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Abstract

Learning with labels noise has gained significant traction

recently due to the sensitivity of deep neural networks un-

der label noise under common loss functions. Losses that

are theoretically robust to label noise, however, often makes

training difficult. Consequently, several recently proposed

methods, such as Meta-Weight-Net (MW-Net), use a small

number of unbiased, clean samples to learn a weighting

function that downweights samples that are likely to have

corrupted labels under the meta-learning framework. How-

ever, obtaining such a set of clean samples is not always

feasible in practice. In this paper, we analytically show that

one can easily train MW-Net without access to clean sam-

ples simply by using a loss function that is robust to label

noise, such as mean absolute error, as the meta objective to

train the weighting network. We experimentally show that

our method beats all existing methods that do not use clean

samples and performs on-par with methods that use gold

samples on benchmark datasets across various noise types

and noise rates.

1. Introduction

Although deep neural networks (DNNs) have achieved

impressive performance across many applications, they re-

main vulnerable to noisy labels. The expressive power of

DNNs enables them to learn arbitrary smooth non-linear

functions; however, it also means that DNNs can easily

overfit to noisy labels, which negatively affects their gen-

eralization ability. Learning under label noise is of utmost

importance in the big-data regime since large amounts of

labels are collected using crowd-sourcing, resulting in sig-

nificant label noise [48, 62, 11, 58, 48]; see [16, 1, 20] for

detailed surveys and recent results on learning under label

noise. Methods for mitigating label noise can be broadly

categorized into two groups based on whether they use a

small number of clean samples in the learning process.

In the first group, most algorithms do not assume access

to any clean samples; instead, they use loss functions that

are robust to label noise to handle noisy labels implicitly

[57, 17, 70]. Unfortunately, the common cross entropy loss

used to train DNNs is particularly sensitive to noisy labels.

As an alternative, in [17], the authors have shown that the

non-convex mean absolute error (MAE) loss is robust to

label noise under some mild assumptions. However, training

DNNs under the MAE loss on large datasets is often diffi-

cult. In [70], the authors proposed generalized cross-entropy

loss, a generalization of MAE loss and cross-entropy loss,

that provides an effective trade-off between theoretical guar-

antees and the ease of DNN training [70]. However, the

performance of these theoretically robust losses on large-

scale image datasets is often limited.

In the second group, most methods use a small number of

clean samples to compute the noise transition matrix, predict

which samples are noisy, and correct the loss functions by

learning a sample re-weighting strategy [46, 48, 54]. One

method is to use a loss correction approach [42] when the

noise rates are known or can be accurately estimated from

data. Another approach is to use sample re-weighting to

downweight samples for which the classifier incurs large

losses on and are thus likely to be noisy. Many early meth-

ods use heuristics to compute sample weights. However, a

pre-determined weighting scheme is not very effective and

cannot leverage real data. Therefore, many recent methods

proposed to adaptively learn the sample weighting function

from the additional clean data [54, 49, 30]. Meta-Weight-Net

(MW-Net) [54], a highly effective method, uses recent ad-

vances in meta-learning to jointly learn the classifier network

and the weighting network. MW-Net uses a small number of

clean samples as meta samples to learn the sample weighting

strategy used for the classifier network via the meta objective.

Experimentally, MW-Net achieves impressive performance

on real-world, large-scale image datasets under label noise

[54]. However, the most apparent drawback of MW-Net and

other methods in this group is that we may not have access

to clean samples in real-world applications.

Contributions We make a surprising observation that it

is very easy to adaptively learn sample weighting functions,

even when we do not have access to any clean samples; we
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can use noisy meta samples to learn the weighting function

if we simply change the meta loss function. We theoreti-

cally show that the meta-gradient direction for optimizing

the weighting network remains the same when using noisy

meta samples with meta losses that are robust to label noise

such as the MAE [17]. Thus, we can optimize the classi-

fier network using the cross-entropy loss and optimize the

weighting network using the MAE loss, both with noisy

samples. Although the MAE loss is difficult to optimize for

deep classification networks [70], they are easy to optimize

for shallow networks that are used as the weighting network

[17]. Our method closes the gap on learning the weighting

function adaptively without the need to access clean meta

samples; this setup closely resembles real-world problem

settings where clean samples are often missing.

First, we theoretically show that it is possible to learn

the weighting function even without any access to clean

meta samples. Then, we experimentally show that our pro-

posed method (using noisy meta samples) performs on par

with MW-Net (using clean meta samples) and beats exist-

ing methods on several benchmark image datasets. Thus,

the simple observation that the meta-gradient direction re-

mains the same for noisy meta samples under meta losses

that are robust to label noise alleviates the need for clean

samples when learning sample re-weighting strategy under

label noise. 1

2. Problem Setup and Label Noise

We consider the classification problem setting with a

training set {(xtrain
i ,ytrain

i )}Ni=1, a meta (or validation) set

{(xmeta
j ,ymeta

j )}Mj=1, and a test set {(xtest
o ,ytest

o )}Oo=1 where

xi is the feature vector of the ith sample and yi ∈ {0, 1}K
is the class label vector with K total classes. We denote

the classifier network prediction as f(x,w) where w is the

classifier network weights. We denote the clean (unknown)

label for an instance xi as ytrue
i . We consider label noise

where feature vectors are clean but the labels vectors are

corrupted [42]. We consider three types of label noise. The

uniform (or symmetric) noise with rate η ∈ [0, 1], corrupts

the true label with probability η uniformly distributed among

all classes. Thus, the true class label remains the same with

probability (1 − η) + η
K

and the true label is corrupted to

all other classes c 6= ytrue
i with probability η

K
. The flip

noise model, with noise rate η, corrupts the true labels with

probability η to a random single class. Thus, the correct class

label remains the same with probability (1− η) and the true

label is corrupted to a single class c 6= ytrue
i with probability

η. The flip2 noise model, with noise rate η, corrupts the true

labels with probability η to two random other classes. Thus,

the correct class label remains the same with probability

(1 − η) and the true label is corrupted to two other classes

1Our code is available at https://github.com/arghosh/RobustMW-Net.
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Figure 1. Confusion matrices for the noise models (K=5,η=0.4).

c1, c2 6= ytrue
i with probability η

2 . Figure 1 shows example

confusion matrices for these three noise models.

We assume that the training dataset {(xtrain
i ,ytrain

i )}Ni=1

is corrupted with an unknown noise model, but the test set

{(xtest
o ,ytest

o )}Oo=1 remains clean. Deep networks are often

optimized with the cross-entropy (CE) loss; we obtain the

optimal classifier network parameter w∗ by minimizing CE

loss on the training dataset as

w∗ = argmin
w

1
N

∑N
i=1 ℓCE(y

train
i , f(xtrain

i ,w))

where ℓCE is the CE loss.

In sample weighting methods, a common approach is to

introduce weighting function W(xtrain
i ,ytrain

i ,w; Θ), which

is (optionally) parameterized by Θ to decide the weight

for ith training sample. In MW-Net, the function W takes

sample loss as the input [54]; thus, we can represent the

sample weighting function as W(ℓCE(y
train
i , f(xtrain

i ,w)); Θ)
where ℓCE(y

train
i , f(xtrain

i ,w)) is the current sample loss and

Θ is the (meta) weight network parameter. For simplic-

ity, throughout the paper, we use ℓ(ytrain
i , f(xtrain

i ),w)) as

ℓi,train(w) and ℓ(ymeta
j , f(xmeta

j ),w)) as ℓj,meta(w). Thus,

we can calculate classifier network weights w∗ under label

noise with the sample weighting parameter Θ as [54]:

argmin
w
Ltrain(w; Θ) , 1

N

∑N
i=1 W(ℓi,train

CE (w); Θ)ℓi,train
CE (w).

3. Methodology

We first discuss the basic setup of MW-Net [54]. We then

show that it is possible to train a robust model without access

to clean meta samples (thus, ymeta
j can be noisy as well).

Meta-Weight-Net. MW-Net learns an auxiliary neural net-

work with parameter Θ for parameterizing the weighting

function [54]. Many previous heuristics employ tricks such

as removing training samples with a high loss to minimize

the effect of noisy samples. Instead of using some fixed

heuristics, we can learn a data-driven adaptive non-linear

weighting function. MW-Net is an effective way to learn

the weighting function using ideas from meta-learning. The

idea is to use a clean meta dataset (or validation dataset)

{xmeta
j ,ymeta

j }Mj=1 (M ≪ N ) to learn the optimal weighting
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function Θ∗ in a bilevel optimization problem [15].

min
Θ

Lmeta(w∗(Θ)) ,
1

M

M
∑

j=1

ℓj,meta(w∗(Θ)) (1)

s.t. w∗(Θ) = argmin
w

1

N

N
∑

i=1

W
(

ℓi,train
CE (w); Θ

)

ℓi,train
CE (w)

Thus, the inner objective is to optimize w∗ on Ltrain and the

outer objective is to optimize for Θ∗ on Lmeta with nested

loops. In the outer level optimization, the weighting network

computes meta loss Lmeta using the loss function ℓ·,meta; for

brevity, we refer ℓ·,meta as the loss function of the weighting

network or the meta loss function throughout the paper.

In [54], the authors proposed a bilevel online optimization

strategy to iteratively optimize both w and Θ [15]. The

gradient for Θ, in Eq. 1 at time step t, requires the function

ŵ(Θ). The classifier weight function ŵt(Θ) (note, this is a

function of Θ, not the weight parameter) is computed as:

ŵt(Θ) = wt−α
1

n

n
∑

i=1

W(ℓi,train
CE (wt); Θ)∇wℓi,train

CE (w)
∣

∣

∣

wt

where n is the minibatch size for the training dataset, and α
is the SGD optimizer parameter. Using the function ŵt(Θ),
we can take a gradient step for Θt based on the loss on the

meta dataset in Eq. 1.

Θt+1 = Θt − β
1

m

m
∑

j=1

∇Θℓ
j,meta(ŵt(Θ))

∣

∣

∣

Θt
(2)

where β is the weighting network SGD parameter and m is

the minibatch size for the meta dataset. Using the updated

Θt+1, we can take a step towards optimal w∗ using simple

stochastic gradient descent step

wt+1=wt−α
1

n

n
∑

i=1

W(ℓi,train
CE (wt); Θt+1)∇wℓi,train

CE (w)
∣

∣

∣

wt
.

In essence, MW-Net takes gradient descent step for Θt to-

wards Θ∗ and takes gradient descent step for wt towards

w∗ using the updated Θt+1 in an online fashion. In [54],

the authors use a single layer (with 100 hidden nodes) feed-

forward networks as the weighting network. Note, the input

to the weight network is the scalar loss value ℓi,train
CE

(

w(Θ)
)

and the output of the weight network is the scalar sample

weight value. The choice of weighting network is effective

since a single hidden layer MLP is a universal approximator

for any continuous smooth functions. Moreover, the weight-

ing function is mostly a monotonically decreasing function

under label noise.

Meta-Weight-Net with noisy meta samples. We can now

analyze MW-Net and show how it can work without access

to clean meta labels. We first discuss the gradient descent

direction of the weighting network with clean meta samples.

We denote the term

G(ŵ) =
1

m

m
∑

j=1

∂ℓj,meta(ŵ)

∂ŵ

∣

∣

∣

ŵt
(3)

as the average meta-gradient for w on the meta dataset.

Taking derivative of ℓj,meta(ŵt(Θ)) w.r.t Θ in Eq. 2, the Θ
gradient descent direction is,

∇Θ

m
∑

j=1

ℓj,meta
(

ŵt(Θ)
)

(4)

=−α

n

n
∑

i=1

(

G(ŵ)⊺
∂ℓi,train

CE (w)

∂w

∣

∣

∣

wt

)∂W(ℓi,train
CE (wt); Θ)

∂Θ

∣

∣

∣

Θt

where m and n is the minibatch size for meta dataset and

training dataset respectively. We can understand this update

direction as a sum of weighted gradient updates for each

training samples. The term
∂W(ℓi,train

CE
(wt);Θ)

∂Θ represents the

gradient direction for Θ on training sample i. The weight

for training sample i is computed using G(ŵ)⊺
∂ℓ

i,train

CE
(w)

∂w

∣

∣

∣

wt
;

thus, the weighting network effectively puts more weights

for training samples having a gradient direction similar to

the average meta-gradient direction G.

For corrupted meta samples, we denote the meta loss func-

tion as, Lnoisy-meta(w∗(Θ)) , 1
M

∑M
j=1 ℓ

j,noisy-meta(w∗(Θ)),

where we use ℓj,noisy-meta to denote the loss on the corrupted

jth meta sample (and ℓj,meta to denote the loss for the jth

clean meta sample). Therefore, the key idea is that if we need

to use noisy meta dataset (training dataset can be corrupted

arbitrarily and independently), we need to ensure

m
∑

j=1

∂ℓj,meta(ŵ)

∂ŵ
≈ C

m
∑

j=1

∂ℓj,noisy-meta(ŵ)

∂ŵ
. (5)

C can be any positive constant; we only care about gradient

direction in SGD. Note in Eq. 4, only the average meta-

gradient (G(ŵ)) term changes if we use noisy meta samples;

gradient for training samples remains the same.

We show that when the outer meta loss function is MAE

(thus ℓj,meta is ℓj,meta
MAE ), the noisy (under uniform noise) av-

erage meta-gradients remain the same as the average meta

gradients on clean meta dataset. In [54], the CE loss function

is used with clean meta samples (ℓj,meta is ℓj,meta
CE ). Note, the

classifier network still uses cross-entropy loss (we still use

ℓi,train
CE ); we need to maintain average meta-gradient direc-

tion for meta samples only. We denote the classifier output

(softmax probability vector) f(xj ,w) as uj ∈ ∆K−1 where

∆K−1 is the K-1 dimensional simplex; MAE and CE losses
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are computed as, ℓMAE(yj ,uj) =
∑

k |uj,k − yj,k| and

ℓCE(yj ,uj) = −∑

k yj,k loguj,k. Note that MAE loss

ℓMAE is bounded and has a symmetric property [17] as:

K
∑

c=1

ℓ(c, f(x,w)) = constant, ∀x, and ∀w. (6)

Theorem 1. Let the meta samples are corrupted with uni-

form noise with a rate of η < 1. Suppose the weighting

network minimize loss function ℓ on the meta samples and

the loss function ℓ satisfies symmetric property in Eq. 6. Then

the expected meta-gradient on corrupted meta samples (for

updating the weighting network in Eq. 4) is exactly the same

as (up to a proportional constant) the meta-gradient on clean

meta samples irrespective of the noise model in the training

dataset and the loss function in the classifier network.

Proof. We can compute the expected gradient for w

on a batch of samples from the noisy meta dataset

under uniform label noise (with the rate η) as:

E

[

m
∑

j=1

∂ℓj,noisy-meta(ŵ)

∂ŵ

]

=

m
∑

j=1

[

(1− η)
∂ℓ(yj , f(xj , ŵ))

∂ŵ
+

η

K

K
∑

c=1

∂ℓ(c, f(xj , ŵ))

∂ŵ

]

=

m
∑

j=1

[

(1− η)
∂ℓ(yj , f(xj , ŵ))

∂ŵ
+

η

K

∂

∂ŵ

K
∑

c=1

ℓ(c, f(xj , ŵ))
]

= (1− η)

m
∑

j=1

[∂ℓ(yj , f(xj , ŵ))

∂ŵ

]

= C

m
∑

j=1

∂ℓj,meta(ŵ)

∂ŵ

since ∂
∂ŵ

∑K
c=1 ℓ(c, f(xi, ŵ)) = 0 when ℓ is a symmetric

loss (such as MAE). Thus, under uniform label noise on the

meta dataset, the expected meta-gradient on the noisy meta

samples remains the same as the meta-gradient on the clean

meta dataset when the meta loss function is symmetric.

Theorem 1 shows that symmetric losses on the corrupted

meta samples for optimizing the weighting network has the

same expected meta-gradient direction as the clean samples

irrespective of the classifier network loss function and arbi-

trarily corrupted training datasets. Moreover, we can show

convergence of the weighting network with finite mini batch

size of the corrupted meta datasets under some mild condi-

tion. Similar to [54], we make the following assumptions.

1. The meta loss ℓ and the classifier network loss ℓ·,train is

Lipschitz smooth with constant L and have ρ-bounded

gradients.

2. The weighting function W(·) has bounded gradient and

twice differential with bounded Hessian.

3. The classifier network learning rate αt satisfies αt =
min{1, k

T
} for some k < T, k > 0. The learning rate of

the weighting network βt satisfies βt = min{ 1
L
, b

σ̂
√
T
}

for some b > 0 such that σ̂
√
T

b
≥ L where σ̂2 is the

variance of drawing a minibatch (possibly corrupted with

uniform noise).

Theorem 2. Under assumptions 1-3, the weighting network

converges for both clean and (uniformly) corrupted meta

datasets when the meta loss satisfies symmetric condition:

min
0≤t≤T

E[‖∇Lmeta(Θt)‖22] ≤ O(
σ√
T
), and

min
0≤t≤T

E[‖∇Lnoisy-meta(Θt)‖22] ≤ O
( σ̂

(1− η)
√
T

)

,

where σ2 is the variance of drawing uniformly mini-batch

sample at random, σ̂2 = σ2 + 2ηρ2

m
is the variance adjusted

with the uniformly corrupted meta samples, η is the uniform

noise rate and m is the minibatch size of the meta dataset2.

Remark. Using the convergence rate in Theorem 2, we would

expect to approximate the meta-gradient under noisy labels

to be similar to the gradient under clean labels with a rel-

atively large mini-batch size [50]. Thus, we can use cor-

rupted meta dataset as long as the meta loss function is

symmetric [17]. The classifier network can use CE loss;

the weighting network only needs to use symmetric loss

for computing meta-gradients from the corrupted meta sam-

ples. MAE loss is difficult to optimize for deep networks

[70]; however, we note that the weighting network is sim-

ple with a single input (the loss value) and a single layer

with 100 hidden nodes as used in [54]. We find that the

weighting network with MAE loss for the meta samples is

amiable to SGD; we also find MAE loss to be better than

cross-entropy for the weighting network under varying noise

rates and noise models. Although, MAE loss can provide a

guarantee for the meta dataset corrupted with uniform label

noise; the training datasets do not require any such condition;

we can potentially handle training datasets with instance-

dependent label noise also. We experimentally found that

MAE loss significantly outperforms CE loss in the weight-

ing network for uniform label noise. Nevertheless, we also

observe that CE loss in the weighting network performs

relatively well for noisy meta datasets. We believe as the

weighting network is a shallow network with single input

and output and equipped with l2 regularizer (in the form of

weight decay), η
K
E[

∂
∑k

c=1
ℓCE(c,f(x,ŵ))

∂w
] is relatively small

compared to (1− η)E[∂ℓCE(y,f(x,ŵ))
∂ŵ

] even for CE loss.

Under the flip noise, we randomly corrupt samples from

a single class to a single different random class with a prob-

ability of η. Under the flip2 noise, we corrupt uniformly

between random two fixed classes. Under a flip{K − 1}
noise model, labels are corrupted to K − 1 other classes,

effectively becoming uniform noise. We consider the flip

noise first; we denote the random corrupted class labels as

2Derivation is available in supplementary material.
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T (y), T (y) 6= y where samples with true labels y are cor-

rupted as T (y) with probability η. However, once T (y) is

drawn randomly as part of the noise model, it is deterministic.

Hence, the expectation of gradient on noisy meta samples

do not remain the same as the gradient on the clean meta

samples for symmetric losses:

∂Lnoisy-meta

∂ŵ
=

m
∑

j=1

[

(1−η)∂ℓ(yj ,f(xj ,ŵ))
∂ŵ

+η
∂ℓ(T (yj),f(xj ,ŵ))

∂ŵ

]

.

Hence the theoretical guarantees in Eq. 5 only holds for

uniform noise model. Nevertheless, taking expectation w.r.t.

to T (y), we get the same gradient as that of clean ones

since ET (y)

[

∂Lnoisy-meta

∂ŵ

]

= C
∑m

j=1
∂ℓj,meta(ŵ)

∂ŵ
. Thus, as we

flip to more classes, we would expect more uniform label

noise behavior resulting in the theoretical robustness of the

weighting network using robust losses. However, we found

that when flip noise is relatively small, we can still use MW-

Net with noisy meta samples. Moreover, we experimentally

observe no significant gains for using clean meta samples

even for flip noise (where labels are corrupted to a single

other class). We extensively experiment the robustness of the

MW-Net under the flip and flip2 noise model in Section 4.

4. Experiments

We perform a series of experiments to evaluate the robust-

ness of the weighting network under noisy meta samples and

compare our approach with competing methods. We follow

the experimental setup in for fair comparison [54].

Dataset We use two benchmark datasets CIFAR-10 and

CIFAR-100 for comparing robust learning methods. We use

1000 meta samples for the weighting network. However,

contrary to [54], we do not require clean samples for the

meta dataset. Thus, we also experiment with corrupted meta

samples. In our results, we differentiate between models

using clean (denoted with asterisk∗) and noisy meta samples.

Noise Rate We apply the uniform noise model with rates

0, 0.4, and 0.6 and the flip2 noise model with rates 0, 0.2,

0.4. Furthermore, we also compare against conditions under

heavily corrupted training samples with a 0.7 uniform label

noise rate and a 0.5 flip2 label noise rate. Moreover, we also

apply flip noise with a rate of 0.15 and 0.30 and compare

with MW-Net3. Note that the flip noise is more challenging

than flip2 and uniform noise model; flip/flip2/uniform noise

with rate η ≥ 0.50/0.67/1.0 would result in noisy class to

be the majority making learning infeasible.

Baseline methods Our analysis shows the weighting net-

work optimized with MAE loss on corrupted meta samples

has the same expected gradient direction as of clean meta

samples. We denote our model, utilizing corrupted samples

and using a robust MAE loss for the weighting network, as

3The flip2 noise model is denoted as flip noise in [54]

Robust-Meta-Noisy-Weight-Network (referred to as RMNW-

Net). We denote the MW-Net model utilizing corrupted

meta samples as Meta-Noisy-Weight-Network (referred to as

MNW-Net); thus, the MNW-Net model trains the weighting

network on the noisy meta dataset using cross-entropy loss

as the meta loss function. We distinguish models using noisy

meta samples and clean meta samples differently. L2RW

[49], GLC [25], MW-Net uses clean meta samples and they

are denoted as L2RW∗, GLC∗, and MW-Net∗ respectively.

Other competing methods include BaseModel, trained on

corrupted training data, and several robust learning meth-

ods such as Reed [48], S-Model [21], SPL [32], Focal Loss

[37], Co-teaching [23], D2L [40], MentorNet [30]. We train

MW-Net, MNW-Net, RMNW-Net from scratch for all the

datasets and the noise models; for the baseline models, we

reuse results from [54]. We obtained slightly better perfor-

mance for MW-Net and its variants with a smaller learning

rate than reported in [54].

Network architecture and optimization For uniform

noise, we use Wide ResNet-28-10 (WRN-28-10) [68], and

for flip2 noise, we use ResNet-32 [24], following [54]. For

the flip noise model, we use WRN-28-10 architecture 4. The

weighting network is a single layer neural network with 100

hidden nodes and ReLU activations. We train for MW-Net

and its variant for 120 epochs using SGD with momentum

0.9, weight-decay 5× 10−4, and an initial learning rate of

0.05. We use an optimizer scheduler to divide the learning

rate by 10 after 36 and 38 epoch (for uniform, flip, and flip2

noise with WRN-28-10) and after 40 and 50 epoch (for flip2

noise with ResNet-32), following [54]. The learning rate for

the weighting network is fixed to 10−3 with weight decay

5e − 4. We do not perform hyper-parameter optimization

following [54]. We use a batch size of 100 for both the train-

ing samples and the meta samples. We repeat experiments

with five different seeds for corrupting samples with label

noise and initializing the classifier networks.

4.1. Results

Table 1 lists the average accuracy and standard deviation

(std) over five runs for all models on CIFAR-10/100 dataset

corrupted with uniform and flip2 noise model. Under 40%
and 60% uniform noise, performance of MNW-Net drops

by 6% and 12% on CIFAR-10 dataset and drops by 20%
and 30% on CIFAR-100 dataset compared to the no noise

case. Other baseline models using corrupted meta samples

performs worse than MNW-Net. However, using the clean

meta samples, performance of MW-Net∗ only drops by 4%
and 9% on CIFAR-10 dataset and drops by 10% and 20% on

CIFAR-100 dataset. Only our proposed approach RMNW-

Net, even without access to clean meta samples, retains

4We also experiment with flip2 noise with WRN-28-10 to show indiffer-

ence to architecture for MW-Net model and its variants which we detail in

supplementary material.
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Model

Uniform Noise Rate Flip2 Noise Rate

0% 40% 60% 0% 20% 40%
Dataset CIFAR-10

L2RW∗ 92.38± 0.10 86.92± 0.19 82.24± 0.36 89.25± 0.37 87.86± 0.36 85.66± 0.51
GLC∗ 94.30± 0.19 88.28± 0.03 83.49± 0.24 91.02± 0.20 89.68± 0.33 88.92± 0.24

MW-Net∗ 95.15±0.13 90.35±0.21 86.52±0.09 92.35±0.29 90.28±0.27 87.04±0.89

BaseModel 95.60± 0.22 68.07± 1.23 55.12± 3.03 92.89± 0.32 76.83± 2.30 70.77± 2.31
Reed-Hard 94.38± 0.14 81.26± 0.51 73.53± 1.54 92.31± 0.25 88.28± 0.36 81.06± 0.76
S-Model 83.79± 0.11 79.58± 0.33 − 83.61± 0.13 79.25± 0.30 75.73± 0.32

Self-paced 90.81± 0.34 86.41± 0.29 53.10± 1.78 88.52± 0.21 87.03± 0.34 81.63± 0.63
Focal Loss 95.70± 0.15 75.96± 1.31 51.87± 1.19 93.03± 0.16 86.45± 0.19 80.45± 0.97

Co-teaching 88.67± 0.25 74.81± 0.34 73.06± 0.25 89.87± 0.10 82.83± 0.85 75.41± 0.21
D2L 94.64± 0.33 85.60± 0.13 68.02± 0.41 92.02± 0.14 87.66± 0.40 83.89± 0.46

Fine-tuning 95.65± 0.15 80.47± 0.27 78.75± 2.40 93.23± 0.23 82.47± 3.64 74.07± 1.56
MentorNet 94.35± 0.42 87.33± 0.22 82.80± 1.35 92.13± 0.30 86.36± 0.31 81.76± 0.28
MNW-Net 94.98±0.1 88.8±0.44 84.26±0.18 92.45±0.11 90.67±0.18 87.92±0.44

RMNW-Net 95.23±0.13 90.8±0.23 86.31±0.28 92.66±0.13 89.78±0.24 85.38±0.37

Dataset CIFAR-100

L2RW∗ 72.99± 0.58 60.79± 0.91 48.15± 0.34 64.11± 1.09 57.47± 1.16 50.98± 1.55
GLC∗ 73.75± 0.51 61.31± 0.22 50.81± 1.00 65.42± 0.23 63.07± 0.53 62.22± 0.62

MW-Net∗ 78.06±0.14 70.39±0.16 63.29±0.23 68.92±0.35 64.01±0.37 57.38±0.48

BaseModel 79.95± 1.26 51.11± 0.42 30.92± 0.33 70.50± 0.12 50.86± 0.27 43.01± 1.16
Reed-Hard 64.45± 1.02 51.27± 1.18 26.95± 0.98 69.02± 0.32 60.27± 0.76 50.40± 1.01
S-Model 52.86± 0.99 42.12± 0.99 − 51.46± 0.20 45.45± 0.25 43.81± 0.15

Self-paced 59.79± 0.46 46.31± 2.45 19.08± 0.57 67.55± 0.27 63.63± 0.30 53.51± 0.53
Focal Loss 81.04± 0.24 51.19± 0.46 27.70± 3.77 70.02± 0.53 61.87± 0.30 54.13± 0.40

Co-teaching 61.80± 0.25 46.20± 0.15 35.67± 1.25 63.31± 0.05 54.13± 0.55 44.85± 0.81
D2L 66.17± 1.42 52.10± 0.97 41.11± 0.30 68.11± 0.26 63.48± 0.53 51.83± 0.33

Fine-tuning 80.88± 0.21 52.49± 0.74 38.16± 0.38 70.72± 0.22 56.98± 0.50 46.37± 0.25
MentorNet 73.26± 1.23 61.39± 3.99 36.87± 1.47 70.24± 0.21 61.97± 0.47 52.66± 0.56
MNW-Net 77.97±0.12 62.95±0.38 55.75±0.56 68.83±0.31 63.69±0.48 56.46±0.28

RMNW-Net 78.27±0.17 70.76± 0.20 63.79±0.39 69.69±0.21 65.46±0.51 57.41±0.51

Table 1. Classification accuracy on the clean test set of CIFAR-10/CIFAR-100 dataset under uniform noise and flip2 noise (using WRN-28-10

architecture for uniform noise and ResNet-32 for flip2 noise [54]). L2RW∗, GLC∗, and MW-Net∗ use 1000 clean meta samples; all other

models use 1000 corrupted meta samples. Best models from each group are bold.

Model

CIFAR-10 CIFAR-100

Flip Noise Rate

0% 15% 30% 0% 15% 30%

MWNet∗ 95.15 ± 0.13 93.73±0.2 91.01±0.31 78.06± 0.14 73.98±0.32 66.84±0.25

MNW-Net 94.98 ± 0.1 93.75±0.15 92.01±0.23 77.97 ± 0.12 73.79±0.26 66.38±0.51

RMNW-Net 95.23 ±0.13 93.17±0.12 88.69±0.53 78.27±0.17 74.16±0.25 66.72±0.37

Table 2. Classification accuracy on clean test set of CIFAR-10/CIFAR-100 dataset under flip noise (using WRN-28-10 architecture). Best

models from each group are bold.

performance similar to MW-Net∗ on both dataset.

Under flip2 noise, we observe MNW-Net performs

slightly better than RMNW-Net on CIFAR-10 dataset while

RMNW-Net performs better on CIFAR-100 dataset. In

CIFAR-10/CIFAR-100 dataset, MNW-Net/RMNW-Net per-

forms better than all methods using corrupted meta samples.

Moreover, we also note that both MNW-Net and RMNW-

Net performs similar to MW-Net without access to the clean

meta samples for the flip2 noise model. This observation

suggests that even for flip2 noise, we may not need access to

clean meta samples. Under clean datasets (0% noise rate),

we observe that RMNW-Net performs marginally better than

MW-Net∗ for both WRN-28-10 architecture and ResNet-32

architectures. Improved performance of RMNW-Net com-
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Model/ Noise Rate

CIFAR-10 CIFAR-100

Uniform Flip2 Flip Uniform Flip2 Flip

40% 60% 20% 40% 15% 30% 40% 60% 20% 40% 15% 30%

MW-Net∗ 0.9714 0.9631 0.9487 0.9647 0.9857 0.9721 0.9644 0.9581 0.8561 0.5962 0.7948 0.5145

MNW-Net 0.9346 0.8874 0.2531 0.5137 0.2692 0.4901 0.9587 0.9390 0.4946 0.5647 0.3407 0.4698

RMNW-Net 0.9848 0.9879 0.9692 0.9694 0.9807 0.9614 0.9749 0.9800 0.9445 0.9001 0.9322 0.7469

Table 3. AUC for detecting noisy training samples. Best models are bold, second best models are italic.

pared to MW-Net∗ on clean datasets may suggest MAE loss

is suitable for the weighting network for achieving better

generalization ability; we leave such studies for future works.

Table 2 lists the average accuracy and std for MW-Net∗,

MNW-Net, and RMNW-Net for the flip noise model. Similar

to flip2 noise, we observe that under flip noise, MNW-Net

performs better on CIFAR-10 dataset whereas RMNW-Net

performs better on CIFAR-100 dataset. Moreover, we do

not observe any significant drop in performance when using

corrupted meta samples compared to MW-Net∗. Surpris-

ingly, in some cases (30% flip noise on CIFAR-10 dataset),

we observe, MNW-Net performs better than MW-Net∗; a

slightly larger std number might be a reason behind this.

Robustness under heavy label noise Figure 2 shows per-

formances of MW-Net∗, MNW-Net, and RMNW-Net under

heavy uniform (η = 0.7) and flip2 (η = 0.5) noise. We ob-

serve that for 70% uniform noise, RMNW-Net performs bet-

ter than MNW-Net by ∼ 15% and ∼ 1.5% on CIFAR-10 and

CIFAR-100 dataset respectively. Under flip2 noise, MNW-

Net performs better on CIFAR-10 dataset and RMNW-Net

performs better on CIFAR-100 dataset. These observations

along with our analytical results suggest RMNW-Net per-

forms the best on when meta samples are corrupted with

uniform noise and performs on par with MW-Net∗ in almost

all cases.

Corrupted sample detection We also study whether the

weighting network can separate the noisy training samples

from the clean training samples. We take the output of the

weighting network as the probability of being clean sam-

ples and compute the AUC metric on the corrupted train-

ing datasets. Table 3 lists the AUC numbers on predicting

the clean samples for MW-Net∗, MNW-Net, and RMNW-

Net for different noise models and noise rates. We run for

120 epochs and test the performances on corrupted training

datasets while training; in Table 3, we list the best AUC

numbers obtained while training the weighting network and

the classifier network. MW-Net∗ performs better than MNW-

Net as expected due to clean meta samples. However, surpris-

ingly, RMNW-Net, with corrupted meta samples, performs

better than MW-Net∗ with clean meta samples. We also

observe MW-Net∗ performs well (in terms of AUC num-

bers) under uniform noise as also observed in [54]; however,

the performance deteriorates significantly for flip2 and flip

noise model on CIFAR-100 dataset. Nevertheless, RMNW-

Net retains strong performance for all cases. Surprisingly,

although RMNW-Net has better performances in terms of
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Figure 2. Performance comparison for different models under heavy

uniform and flip2 noise (using WRN-28-10 architecture)

AUC numbers, on the primary classification task, we observe

MW-Net∗, MNW-Net, and RMNW-Net to perform similarly.

Further investigations reveal that for RMNW-Net, the im-

portance weights for most samples are in a tighter range

whereas, for MW-Net∗, the importance weights for most

samples spread out over a larger range. A smaller gap in

RMNW-Net might be the reason for not having significantly

improved classification performance. We note that having

a high AUC number on the corrupted sample detection task

is not a prerequisite for having the best performance on the

primary classification task. However, a high discrimination

ability to separate the corrupted samples is indeed important

for devising a more powerful robust model. We suspect that

RMNW-Net can filter out corrupt samples from the noisy

training datasets using a small number of corrupted meta

samples with high accuracy, though we leave confirmation

to future work.

5. Related Works

Machine learning models are highly vulnerable to label

noise in the training datasets; label noise becomes more im-

portant for the DNN classifier with enormous memorization

capability [3]. Commonly used convex potential losses [5]

are not tolerant to label noise; theoretically, noise robust-

ness of convex loss potentials have been analyzed in [53]

and experimentally studied in [43]. A class of common

approaches looks for models that are inherently tolerant to

label noise; thus training with noisy labels should not af-

fect the predictive performance on unbiased test datasets

[57, 18, 19]. For asymmetric label noise, an unbiased esti-

mator can be constructed if the noise rates are known [42].

Computing the noise rates from corrupted datasets has been

also studied under some strict assumptions [51]. For binary

classifiers, a sufficient condition has been derived for a loss

functions to be tolerant to label noise in [18]; ramp loss,

probit loss, unhinged loss satisfies this condition [18, 57, 4].
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For a multi-class DNN classifier, MAE loss is proved to be

tolerant to label noise [17]. A generalized cross-entropy loss

has been proposed that offers noise robustness with easier

optimization procedure [70]. Along the line of robust MAE

loss [17], several new loss functions have been recently

proposed [39, 38, 63, 60, 10, 45, 14, 12]. Several meth-

ods have also focused on adding a noise transition matrix

layer before computing the softmax probability distributions

[21, 46, 25, 65, 62, 64]. Among these, several methods addi-

tionally use a subset of clean gold samples for computing the

transition matrix with some guarantees [25, 46, 62]. The core

idea of the noise transition layer is to perform Expectation-

Minimization (EM) algorithm to iteratively predict the noisy

samples and learn the classifier networks [33].

Another prominent approach for learning with label noise

is to determine the clean samples in the corrupted training

datasets. EM algorithms for label noise also fall under these

settings where the expectation steps learn the probable clean

samples. The idea of choosing probable clean samples goes

farther back; many heuristics have been proposed to deter-

mine the clean samples in the training procedure and remove

the effect of those samples in earlier research [8, 7]. Recently,

there has been a resurgence of methods using ideas along

these lines [21, 41, 23, 56, 11, 23, 30, 56, 58, 67, 37, 48, 22].

A similar concept is introduced in curriculum learning where

model learns from easy samples first, and then adapts to

harder examples [6, 29, 11, 36]. In Self-Paced learning

(SPL), the model first optimizes easy samples (probably

clean) samples [32, 28]. In Mentornet [30], the model

consists of a student-teacher network where the teacher

finds clean samples for the students. Co-teaching is an-

other method with two neural networks where one network

uses samples predicted as clean (with some threshold) us-

ing the other network [23]. Along this line, many recent

methods for robust DNN learning use an ensemble (two or

more networks) approach to mitigate the effect of label noise

[30, 67, 23, 66, 9]. Although one network can be suscepti-

ble to noise, two (or more) networks can be possibly used

to remove noisy samples. Some methods also augment an

unbiased clean dataset; in [67], authors use a different subset

of the noisy dataset for multiple networks with the help of

clean datasets whereas in [58], authors use some number

of clean samples to learn a separate clean sample predic-

tion networks. Susceptibility of DNN under label noise is

also due to memorization and overfitting capabilities. Based

on the overfitting behavior, in [40], the authors proposed

a dimensionality driven measure to determine the epochs

where overfitting starts to occur. Along a similar line to

[40], in [27], the learning rate is varied between overfitting

and underfitting in the training procedure. However, while

these methods perform well in practice, they do not guaran-

tee robustness and often require hyper-parameter tuning and

closely watching training losses.

Methods, identifying clean samples and retraining the

classifiers, effectively reduce the importance weights for

probable noisy samples. Thus, many proposed approaches

learn the importance weights with or without the help of ad-

ditional clean samples [49, 37, 35, 54, 34, 26, 59]. The core

idea is to assign the importance weights based on loss val-

ues; for example, in Focal loss, the model gives more weight

to high loss samples [37]. In [48], the authors propose a

regularized method to use samples that have labels similar

to the model predictions; thus, the model implicitly gives

low weights to high loss samples. Many recent methods pro-

pose to learn the importance weight function by non-linear

functions [49, 54]. Meta-learning methods are suitable for

learning the weighting network to learn the classifier net-

work [13, 44, 2]. The meta-learning framework learns a

network that can adapt to many tasks with very few samples

[55, 44, 47]; model agnostic meta-learning, a powerful ap-

proach for meta-learning, optimizes an optimal initializer for

many tasks [13]. In [49], the authors use meta-learning meth-

ods L2R for learning to weight samples; similar to MW-Net,

the model learns a weighting function using clean meta (val-

idation) datasets. Along this line, several proposed methods

[61, 54, 35, 69, 31, 52] use meta-learning frameworks.

6. Discussions and Future Works

An optimal sample weighting strategy is of utmost im-

portance for learning robust deep neural networks; learning

a weighting strategy alleviates the need for heuristics to as-

sign weights to corrupted samples in the training datasets.

However, learning the weighting network comes at a cost;

previous research uses gold standard clean datasets for the

weighting network. In this paper, we close the gap for learn-

ing the weighting network without access to clean meta

samples. Theoretical results and extensive experimentation

suggest that using robust loss functions in the weighting

network can perform similar to the case with clean meta

samples. Although MAE loss is difficult to optimize for

deep networks, optimizing the weighting (shallow) network

with MAE loss is easy and effective. Albeit simple, we show

that it is possible to learn robust classifiers by importance

weighting without access to clean meta samples.

Interestingly, we observe the weight network with robust

losses has much more discernibility than the cross-entropy

loss in separating the corrupted samples from the training

datasets. Identifying the clean samples (instead of assigning

importance weights) using the meta-network with robust

losses is an intriguing avenue for future work. Although

our proposed approach performs similar to MW-Net even

without access to the clean meta samples for all the noise

models, our theoretical results only hold for the uniform

noise model on the meta dataset. Thus, the degree of robust-

ness for MW-Net and RMNW-Net under the flip and flip2

noise model remains an open problem to tackle.
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