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Abstract

Vision for autonomous driving is a uniquely challenging

problem: the number of tasks required for full scene un-

derstanding is large and diverse; the quality requirements

on each task are stringent due to the safety-critical nature

of the application; and the latency budget is limited, re-

quiring real-time solutions. In this work we address these

challenges with QuadroNet, a one-shot network that jointly

produces four outputs: 2D detections, instance segmen-

tation, semantic segmentation, and monocular depth esti-

mates in real-time (>60fps) on consumer-grade GPU hard-

ware. On a challenging real-world autonomous driving

dataset, we demonstrate an increase of +2.4% mAP for de-

tection, +3.15% mIoU for semantic segmentation, +5.05%

mAP@0.5 for instance segmentation and +1.36% in δ <
1.25 for depth prediction over a baseline approach. We

also compare our work against other multi-task learning

approaches on Cityscapes and demonstrate state-of-the-art

results.

1. Introduction

Safety-critical, real-world vision applications such as au-

tonomous driving require fast and accurate performance of

several semantic and geometric scene understanding tasks.

These signals are critical inputs to down-stream tasks such

as obstacle detection and tracking, scene understanding,

motion forecasting and motion planning. In this work we

focus on jointly solving four tasks that are important for

autonomous driving applications: 2-D object detection for

high recall detection of dynamic objects (e.g. cars, pedes-

trians, bicylists); semantic segmentation for understanding

image regions (e.g. drivable surface, debris, road bound-

aries); Instance segmentation for generating precise object

boundaries; and monocular depth estimation which enables

3-D scene understanding needed for cross-modality associ-

ation and motion planning. Additionally, solving all these

problems from just camera data provides redundancy within

the perception stack.

Figure 1. (a) The input image into our QuadroNet architecture, (b)

The output of 2D detection head, (c) The output from the pan-

otic segmentation branch. (d) 3D point cloud generated from the

monocular depth estimate output by the network.

Computational resources for such applications are often

constrained by cost, size and power requirements of the un-

derlying hardware platform. Hence, using a single network

to jointly solve multiple perception problems has emerged

as a key strategy for satisfying the requirements of fast and

accurate results in compute-constrained settings. At run-

time, sharing large portions of the network among several

tasks reduces the overall inference latency [16]. Further-

more, the training process benefits not only from the sharing

of model architecture and parameters among the tasks but

also from the ability to introduce richer loss functions that

promote task co-learning [15, 19, 21]. However, naively

combining multiple tasks into a single network can often

lead to reduced accuracy for each task due to limited model

capacity.

Other approaches favor combining two or more inde-

pendently trained networks, each capable of solving a sub-

set of the desired set of tasks into a single network ([28],

[31]). While such approaches can leverage state-of-the-art

networks for each task, they are unlikely to yield a fast net-

work due to potentially redundant computation.

In this work we propose a novel real-time network,
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called QuadroNet, that outputs all four signals jointly. Fol-

lowing the basic approach of [15], our proposed network

architecture is trained end-to-end in a multi-task setting.

Standard jointly-trained multi-task architectures typically

have independent task-specific sub-networks that share only

a feature extraction backbone. Such networks do not ex-

plicitly model inter-task relationships such as the coinci-

dence of object/region boundaries and depth discontinuities.

While joint training of these tasks results in improved accu-

racies for all tasks, we see still greater improvements in ac-

curacy when enforcing cross-task consistency through our

novel formulation.

In summary, the key contributions of this paper are:

1. A new formulation for monocular depth estimation

that leverages recent state-of-the-art works that out-

put discrete depths ([12], [10]) while improving pre-

cise depths via the introduction of continuous depth

residuals.

2. A novel instance segmentation formulation that allows

us to dramatically improve the accuracy of instance

segmentation and monocular depth estimation, and

demonstrates the benefits of joint multi-task learning

by reasoning about consistency across different tasks

in the output space and not just by sharing parameters

in the feature extraction backbone.

3. A real-time architecture for jointly outputting 2D

bounding boxes, semantic segmentation, instance seg-

mentation and monocular depth at >60 fps.

2. Related Work
Joint semantic/geometric models: Recent works have

proposed models that address several semantic and geomet-

ric tasks at once and are jointly trained. [15] propose a net-

work that outputs semantic segmentation, instance segmen-

tation and monocular depth estimates with homoscedas-

tic task weighting. We also leverage homoscedastic task

weighting, but unlike their approach we output 2D boxes,

and introduce novel formulations for both instance segmen-

tation and monocular depth estimation. [8] output semantic

segmentation and monocular depth in their network but do

not produce object detection or instance segmentation. [24]

perform 2D object detection followed by 3D box prediction

for those detections. [20] perform monocular depth estima-

tion, 2D detection and 3D box prediction in the same net-

work. However, these two networks do not address instance

or semantic segmentation, unlike our work.

Monocular depth estimation: [25] demonstrated the

possibility of using machine learning to learn the task

of monocular depth estimation using a discriminatively-

trained Markov Random Field. [11] proposed the use of

deep convolutional neural networks in a fully-supervised

setting (using lidar data for ground truth) for the monocu-

lar depth estimation task. Recent state-of-the-art monocular

depth estimation works ([12], [23], [10], [17]) have sim-

ilarly applied convolutional neural networks (CNNs) with

innovations in specialized loss functions, network archi-

tectures and layers to achieve impressive results. Follow-

ing these recent innovations, our work similarly leverages

CNNs with lidar supervision, but we use a novel output rep-

resentation that provides precise depths while also avoiding

boundary artifacts (which manifest in 3D “long tails” for

objects, as observed by [28] using the DORN model [12])

of previous works.

Segmentation: Previous works have studied semantic

and instance segmentation ([6, 14]), typically in isolation.

[16] introduced the panoptic segmentation task, a unifica-

tion of the semantic and instance segmentation tasks. They

demonstrated the benefits of using the same network for

several joint tasks including detection, semantic segmenta-

tion and instance segmentation, achieving the same accu-

racy with a simpler joint network as with several special-

ized networks. However, their work did not address the 3D

geometry of the input image scene or introduce cross task

consistency.

Multi-task Learning: Recently there has been a great

push towards multi-task learning, motivated by applications

that demand efficiency from all their components [26]. Re-

cent works like [15] present a joint task learning framework

which uses homoscedastic uncertainities to balance loss for

multi-task learning. While we adopt this technique in our

work, we go beyond the network architecture described in

[15] of a feature extraction backbone shared by the tasks. In

addition to having a shared backbone, we modify the task

output spaces to enforce consistency between related tasks

such as instance segmentation and per-pixel depth, which

we call depth-aware instance segmentation (DAIS). Finally,

unlike [15] our network also performs the task of 2D bound-

ing box detection. Some other recent works like [21, 19]

provides a way to use attention modules to reduce the num-

ber of parameters while still performing competitively to a

dense baseline. However they to do not model the inter-task

relationships explicitly, and hence their multi-task approach

fails to perform much better than their baselines. Some

other approaches like [32] model the consistency between

different task, but require all tasks to be dense pixel wise

prediction, leaving out 2D Object Detection.

3. QuadroNet Architecture

Our network architecture consists of a RetinaNet [18]

inspired backbone that produces a multi-resolution feature

pyramid map which is used as the input to task-specific

network branches. To form the backbone, feature maps

(starting with the input image) are progressively downsam-

pled and then upsampled again (augmented with skip con-

nections) to form the multi-resolution feature pyramid map

(Figure 2a).

2D Detection Task: We formulate the task of 2D detec-
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Figure 2. Overview of QuadroNet. (a) The RetinaNet feature ex-

traction backbone gives us access to multi-level features (shown in

blue), that capture both high level semantics as well as fine grained

structures at high resolutions. (b) For the task of 2D detection, we

have a classification and a box regression on every level of the

pyramid. (c) For the other dense pixel-wise tasks, we aggregate

the feature maps at all levels of the feature pyramid. To do this,

all feature maps are upsampled to a common high-resolution and

number of channels and combined via summation. (d) We pass this

multiscale feature map through a dense pixel-wise encoder in or-

der to develop more high level semantics of the scene required for

these tasks. This feature map is task-agnostic, and is then passed

through task-specific heads that output the semantic segmentation,

direction logit and depth map logits plus residuals for the depth

bin.

tion similar to RetinaNet [18]. At each level of the feature

pyramid, we attach two structurally identical sub-networks,

one for outputting the class and the other to regress the

boxes with respect to each anchor as shown in Figure 2b.

Multi Scale Feature Aggregator: For pixel-wise tasks,

high-resolution feature maps incorporating context from

multiple scales have been shown in the literature ([6], [33])

to produce good results. In our architecture, we create such

a feature map by upsampling all pyramid-level feature maps

to a common resolution (1/8 scale), and then combining

them in a computationally efficient manner via summation

(Figure 2c). Similar to the feature map used in the semantic

segmentation branch in [16] each upsampling stage consists

of 3x3 convolution, batch-norm, ReLU, and 2x bilinear up-

sampling. This results in a task-agnostic feature-map which

is shared across all of our dense pixel-wise tasks, rather than

using this for a single task as in [16].

In past works atrous convolutions [5] have been shown

to be effective in capturing long-range information [30].

However, they are not well-suited to real-time uses since

they are significantly more inefficient on GPUs. Instead

of using the atrous convolutions as a context module and

tool for spatial pyramid pooling [6], we use them on top of

our task-agnostic feature map developed at the end of the

multiscale feature aggregation module. This significantly

reduces the number of atrous convolutions needed in our

backbone, while still preserving most of its advantages and

keeping our architecture efficient.

Once we have obtained this task-agnostic high-

resolution feature map incorporating information from mul-

tiple scales, we apply a bottleneck module that uses a 1x1

convolution to decrease the number of channels, perform a

series of atrous convolution with increasing dilation rate (2,

4 and 8) and apply another 1x1 convolution to restore the

number of channels. We call this structure the Dense Pixel-

Wise Encoder (DPWE), visualized in Figure 2d. Once this

feature map is obtained, we supply it into task-specific out-

puts. We discuss each of these task-specific formulations

below.

Semantic Segmentation: A final head with 1x1 convo-

lution, 4x bilinear upsampling, and softmax layers is used

to generate the per-pixel class labels at the original image

resolution.

Monocular Depth Estimation: As is common for the

task of monocular depth estimation [12], we use a spacing-

increasing discretization (SID) in order to quantize a depth

interval [α, β] into K non-overlapping discrete depth bins.

This approach divides a given depth interval uniformly in

log space to down-weight the training losses in regions with

large depth values, so that our network predicts higher ac-

curacy depth for nearby objects.

Following [12], we define the left edge of the i-th depth

bin as:

ti = exp

(

logα+
log (β/α) ∗ i

K

)

(1)

where ti ∈ {t0, . . . , tK−1} are the K left edges and ti+1

is the corresponding right edge. If a ground-truth depth for

a pixel is gd, it is assigned the bin index i ∈ {0, . . . ,K−1}
if gd ∈ [ti, ti+1). In our implementation, we have K = 48
depth bins spanning the depth range of 1m to approximately

80m.

To further increase the precision of the predicted depth,

we follow the MultiBin approach of [22] and predict a resid-

ual log depth for each discrete depth bin. We define the

midpoint of a bin i in log space as:

mi =
log(ti+1) + log(ti)

2
(2)

For a ground truth depth gd that falls in bin i, the ground

truth residual rd is computed as:

rd =
(log(gd)−mi)

log(ti+1)− log(ti)
(3)

At inference time, a 1x1 convolution is applied to the

DPWE feature map to produce K softmax logits l0, ...lK−1

per pixel corresponding to the likelihood that the depth at

that pixel falls in corresponding depth bin, e.g. [ti, ti+1) for

logit li. A parallel 1x1 convolution produces K predicted

residuals, r0, ..., rK−1 per pixel. The network does not im-

pose any limits on the predicted residual values.
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As a result for each pixel K different depths are implic-

itly predicted, one for each depth bin. For a particular pixel

and depth bin i, the predicted depth di is decoded as:

di = exp(mi + ri(log(ti+1)− log(ti))) (4)

As noted earlier in [28], some state-of-the-art monoc-

ular depth networks exhibit artifacts at the boundaries of

objects. We hypothesize that at object boundaries such net-

works have uncertainty about whether image pixels belong

to the object or the background. In these areas, the network

may predict an expected depth from a true depth distribution

that is bimodal.

Instead of simply selecting the depth dî corresponding

to the largest logit l̂i per pixel, we compute a smoothed ver-

sion over a local neighborhood of N = (̂i − 1, î, î + 1)
as

∑

j∈N Pjdj where Pj = exp(lj)/
∑

k∈N exp(lk), or a

probability distribution over the logits in the local neigh-

borhood. This provides a more precise depth estimate in

cases where neighboring logits have similar values. As can

be seen in our qualitative examples in Figure 4, cars and

other foreground objects have sharp boundaries with out ap-

proach.

Instance Segmentation : As a baseline, we adopt the

formulation proposed in MaskLab [4]. MaskLab generates

semantic segmentation logits and direction prediction logits

for an image. Given the detected RoIs we first perform RoI

pooling of the semantic channel corresponding to the pre-

dicted class of the RoI (e.g., the pedestrian channel) from

the semantic segmentation logits. In order to exploit the di-

rection information, we perform the same assembling oper-

ation in [4] to gather regional logits (specified by the direc-

tion) from each direction channel. As shown in Figure 3 the

cropped semantic segmentation logits along with the pooled

direction logits are then used for foreground/background

segmentation. We call this approach Semantic-Aware In-

stance Segmentation (SAIS).

Depth-Aware Instance Segmentation (DAIS): While se-

mantic segmentation logits might be useful in segment-

ing out the predicted class of the RoI from the rest of the

background, they offer little else in terms of separating in-

stances. By contrast, monocular depth estimates of the

image can help us clearly segment instances, as instance

boundaries would often coincide with large depth disconti-

nuities. Based on this reasoning, we create a new formu-

lation called Depth Aware Instance Segmentation (DAIS)

that incorporates the same pooled direction logits as in the

Semantic-Aware Instance Segmentation approach, but re-

places the semantic segmentation logits with the monocular

depth logits of the RoI as shown in Figure 3.

In addition to improving the accuracy of instance seg-

mentation, this approach incentivizes the monocular depth

estimator to predict depth logits that correspond to a coher-

ent instance mask via end-to-end training. This is due to the

fact that the instance mask output is a direct function of the

Figure 3. The complete pipeline for our novel formulations of in-

stance segmentation based on different semantic and geometric

priors. An image is passed through the QuadroNet architecture,

which outputs 2D detection RoIs, monocular depth estimation log-

its, semantic segmentation logits and direction logits. Each 2D de-

tection RoI is used to perform RoI-pooling of the different logits

for different instance segmentation formulation. DAIS uses both

the monocular depth logits and direction logits to determine in-

stance boundaries, SAIS uses the same formulation as MaskLab

[4], SDAIS uses all of monocular depth, semantic segmentation

and direction logits to aggregate support for instance segmenta-

tion. After RoI-pooling, the feature-maps in each of these formu-

lation are concatenated on the channel dimension and a 1x1 convo-

lution is performed to output a binary mask for the instance. This

predicted mask is backpropogated against the ground truth from

the dataset.

monocular depth logits. This also provides dense supervi-

sion for the task of monocular depth estimation, which can

help where lidar supervision is sparse.

Semantic & Depth-Aware Instance Segmentation

(SDAIS) : For completeness, we also experiment with using

both the semantic segmentation logits and monocular depth

logits in conjunction with the direction logits, and call this

formulation Semantic & Depth-Aware Instance Segmenta-

tion (SDAIS). This formulation is shown in Figure 3 as well.

As can be seen from the figure, for each detected RoI we use

the semantic segmentation logit of the predicted class, the

pooled direction logits as well as the monocular depth logits

for the RoI. All three are then concatenated followed by a

simple 1x1 convolution to estimate the instance mask.

In this formulation we jointly reason about all four tasks

together in the same output space. We are using the 2D

boxes predicted by the detection head along with the pre-

dicted class, and we are directly using the predicted log-

its for semantic segmentation, instance center direction and

monocular depth estimation. As our network is trained end-

to-end, this provides us a way to jointly model the output

space of all these tasks, thus allowing them to learn fea-

tures that are cross-task consistent. We show empirically

in Tables 2 and 4 that this yields stronger consistency than
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jointly learning the feature extraction backbone, and having

independent output spaces for each task.

Joint Training and Loss functions: Our multi-task

framework has both categorical (e.g. classification head for

2D detection, semantic segmentation) as well as regression

(e.g. 2D bounding box regression, mono-depth residuals

etc. ) outputs. For 2D detection we have a classification

loss (Lc for 2D boxes) as well as a regression loss (Lb with

respect to anchors for the boxes), following the same for-

mulation as Lin et al. [18]. For the task of semantic seg-

mentation, we have a pixel-wise loss for classifying each

pixel into one of the semantic classes Ls. To predict the di-

rection logits, we also have a classification loss, to classify

each pixel into one of the direction bins Ld. The formula-

tion of the direction logits is based on prior work in [4]. Our

approach for monocular depth estimation outputs for each

pixel a set of logits corresponding to discrete depth bins.

This uses a softmax cross-entropy loss as other classifica-

tion tasks, represented by Lm. We also output a residual of

the depth to output a continuous depth offset to the depth bin

centers to provide higher-precision depth estimates. We use

a smoothed-L1 loss to supervise the residuals represented

by Lr. Along with these, we have an instance mask-loss

that is applied after the instance segmentation branch. We

use a binary cross entropy loss to predict this mask and de-

note it by Li. As mentioned above, these different losses

might have very different scales and units. A naive ap-

proach would be to use hand-tuned parameters λt for the

t-th task’s loss Lt to come up with a joint loss for end-to-

end training. The total loss Ltotal using this formulation

would be: Ltotal =
∑T

t λtLt.

Brute-force search to tune the hyper-parameters would

be very expensive and might result in sub-optimal solutions,

as the space of hyper-parameters increases exponentially

in the number of tasks. Hence we use the homoscedas-

tic task uncertainty approach in [15], introducing an addi-

tional network parameter σt as a measure uncertainty for

each task t ∈ [1, . . . , T ]. For mathematical stability, we

use st = log σ2
t as the parameter of the network. Thus this

modified total loss function for training Lh
total is given by:

Lh
total =

∑

t

τt exp (−st)Lt +
st
2

(5)

where τt is 1 for classification tasks and 0.5 for regres-

sion tasks.

Task ADD Existing Dataset

2D Detection 2,261,677 / 143,459 7481 / 7518 ( KITTI [13] )

Panoptic Segmentation 104,587 / 2,363 2975 / 1525 (Cityscapes [9] )

Monocular Depth 111,720 / 10,968 23,488 / 697 ( KITTI [13] )

Table 1. Comparison of ADD to popular existing dataset in each

domain for number of (train / test) images for relevant for self-

driving.

4. Dataset

We are not aware of any publicly available dataset which

allows for jointly training and evaluating the four tasks of

interest with a reasonable amount of labeled data for all of

the tasks. Instead, we collected a very large scale dataset on

which we trained and evaluated our approach. Our dataset

consists of more than two million 1920x1200 sized im-

ages collected in different cities, in different weather and

lighting conditions, using cameras and lidars mounted to

provide a 360-degree field-of-view around a vehicle. Im-

ages in the dataset are hand-labeled with one or more 2D

bounding boxes for 3 classes (cars, pedestrians and Cy-

clists same as KITTI [13]), pixel-wise semantic segmen-

tation and pixel-wise instance segmentation (with the same

set of semantic classes as Cityscapes [9]). We also generate

sparse pixel-wise ground truth depths from lidar data. We

present a comparison of this dataset, which we title ADD

(Autonomous Driving Dataset) with the most popular ex-

isting datasets in Table 1. However, for comparison of our

work to other multi-task learning system we publish results

on the Cityscapes dataset. The Cityscapes dataset has se-

mantic and instance segmentation groundtruth available for

5000 images (split into train, validation and test sets), they

also make an estimate of depth available using SGM algo-

rithm on stereo images. Other recently released dataset like

nuScenes [1] and argoverse [2] lack the semantic segmen-

tation groundtruth essential for this work.

5. Experimental Evaluation

We split our metrics into Table 2, 3 and 4 to study each

task with relevant baselines. However experiments with the

same name across tables are the exact same model, just eval-

uated on the task relevant for the table.

Semantic Segmentation & Instance Segmentation Re-

sults: We summarize all the results for both semantic seg-

mentation and instance segmentation in Table 2. We use

the same definition of IoU and mAP@0.5 as defined by the

Cityscapes evaluation suite. We observe, that when we add

the monocular depth task to (2D Detection + SS + SAIS),

we see small improvements in all classes for semantic seg-

mentation, especially the road class, which improves from

94.97% (2D Detection + SS + SAIS) to 95.63% (2D Detec-

tion + SS + SAIS + MD). However, when we introduce the

DAIS formulation, we see a huge increment in the mAP0.5

metric for instance segmentation versus SAIS, from 54.78%

(2D Detection + SS + SAIS) to 59.69% (2D Detection + SS

+ DAIS + MD) which is a +4.91% increase. We believe this

increase is due to the fact that the semantic segmentation

logits which are an input in the SAIS formulation do not

distinguish among instances of the same semantic classes.

They simply help separating the foreground semantic class

from the rest of the background. However, monocular depth

logits provide information about individual instance bound-
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Method Dataset
Semantic Segmentation IoU IS Time

mIoU Car Person Rider Road mAP@0.5 [ms]

FC-HarDNet-70 [3] 69.3 83.19 52.69 52.35 95.69 NA 19.7

2D Detection + SS

ADD

71.13 84.44 63.44 67.95 93.88 NA 18.7

2D Detection + SS + SAIS 73.10 86.22 65.08 70.64 94.97 54.78 20.1

2D Detection + SS + SAIS + MD 73.09 86.28 65.10 70.89 95.63 54.81 21.3

2D Detection + SS + DAIS + MD 74.22 87.18 66.07 71.62 98.12 59.69 21.8

2D Detection + SS + SDAIS + MD 74.28 87.27 66.12 71.97 98.09 59.83 21.95

DeepLabv3+ [7] ADD 77.81 89.40 69.52 75.12 97.37 NA >1k

FC-HardNet-70 [3]

Cityscapes [9]

75.85 95.66 84.52 67.36 98.51 NA 15.1

Kendall et al. [15] 78.54 95.30 84.91 69.54 98.42 39.0 >1k

2D Detection + SS + SAIS 79.15 95.81 85.26 69.98 97.95 50.52 18.6

2D Detection + SS + SAIS + MD 79.17 95.78 85.19 70.03 97.83 50.68 19.8

2D Detection + SS + DAIS + MD 80.64 96.17 85.89 71.27 98.27 53.15 20.0

2D Detection + SS + SDAIS + MD 80.73 96.10 86.65 71.46 98.39 53.19 20.1

DeepLabv3+ [7] Cityscapes [9] 82.13 96.40 87.95 73.26 98.69 NA >1k

Table 2. Comparison of semantic segmentation (SS) and instance segmentation (IS) metrics. First: these metrics present an ablative

analysis of our techniques and a comparison with a real-time network trained on our ADD dataset, FC-HarDNet-70 [3]. We observe a

huge improvement for DAIS as compared to SAIS for mAP@0.5 on the IS task. Joint training for tasks using our framework results in

improvements across the board. Overall, we observe an improvement in both the mIoU metrics for SS and mAP@0.5 for IS when using the

SDAIS formulation over the baseline of just solving for Detection + SS. Our SDAIS approach also performs better than the FC-HardNet-70

network by a significant amount across all categories while running more quickly. Second: we provide results of a non-real-time, state of

the art method, DeepLabv3+, trained and evaluated on ADD, to compare with our methods. Note, both FC-HardNet-70 and DeepLabv3+

solve just one task (SS), while QuadroNet performs up to four tasks. Third: we also compare our performance on Cityscapes with other

multi-task learning approaches like Kendall et al. [15] and real-time approaches like FC-HardNet-70 [3]. Fourth: we also provide results

of DeepLabv3+ [7] on Cityscapes [9] for completeness.

Method Dataset

Average Precision (AP)

Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

SqueezeDet [29]

ADD

87.82 81.47 72.84 75.85 65.19 62.47 80.66 65.41 61.15

2D Detection 96.84 91.18 83.19 90.91 84.19 81.77 89.81 74.19 72.88

2D Detection + SS 97.42 91.89 83.71 92.17 86.85 81.55 90.58 75.91 72.91

2D Detection + SS + SAIS 97.32 91.85 84.92 93.82 87.72 84.25 91.78 77.67 74.59

2D Detection + SS + SAIS + MD 98.06 91.97 84.66 94.92 88.64 85.41 91.54 77.42 74.12

2D Detection + SS + DAIS + MD 98.12 92.07 84.47 94.79 88.64 85.48 91.54 77.82 74.74

2D Detection + SS + SDAIS + MD 98.13 92.09 84.45 94.81 88.63 85.53 91.57 77.81 74.72

Table 3. Detection metrics for our various approaches on ADD. We observe steady improvements in detection mAP metrics with introduc-

tion of related tasks. We also compare with other state-of-the-art real-time approaches like SqueezeDet [29].

aries via depth discontinuities. The SDAIS approach (2D

Detection + SS + SDAIS + MD) improves on these results a

bit further, providing the best overall result for both seman-

tic segmentation and instance segmentation.

We also provide a comparison of our approach against

a state-of-the-art, real-time, single-task network architec-

ture, FC-HarDNet-70 [3]. Our approach performs signifi-

cantly better across several metrics while having faster run-

time, even while performing four tasks vs. the single task

(semantic segmentation) of FC-HarDNet-70. As an addi-

tional comparison, we retrain DeepLabv3+ [7] on our ADD

dataset and evaluate on the same test set on which we eval-

uate our models. DeepLabv3+ [7] takes more than 1 second

per image to process while providing only somewhat bet-

ter results than our approach. Finally we also compare our

approach to other multi-task learning methods like Kendall

et al. [15], other real-time approaches like FC-HardNet-

70 [3], and other state-of-the-art models like DeepLabv3+

[7] on Cityscapes [9]. For multi-task as well as real-time

methods, SDAIS gives the overall best results 80.73% mIoU

as compared to 78.54% mIoU for Kendall et al. [15] and

75.85% for FC-HardNet-70 [3]. This further proves the ad-

vantages of jointly reasoning about output spaces of differ-

ent tasks (allowing learning of joint representations) rather

than training unrelated tasks in a multi-task setting.

2D Detection Results: We evaluate object detection
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Figure 4. Qualitative examples of the outputs of our network. From left to right, columns show the original input image, 2D detections and

instance segmentation, semantic segmentation, egocentric depth map and a point cloud generated using the depth map and colored by the

image pixels. More results are available in the supplementary material. Best viewed in color.

performance using the KITTI criteria, which requires an

intersection-over-union overlap score of 0.7 for cars and 0.5

for pedestrians and cyclists. We also use the same definition

of “Easy”, “Medium” and “Hard” as KITTI. We report the

average precision (AP) numbers for each class and difficulty

in Table 3. When we jointly train our network for the task of

semantic segmentation along with 2D detection (2D Detec-

tion + SS), we see that performance improves over just the

baseline (2D detection); the “Moderate” task improves by

+0.71% (91.18% to 91.89%) for “car”, +2.66% (84.18% to

86.85%) for “pedestrian” and +1.72% (74.19% to 75.91%)

for “cyclist”. Furthermore, when we also train for instance

segmentation using the SAIS formulation (2D Detection

+ SS + SAIS) we see further improvements over 2D De-

tection + SS; “pedestrians” improve by +0.87% (86.85%

for to 87.72%), cyclists by +1.76% (75.91% to 77.67%),

and “Hard” cars improve by +1.21% (83.71% to 84.92%).

When we also jointly train for monocular depth estimation

(2D Detection + SS + SAIS + MD), the metrics seem to

benefit similarly as now we add more information about the

world as we reason about the depth for each pixel. We con-

tinue to see small improvements as we experiment with the

DAIS and SDAIS formulations of instance semantic seg-

mentation as well. We also compare our work with other

state-of-the-art real time detectors like SqueezeDet [29] and

empirically show our methods consistently outperform such

single task approaches.
Monocular Depth Estimation Results: We evaluate

our monocular depth estimation using the threshold metric

from [11] (δ < 1.25, δ < 1.252, δ < 1.253); δ is defined

as max(y
∗

y
, y

y∗
) where y is the predicted depth and y∗ is the

ground truth depth) and summarize the results for our exper-

iments in Table 4. We focus on this metric for two reasons:

first, it is less sensitive to outlier depths than metrics that are

computed via an average, e.g. RMSE. Secondly, it provides

a bound on the number of “functional” depths, or depths

that meet a sufficiently rigorous quality metric. This a met-
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Method Dataset
All Car Person

δ < 1.25 δ < 1.252 δ < 1.253 δ < 1.25 δ < 1.252 δ < 1.253 δ < 1.25 δ < 1.252 δ < 1.253

2D Detection + SS + SAIS + MD

ADD

87.84 93.17 95.46 83.81 89.33 92.33 74.05 87.52 93.10

2D Detection + SS + DAIS + MD 88.68 93.42 95.57 84.36 89.45 92.39 74.77 87.46 92.99

2D Detection + SS + SDAIS + MD 88.67 93.50 95.63 84.48 89.58 92.49 75.38 87.73 93.15

Table 4. Comparison of monocular depth metrics for our methods. Both DAIS and SDAIS show significant improvements over naively

training monocular depth as a joint task with SAIS. Values are percentages.

Method
All Car Person Road

δ < 1.01 δ < 1.25 δ < 1.01 δ < 1.25 δ < 1.01 δ < 1.25 δ < 1.01 δ < 1.25
W/o residuals 16.90 88.65 14.92 84.45 8.50 75.30 22.60 98.45

With residuals 19.74 88.67 15.04 84.48 8.53 75.38 30.27 98.46

Table 5. Ablative analysis of residuals on monocular depth accu-

racy on the SDAIS formulation. To better study high accuracy

monocular depth estimates, we introduce δ < 1.01 in addition to

the threshold metric from [11]; values are percentages. Under this

metric we can see significant improvements, especially “road“.

ric that can be incorporated in estimating the overall safety

of a safety-critical system, while a metric that is an aver-

age could have a high (and perhaps unknowable) proportion

of depths that do not meet a particular safety requirement.

Upon comparing the SAIS formulation versus the SDAIS

formulation, we see an increase in δ < 1.25 of +0.83% (Ta-

ble 4, “All” category; from 87.84% to 88.67%) as well as

increases in metrics in other semantic categories. We postu-

late that this is in part because our unique DAIS and SDAIS

formulations allow for dense supervision (by predicting a

dense pixel-wise instance mask using the monocular depth

logits) for the task of monocular depth estimation, which is

not possible using only the sparse lidar supervision.

We also study the effect of our MultiBin output ap-

proach over simply outputting discrete depth. To study

high-precision depth details, we introduce an additional

metric, the percentage of pixels for which δ < 1.01. As

an example, this provides a tolerance of 20cm at a distance

of 20m, allowing the system to perceive important details

such as potholes in the road surface. We find the addition of

continuous depth residuals significantly improves the pro-

portion of pixels with highly accurate depths, as seen in Ta-

ble 5, particularly for drivable surface pixels, which saw an

increase from 22.60% to 30.27%.

Qualitative Results: We present qualitative outputs of

our model in Figure 4. Despite its limited computational

budget, our model produces high quality 2D object detec-

tions, instance segmentations, semantic segmentations and

depths (shown as both an egocentric depth map and as 3D

point clouds).

Figure 5 shows examples of the improvement in monoc-

ular depth from the SDAIS formulation over the SAIS for-

mulation. As expected, depths near the boundary edges of

the object are improved. From the pedestrian leg in Fig-

ure 5a, we can see how conditioning the instance mask on

the depth estimate results in depth consistent with instance

boundaries. For the case of the bus in Figure 5b, we see how

Figure 5. Examples of improvement in monocular depth estimates

due to SDAIS formulation over SAIS formulation. We have high-

lighted the differences between the two approaches with a red box.

the instance mask acts as a dense structural prior in contrast

to sparse lidar supervision for longitudinally oriented ob-

jects, resulting in much more geometrically coherent depth

estimates for objects.

Inference: All experiments are run on a Tesla-V100

GPU, which has 16GB of DRAM and 112 theoretical fp16

TFLOPS. We run QuadroNet on the NVIDIA TensorRT

[27] framework, with fp16 precision for all results. We also

run FC-HarDNet-70 [3] and DeepLabv3+ [7] on the same

GPU when reporting timing and accuracy in Table 2.

6. Conclusion

We demonstrated the efficacy of a single network trained

to jointly perform a set of relevant scene-understanding

tasks: 2D object detection, semantic segmentation, instance

segmentation and monocular depth estimation. These tasks

cover a broad range of semantic and geometric use cases

essential for important robotics applications such as drones

and autonomous driving. We also introduced a network ar-

chitecture that allows for real-time performance and facili-

tates task co-learning. Finally, we showed that training ben-

efits from combining these tasks via our novel consistency

prior for instance segmentation using monocular depth, im-

proving the performance of both tasks. Interesting direc-

tions for future work could include the addition of 3D boxes

for objects as an output of the network, or using depth self-

supervision using stereo images could reduce or eliminate

the need for lidar data for ground truth depth data.
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