved the alignment ac-

curacy by more than 1%. One reason for the small im-

provement, however, could be the imbalanced training set

size across the four folds. Unlike the statistical Poisson ap-

proach, the performance of DurNet, as in other Neural Net-

works, depends on the training set size. As Figure 6 shows,

the bigger the training data size, the better the performance

of the DurNet.

4.2.2 Duration Step Size Granularity.

As explained in Section 3.2, the predicted durations are dis-

cretized into a fixed number L of bins, using different step

sizes sv for different verbs. In order to analyze the advan-

tage of this duration modeling, we compare the weakly-

supervised alignment results obtained when we replace this

approach with fixed step size for all classes, as well as with

different alternatives of adaptive steps (Table 4); i.e., the

predicted duration range of each action can depend on the

maximum, mean or median length of that action calculated

across all training videos. A fixed step and a step size de-

pendent on maximum duration, both produce poor results.

Step sizes dependent on mean and median durations of ac-

tions produce comparable results.

4.2.3 Analysis of the Action Selector Components.

We evaluate the effect of the OSNet, VSNet and MAR sepa-

rately. Selecting verbs without objects fails in videos where
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Table 4. The result of fixed step duration modeling with different

alternatives of adaptive steps for weakly-supervised alignment.
Alignment on Breakfast (%)

Models acc acc-bg IoU

Fixed steps(sv = 5 seconds) 49.9 49.6 32.3

Max-based adaptive steps 48.9 47.6 29.7

Mean-based adaptive steps 54.9 55.4 35.8

Median-based adaptive steps 55.7 56.1 36.3

Table 5. Contribution of each action selector component. Having

all three components gives the best results.
Alignment on Breakfast (%)

Models acc acc-bg IoU

Special case (ζ, β = 1, λ = 0) 53.9 54.4 35.4

Action selector w/o main action 55.5 56.1 36.0

Action selector w/o object 54.8 54.6 35.9

Action selector w/o verb 50.9 50.8 32.8

All components 55.7 56.1 36.3

Figure 7. Two sample aligned videos, that consist of action labels

with the same verb. The object selector component improves the

results by aligning the segments with respect to the correct object.

two actions with the same verb happen consecutively in a

video, e.g. pour cereal and pour milk (Fig. 7). Likewise,

excluding the VSNet is problematic when two consecutive

actions share the same object. Our experiments show that

the VSNet and the MAR have the biggest and smallest con-

tributions respectively(Table 5). We also include the results

of the special case where we do not use hyperparameters

in Eq. 8. As we see, a weighted combination of all three

components performs best.

4.2.4 Qualitative Segment-Level Alignment Results.

One of the benefits of our Beam Search is predicting the

class and length of segments without looping through all

possible action-length combinations in all frames. Specif-

ically, by predicting the duration of a segment in advance,

only a limited set of more significant frames is processed.

This leads to faster alignments with competitive accuracy

compared to the frame-level Viterbi in [31, 22] (Table 2).

We demonstrate some success and failure cases of our

segment predictions in Fig.8. It shows how a half minute

video can be segmented in a small number of steps. Only

a limited window of frames at the start of each step decides

the class and length of the corresponding segment. Green

and red arrows indicate valid and wrong step duration re-

spectively. Similarly, the correctness of the action selector

Figure 8. Separate segments denote the ground-truth and the color

coded ones indicate the predicted segments. White segments are

background. No-background actions are add teabag and pour wa-

ter in video (a), and pour cereal and pour milk in video (b).

Figure 9. Alignment comparison between CDFL and our method

for the test video “frying egg”. Visual features in DurNet allow

the predictions to adapt in duration. The color-coded curves rep-

resent the Poisson probability functions characterized by the ex-

pected duration of actions in CDFL.

prediction is shown by the color of the square.

Finally, Fig. 9 depicts a case where using visual features

for length prediction outperforms the Poisson model in [22].

In this example “frying” is done slower than usual due to the

subject turning away from the stove and the flipping of the

egg. This makes the peak of the Poisson function tempo-

rally far from where “frying” actually ends resulting in the

premature end of the action as longer predictions have very

low probabilities and discouraged by the Poisson model.

However, our DurNet takes the visual features into account

and adapts to longer than expected action durations.

5. Conclusion

We have proposed our Duration Network, that predicts

the remaining duration of an action taking the video frame-

based features into account. We also proposed a Segment-

Level Beam Search that finds the best alignment given the

inputs from the DurNet and action selector module. Our

beam search efficiently aligns actions by considering only

a selected set of frames with more confident predictions.

Our experimental results show that our method can be used

to produce efficient action alignment results that are also

competitive to state of the art.
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Antonio Manuel López. Sympathy for the details: Dense

trajectories and hybrid classification architectures for action

recognition. In European Conference on Computer Vision,

pages 697–716. Springer, 2016.

[8] Li Ding and Chenliang Xu. Weakly-supervised action seg-

mentation with iterative soft boundary assignment. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 6508–6516, 2018.

[9] Xuguang Duan, Wenbing Huang, Chuang Gan, Jingdong

Wang, Wenwu Zhu, and Junzhou Huang. Weakly supervised

dense event captioning in videos. In Advances in Neural In-

formation Processing Systems, pages 3059–3069, 2018.

[10] Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes.

Temporal residual networks for dynamic scene recognition.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4728–4737, 2017.

[11] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic,

and Bryan Russell. Actionvlad: Learning spatio-temporal

aggregation for action classification. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 971–980, 2017.

[12] De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Connec-

tionist temporal modeling for weakly supervised action la-

beling. In European Conference on Computer Vision, pages

137–153. Springer, 2016.

[13] Qiuhong Ke, Mario Fritz, and Bernt Schiele. Time-

conditioned action anticipation in one shot. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 9925–9934, 2019.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[15] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language

of actions: Recovering the syntax and semantics of goal-

directed human activities. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

780–787, 2014.

[16] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language

of actions: Recovering the syntax and semantics of goal-

directed human activities. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

780–787, 2014.

[17] Hilde Kuehne, Juergen Gall, and Thomas Serre. An end-to-

end generative framework for video segmentation and recog-

nition. In 2016 IEEE Winter Conference on Applications of

Computer Vision (WACV), pages 1–8. IEEE, 2016.

[18] Hilde Kuehne, Alexander Richard, and Juergen Gall. Weakly

supervised learning of actions from transcripts. Computer

Vision and Image Understanding, 163:78–89, 2017.

[19] Hilde Kuehne, Alexander Richard, and Juergen Gall. A hy-

brid rnn-hmm approach for weakly supervised temporal ac-

tion segmentation. IEEE transactions on pattern analysis

and machine intelligence, 2018.

[20] Ivan Laptev, Marcin Marszałek, Cordelia Schmid, and Ben-

jamin Rozenfeld. Learning realistic human actions from

movies. 2008.

[21] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and

Gregory D Hager. Temporal convolutional networks for ac-

tion segmentation and detection. In proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 156–165, 2017.

[22] Jun Li, Peng Lei, and Sinisa Todorovic. Weakly supervised

energy-based learning for action segmentation. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 6243–6251, 2019.

[23] Tahmida Mahmud, Mahmudul Hasan, and Amit K Roy-

Chowdhury. Joint prediction of activity labels and starting

times in untrimmed videos. In Proceedings of the IEEE

International Conference on Computer Vision, pages 5773–

5782, 2017.

[24] Jonathan Malmaud, Jonathan Huang, Vivek Rathod, Nick

Johnston, Andrew Rabinovich, and Kevin Murphy. What’s

cookin’? interpreting cooking videos using text, speech and

vision. arXiv preprint arXiv:1503.01558, 2015.

[25] Phuc Nguyen, Ting Liu, Gautam Prasad, and Bohyung Han.

Weakly supervised action localization by sparse temporal

pooling network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 6752–

6761, 2018.

[26] Dan Oneata, Jakob Verbeek, and Cordelia Schmid. The lear

submission at thumos 2014. 2014.

[27] Florent Perronnin and Christopher Dance. Fisher kernels

on visual vocabularies for image categorization. In 2007

2061



IEEE conference on computer vision and pattern recogni-

tion, pages 1–8. IEEE, 2007.

[28] Alexander Richard and Juergen Gall. Temporal action detec-

tion using a statistical language model. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3131–3140, 2016.

[29] Alexander Richard, Hilde Kuehne, and Juergen Gall. Weakly

supervised action learning with rnn based fine-to-coarse

modeling. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 754–763, 2017.

[30] Alexander Richard, Hilde Kuehne, and Juergen Gall. Ac-

tion sets: Weakly supervised action segmentation without or-

dering constraints. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5987–

5996, 2018.

[31] Alexander Richard, Hilde Kuehne, Ahsan Iqbal, and Juer-

gen Gall. Neuralnetwork-viterbi: A framework for weakly

supervised video learning. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

7386–7395, 2018.

[32] Marcus Rohrbach, Sikandar Amin, Mykhaylo Andriluka,

and Bernt Schiele. A database for fine grained activity

detection of cooking activities. In 2012 IEEE Conference

on Computer Vision and Pattern Recognition, pages 1194–

1201. IEEE, 2012.

[33] Ozan Sener, Amir R Zamir, Silvio Savarese, and Ashutosh

Saxena. Unsupervised semantic parsing of video collec-

tions. In Proceedings of the IEEE International Conference

on Computer Vision, pages 4480–4488, 2015.

[34] Zhiqiang Shen, Jianguo Li, Zhou Su, Minjun Li, Yurong

Chen, Yu-Gang Jiang, and Xiangyang Xue. Weakly super-

vised dense video captioning. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1916–1924, 2017.

[35] Gunnar A Sigurdsson, Santosh Divvala, Ali Farhadi, and Ab-

hinav Gupta. Asynchronous temporal fields for action recog-

nition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 585–594, 2017.

[36] Gunnar A Sigurdsson, Santosh Divvala, Ali Farhadi, and Ab-

hinav Gupta. Asynchronous temporal fields for action recog-

nition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 585–594, 2017.

[37] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In Ad-

vances in neural information processing systems, pages 568–

576, 2014.

[38] Bharat Singh, Tim K Marks, Michael Jones, Oncel Tuzel,

and Ming Shao. A multi-stream bi-directional recurrent neu-

ral network for fine-grained action detection. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1961–1970, 2016.

[39] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek:

Forcing a network to be meticulous for weakly-supervised

object and action localization. In 2017 IEEE International

Conference on Computer Vision (ICCV), pages 3544–3553.

IEEE, 2017.

[40] Nam N Vo and Aaron F Bobick. From stochastic grammar to

bayes network: Probabilistic parsing of complex activity. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2641–2648, 2014.

[41] Heng Wang and Cordelia Schmid. Action recognition with

improved trajectories. In Proceedings of the IEEE inter-

national conference on computer vision, pages 3551–3558,

2013.

[42] Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van Gool.

Untrimmednets for weakly supervised action recognition

and detection. In Proceedings of the IEEE conference

on Computer Vision and Pattern Recognition, pages 4325–

4334, 2017.

[43] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment net-

works: Towards good practices for deep action recognition.

In European conference on computer vision, pages 20–36.

Springer, 2016.

[44] Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk

Cinbis, David Fouhey, Ivan Laptev, and Josef Sivic. Cross-

task weakly supervised learning from instructional videos.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3537–3545, 2019.

2062


