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Abstract

In recent years, deep learning has dominated progress in

the field of medical image analysis. We find however, that

the ability of current deep learning approaches to represent

the complex geometric structures of many medical images is

insufficient. One limitation is that deep learning models re-

quire a tremendous amount of data, and it is very difficult to

obtain a sufficient amount with the necessary detail. A sec-

ond limitation is that there are underlying features of these

medical images that are well established, but the black-box

nature of existing convolutional neural networks (CNNs) do

not allow us to exploit them. In this paper, we revisit Ga-

bor filters and introduce a deformable Gabor convolution

(DGConv) to expand deep networks interpretability and en-

able complex spatial variations. The features are learned at

deformable sampling locations with adaptive Gabor con-

volutions to improve representitiveness and robustness to

complex objects. The DGConv replaces standard convolu-

tional layers and is easily trained end-to-end, resulting in

deformable Gabor feature network (DGFN) with few addi-

tional parameters and minimal additional training cost. We

introduce DGFN for addressing deep multi-instance multi-

label classification on the INbreast dataset for mammo-

grams and on the ChestX-ray14 dataset for pulmonary x-

ray images.

1. Introduction

Automated medical imaging techniques for cancer

screening are widely used for lesion analysis [8], but the tra-

ditional pipeline for computer aided diagnosis is typically

built based on hand-crafted features [25]. These features

are not flexible and have poor generalization on unseen data.

Deep features, however, are data-driven and are becoming

the approach of choice in medical image analysis. Deep

learning has achieved great success on skin cancer diagnos-

tics [6], organs at risk delineation for radiotherapy [32] and

pneumonia detection from chest x-ray images [21] for ex-

†Equal contribution.

ample.

One challenge for deep learning is that it is data hun-

gry and often requires expensive and detailed annotation

[10, 24]. For cancer screening training and validation data

in medical images, image-level description of the clinical

diagnosis may not be sufficient to train for clinical diagno-

sis [34]. Another challenge arises from CNN itself. CNNs

are widely considered black boxes and difficult to interpret.

This becomes a greater challenge for weekly supervised

learning in biomedical image analysis, whose performance

depends highly on powerful representations to handle com-

plicated spatial variations, such as lesion sizes, shapes and

viewpoints.

Gabor wavelets [7] are widely considered the state-of-

the-art hand-crafted feature extraction method, enhancing

the robustness of the representation to scale and orienta-

tion changes in images. The advantage of Gabor transforms

for specific frequency analysis makes them suitable to in-

terpret and resist to dense spatial variations widely existing

in biomedical images. Recently, Gabor convolutional net-

works (GCNs) [17] have used Gabor filters to modulate

convolutional filters and enhance representation ability of

CNNs. [17] only consider rigid transformations of kernels,

however, and not deformable transformations on features

that are required for medical image analysis. Thus the ro-

bustness of Gabor filters to spatial variations has not been

fully investigated to facilitate feature extraction in CNNs.

On the other hand, deformable convolutional networks

(DCNs) [3] augment spatial sampling locations and pro-

vide generalized transformations such as anisotropic aspect

ratios, demonstrating effectiveness on sophisticated vision

tasks such as object detection. We will show that the tai-

lored combination of Gabor filters and deformable convolu-

tions in a dedicated architecture can better characterize the

spatial variations and enhance feature representations to fa-

cilitate medical image analysis.

In this paper, we investigate deeply into Gabor wavelets

with deformable transforms to enhance the networks in-

terpretability and robustness to complex data variations.

Unlike previous hand-crafted filters, the newly designed

module learns Gabor filters end-to-end, thus improving
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Figure 1. The framework of our deformable Gabor Convolution (DGConv).

its adaptiveness to the input data. As illustrated in Fig-

ure 1, our deformable Gabor convolution (DGConv) in-

cludes deformable convolutions and adaptive Gabor convo-

lutions that share the same modulation information. The de-

formable convolutions are endowed with local offset trans-

forms to make the feature sampling locations learnable. The

adaptive Gabor convolutions further facilitate the capture

of visual properties such as spatial localization and orien-

tation selectivity of the input objects, enhancing the gener-

ated deformable Gabor features with various dense transfor-

mations. To balance the performance and model complex-

ity, we only employ deformable Gabor convolution (DG-

Conv) to extract high level deep features. We integrate

this new Gabor module into deep multi-instance multi-label

networks, leading to deformable Gabor feature networks

(DGFNs) to deal with large variations of objects in medi-

cal images. The contributions of this work are summarized

as follows:

• Deformable Gabor feature network (DGFN) exploits

deformable features and learnable Gabor features in

one block to improve the interpretability of CNNs. The

noise-resistant property inherited from Gabor features

is successfully validated on CIFAR-10 with a 2% ac-

curacy improvement over the baseline method.

• DGFN features both the adaptiveness to deformation

and robustness to generalize spatial variations common

in natural images. Their enhanced representative abil-

ity are shown to be beneficial for medical image anal-

ysis.

• The proposed Gabor module is generic and flexible,

which can be easily applied to existing CNNs, such as

ResNet and DenseNet.

2. Related Work

2.1. Deformable Convolutional Networks

CNNs have achieved great success for visual recognition

but are inherently limited to spatial variations in object size,

pose and viewpoint [16, 28]. One method that has been used

to address this problem is data augmentation which adds

training samples with extensive spatial variations using ran-

dom transformations. Robust features can be learned from

the data but at the cost of an increased number of model pa-

rameters and additional training resources. Another method

is to extract spatial invariant features with learned transfor-

mations. Ilse et al. [14] first proposed spatial transformer

networks to learn invariance to translation, scale, rotation

and generic warping, giving neural networks the ability to

actively and spatially transform feature maps. Deformable

convolutional networks (DCNs) [3] introduced offset learn-

ing to sample the feature map in a local and efficient manner

which can be trained end-to-end.

2.2. Gabor Convolution Networks

Gabor wavelets [7] exhibit strong characteristics of spa-

tial locality, scale and orientation selectivity, and insensitiv-

ity to illumination change. The recent rise of deep learn-

ing has lead to the combination of Gabor filters and con-

volution neural networks. Previously Gabor wavelets were

only used to initialize deep networks or used in the pre-

processing [15, 31]. [22] replaced selected weight kernels

of CNNs with Gabor filters to reduce training cost and time.

Recent work has integrated Gabor filters into CNNs intrin-

sically to enhance the resistance of deep learned features

to spatial changes [17]. However, the receptive field of

the integrated Gabor filters is fixed and known, and such

prior knowledge characterizes limited spatial transforma-

tions thus impeding the generalization of complicated spa-

tial variations and new unknown tasks. In this work, we
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go further by tailoring Gabor filters with learnable modula-

tion masks and deformable transforms. The steerable prop-

erty of Gabor filters is therefor inherited into the deformable

convolutions and its representativeness to spatial variations

is fully exploited.

2.3. Multi­Instance Learning for Weakly Super­
vised Image Analysis

There have been a number of previous attempts to utilize

weakly supervised labels to train models for image analy-

sis [23]. Papandreou et al. [20] proposed an iterative ap-

proach to predict pixel-wise labels in segmentation using

image-level labels. Different pooling strategies were pro-

posed for weakly supervised localization and segmentation

respectively [27, 2]. Wu et al. [29] combined CNN with

multi-instance learning (MIL) for image auto-annotation.

Deep MIL with several efficient inference schemes was pro-

posed for lesion localization and mammogram classifica-

tion [33]. Attention based MIL further employed neural at-

tention mechanisms as the inference [13]. Wan et al. [26]

proposed a min-entropy latent model for weakly supervised

object detection, which reduces the variance of positive in-

stances and alleviates the ambiguity of the detectors. Unlike

previous methods, our method uses a novel feature repre-

sentation network to handle large variations of objects in

medical images and improve overall image classification.

3. Deformable Gabor Convolution

Without loss of generality, the convolution operation de-

scribed here is in 2D.

3.1. Deformable and Adaptive Gabor Convolution

To extract highly representative features, we combine the

deformable convolution (DConv) with an adaptive Gabor

convolution (GConv) by sharing modulation information.

As illustrated in Figure 2, both the deformable convolution

and Gabor transforms are adjusted with the learned masks.

Deformable Convolution: We are given U standard

convolution filters of size H × H , which after being mod-

ulated by V scale kernels of size H × H , result in U × V
modulated convolution filters of size H ×H . We define:

D̂u,v = Cu ◦ Sv, (1)

where D̂u,v indicates the deformable convolution filter, ◦
is element wise product operation, Cu is the uth convolu-

tion filter, and Sv is the vth kernel to modulate the convo-

lution filter. In our implementation, the deformable trans-

forms [3] augment D̂u,v with translated offsets which are

learned from the preceding feature maps through additional

convolutions.

Consider a 3 × 3 kernel convolution, R =
{(−1,−1), · · · , (1, 0), (1, 1)}, with a dilation of 1,

for example. Given r0 as the 2D position of output feature

and rn as the location of R, the deformable convolution

filter D̂ can be operated on as follows∗:

Fy(r0) =
∑

rn∈R

D̂(rn)× Fx(r0 + rn +∆rn) (2)

where Fx and Fy indicate the input and output feature re-

spectively. The learned offset ∆rn updates the offset loca-

tion to rn +∆rn and adjusts the receptive field of input Fx

on which D̂ is implemented.

Adaptive Gabor Convolution: Adaptive Gabor filters

are generated from U Gabor filters of size H × H with V
learned kernels of size H ×H , where U indicates the num-

ber of orientations of Gabor filters. We have:

Ĝv,u = Sv ◦Gu, (3)

where Gu is the Gabor filter with orientation u, and Ĝv,u is

the adaptive Gabor filter corresponding to the uth orienta-

tion and the vth scale. For DGConvs, different layers share

the same Gabor filters G = (G1, · · · , GU ) with various ori-

entations but are adjusted with different information from

the corresponding deformable convolution features.

If the dimensions of the weights in traditional convolu-

tion are M0 ×N0 ×H ×H , the dimensions of the learned

convolution filters are M ×N × U ×H ×H in DGConv,

where U represents the number of additional orientation

channels, N (N0) and M (M0) represent the channel num-

ber of the input and output respectively. In DGConv we

set N = N0/
√
U and M = M0/

√
U to maintain similar

amount of parameters with traditional convolution. Addi-

tional parameters in DGConv include V ×H ×H parame-

ters of mask and (2×H ×H)×N × U ×H ×H param-

eters for offset learning, where 2 × H × H is the channel

of offset fields and means that each position of input feature

corresponds to an offset of size 2×H ×H for deformable

convolution.

In DGConv, the number of orientation channels in the in-

put and output feature needs to be U . So the number of ori-

entation channels in the first input feature must be extended

to U . For example, if the dimension of original input feature

is 1×N×W×W where W×W is the size of input feature,

it will be U×N×W×W after duplicating and concatenat-

ing. Thus the new module is light weight and can easily be

implemented with a small number of additional parameters.

3.2. Forward Propagation

We use deformable Gabor convolutions (DGConvs) to

produce deformable Gabor features. Given the input fea-

tures F , the output Gabor features F̂ are denoted:

F̂ = DGConv(F, D̂, Ĝ), (4)

∗The subscript is omitted for easy presentation.
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Figure 2. The modulation process of deformable filters and adaptive Gabor filters. The left shows how convolution filters are modulated by

learned masks to generate deformable filters. The right illustrates the generation of adaptive Gabor filters. For illustration convenience, we

set the number of learned masks as V =4 and the orientation channel of convolution filters and Gabor filters as U=4.

where DGConv is the operation which includes deformable

convolution filters D̂ and adaptive Gabor filters Ĝ. So the

deformable features E
(m)
v and the deformable Gabor fea-

tures F̂
(m)
u are obtained by:

E(m)
v =

∑

n,u

F (n)
u ⊙ D̂(n,m)

u,v , F̂ (m)
u =

∑

v

E(m)
v ⊗ Ĝv,u,

(5)

where ⊗ denotes the traditional convolution, ⊙ denotes

the deformable convolution shown in Eq. (2), and n and m
denote the number of channels in the input and output fea-

tures respectively. E
(m)
v represents the deformable feature

with vth modulation in the mth channel. u indicates F̂
(m)
u

being the uth orientation response of the deformable Gabor

features F̂ (m). Figure 1 shows that deformable Gabor fea-

ture maps reveal better spatial detection results of lesions

after the adaptive Gabor convolutions.

3.3. Backward Propagation

During the back propagation in the DGConv, we need to

update the kernels C and S, which can be jointly learned.

The loss function of the network L is differentiable within a

neighborhood of a point, which will be described in the next

section. We design a novel back propagation (BP) scheme

to update parameters:

δS =
∂L
∂S

=
∂L
∂Ĝ
◦

U∑

u=1

Gu, S ← S − η1δS , (6)

where Gu is the Gabor filter with orientation u and η1 de-

notes the learning rate for S. We then fix S and update

parameters D of deformable convolution filters:

δC =
∂L
∂C

=
∂L
∂D̂
◦

V∑

v=1

Sv, D ← C − η2δC , (7)

where Sv is the vth learned kernel and η2 denotes the learn-

ing rate of convolution parameters.

4. Biomedical Image Analysis

There are many different ways to formulate problems

in biomedical image analysis. Two of the most common

are to classify an entire image as either having a particular

condition or not (a binary-label task) and to associate the

image with several labels (a multi-label task). To test our

deformable Gabor feature network (DGFN), we have iden-

tified two representative datasets, the INbreast dataset [18]

and the ChestX-ray14 dataset [27].

4.1. The INbreast Dataset

The INbreast Dataset [18] is a dataset of mammogram

images consisting of 410 images from a total of 115 cases,

of which 90 cases are from women with both breasts (4 im-

ages per case) and 25 cases are from mastectomy patients (2

images per case) [18]. The dataset includes four types of le-

sions: masses, calcifications, asymmetries, and distortions.

We focus on mass malignancy classification from mammo-

grams.

For mammogram classification, the equivalent problem

is that if there exists a malignant mass, the mammogram I
should be classified as positive. Likewise, a negative mam-

mogram I should not have any malignant masses. If we

treat each patch Qk of I as an instance, the mammogram

classification is a standard multi-instance learning problem.

For a negative mammogram, we expect all the malignant

probabilities pk to be close to 0. For a positive mammo-

gram, at least one malignant probability pk should be close

to 1.

4.2. The ChestX­ray14 Dataset

As one of the largest publicly available chest x-ray

datasets, ChestX-ray14 consists of 112,120 frontal-view x-

ray images scanned from 32,717 patients including many

patients with advanced lung diseases [27]. Each image is

labeled with one or multiple pathology keywords, such as

atelectasis, or cardiomegaly. This dataset consists of com-

plicated diseases which may have interrelations which can

be challenging for the classification task. The ChestX-ray14
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dataset has fourteen different labels, so the image classifi-

cation problem is to associate each instance with a subset of

those labels. This is a multi-instance, multi-label classifica-

tion problem.

4.3. Our Approach

We use the proposed Gabor module to extract highly

representative features and design a multi-instance learn-

ing method to deal with deformable Gabor features. In this

section, we describe the structure of the deformable Gabor

feature networks (DGFNs) for these two problems.

4.3.1 Multi-Instance Learning for Mammograms

After multiple DGConv layers and rectified linear units, we

acquire the last deformable Gabor features F with multiple

channels. Fi,j,: is the feature map for patch Qi,j of the input

image, where i and j denote the spatial index of the row and

column respectively, and : denotes the channel dimension.

We employ a logistic regression model with weights shared

across all the patches of the output feature map. A sigmoid

activation function for nonlinear transformation is then ap-

plied along channels for each element of the output feature

map Fi,j,: and we slide it over all the pixel positions to cal-

culate the malignant probabilities. The malignant probabil-

ity of pixel (i, j) in feature space is:

pi,j = sigmoid(w · Fi,j,: + b), (8)

where w is the weight in the logistic regression, b is the

bias, and · is the inner product of the two vectors w and

Fi,j,:. w and b are shared for different pixel positions

(i, j). p = (pi,j) is flattened into a one-dimensional vector

as p = (p1, p2, ..., pK) corresponding to flattened patches

(Q1, Q2, ..., QK), where K is the number of patches.

Thus, it is natural to use the maximum component of p
as the malignant probability of the mammogram I:

p(y = 1|I) = max{p1, p2, ..., pK},
p(y = 0|I) = 1− p(y = 1|I). (9)

The cross entropy-based cost function can be defined as:

L = −
N∑

n=1

log(p(y = yn|In)), (10)

where N is the total number of mammograms, and yn ∈
{0, 1} is the true label of malignancy for mammogram In
in the training. Typically, a mammogram dataset is imbal-

anced, where the proportion of positive mammograms is

much smaller than negative mammograms, about 1/5 for the

INbreast dataset. We therefor introduce a weighted loss:

L = −
N∑

n=1

w(yn) log(p(y = yn|In)), (11)

Figure 3. Histogram of label frequencies on ChestX-ray14 dataset.

The ChestX-ray14 dataset is imbalanced.

where w(c) = N∑
N

n=0
I(yn=c)

and I(·) is an indicator func-

tion for yn being label c.

4.3.2 Multi-Instance Multi-Label Learning for Chest

X-Rays

In our DGFNs for Chest X-Rays dataset, we define a

fourteen-dimensional label vector yn = [y1n, y
2
n, · · · , yCn ]

for nth image In, where C = 14 with binary values, rep-

resenting either the absence (0) or the presence (1) of a

pathology. The ycn indicates the presence of an associated

pathology in the nth image where c = {1, 2, · · · , C}, while

a zero vector [0, 0, · · · , 0] represents the current x-ray im-

age without any pathology. We consider each pathology

as an independent multi-instance learning problem, which

is the same as the mammogram classification, to solve the

weakly supervised multi-label classification problem. We

consider each patch as an instance and the problem can be

formulated using equation (10). If there is no explicit priors

on these labels, we can derive the loss function as:

L = −
N∑

n=1

C∑

c=1

log(p(y = ycn|In)), (12)

where N is the total number of x-ray images on training

set. As a multi-label problem, we treat all labels equally

by defining C binary cross-entropy loss functions. As the

dataset is highly imbalanced as illustrated in Figure 3, we

incorporate weights within the loss function based on the

label frequency:

L = −
N∑

n=1

C∑

c=1

wc(ycn) log(p(y = ycn|In)), (13)

where wc(0) = N∑
N

n=0
I(yc

n
=0)

and wc(1) = N∑
N

n=0
I(yc

n
=1)

.
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Table 1. The performance of DGFNs (U=4) with different V on

INbreast dataset. The last line describes the average training time

of one epoch with batch size of 128.

DGFNs V =1 V =2 V =3 V =4 V =5

AUC (%) 79.28 80.72 81.67 82.05 82.53

Times (s) 2.96 4.03 5.87 6.85 7.92

5. Experiments

Our deformable Gabor feature networks (DGFNs) are

evaluated on the two medical image datasets described

above and CIFAR-10 dataset. To balance the performance

and training complexity, we use traditional convolution in

the first two blocks and deploy deformable Gabor feature

convolution in the following high level features.

5.1. Experiments on the INbreast Dataset

To prepare the data we first remove the background of

the mammograms in a pre-processing step using Otsu’s seg-

mentation method [19]. We then resize the pre-processed

mammogram to 224×224. We use five-fold cross validation

with three-fold training, one-fold validation and one-fold

testing. We randomly flip the mammograms horizontally,

rotate within 90 degree , shift them by 10% horizontally and

vertically, and set a 50× 50 box as 0 for data augmentation.

The proposed DGFNs employ AlexNet and ResNet18 as

the backbones. We use the Adam optimization [5] algo-

rithm with the initial learning rate of 0.0001 for both η1 and

η2 and weight decay of 0.00005 in the training process. The

learning rate decay is set to 10% for every 100 epochs and

the total number of epochs for training is 1000.

Evaluation of U and V : We first perform the exper-

iments on the hyper-parameters U and V to evaluate the

additional channel number of orientations and scales. As

shown in Table 1, given a fixed number of orientations

(U=4), the average area under the ROC curve (AUC) in-

creases from 79.28% to 82.53% when V is changed from

1 to 5. Additional evaluation on U shows that DGFN per-

forms better when the number of orientations increases. In

the following experiments, we choose U=4, V =4 to balance

the training complexity and performance.

Deformation Robustness and Model Compactness:

To validate the networks robustness to deformation, we gen-

erate a deformable version of the dataset called INbreast-

Deform by sampling 50 images with random scale and ro-

tation for each test sample of the INbreast dataset. Scale

factors are in the range [0.5, 1.5), and rotation angles are in

the range [0, 2π). The results in Table 2 confirm that our

DGFNs outperform CNNs even with fewer parameters by

reducing the channel size of features in the network. When

compared to CNNs with a similar number of parameters,

DGFNs with kernel stage 8-16-32-64 and 16-32-64-128 ob-

tain larger AUC improvements from 75.89% to 81.29% and

Figure 4. AUC comparison on INbreast-deform. All the networks

are of similar model sizes with CNN 0.70M, GCN 0.70M, DCN

0.83M and DGFN 0.98M.

Table 2. Comparisons among CNNs, GCNs, DCNs and DGFNs

on INbreast-Deform.

Backbone
Kernel

Stages
AUC (%) #Params (M)

ResNet18
16-32-64-128 75.89 0.70

32-64-128-256 78.26 2.80

ResNet18

(GCNs)

8-16-32-64 76.90 0.70

16-32-64-128 79.16 2.80

ResNet18

(DCNs)

16-32-64-128 80.40 0.83

32-64-128-256 82.03 3.05

ResNet18

(DGFNs)

8-16-32-32 77.59 0.53

8-16-32-64 81.29 0.98

16-32-64-128 83.30 3.40

from 78.26% to 83.30% respectively. Figure 4 is the com-

parison of the average area under the ROC curve (AUC)

of CNN, GCN, DCN and DGFN with similar sizes around

0.70-0.98M. DGFNs also achieve better performance than

baseline methods including GCNs and DCNs. Thus DGFN

enhances the robustness to spatial variations widely existing

in biomedical images and largely reduces the complexity

and redundancy of the network.

On the INbreast dataset, we combine DGFN with the

multi-instance loss explained in section 4.3.1. As shown

in Figure 5, our designed method can extract features and

pinpoint the malignant region effectively. DGFNs with

AlexNet and ResNet18 are compared with previous state-

of-the-art approaches based on sparse multi-instance learn-

ing (Sparse MIL) [33]. As shown in Table 3, DGFNs have

enhanced representative ability and achieve better AUC

than previous approaches.

5.2. Experiments on the ChestX­ray14 Dataset

We resize the x-ray images from 1024 × 1024 to 224 ×
224 to reduce the computational cost and normalize them
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Figure 5. Malignant probability of each patch on INbreast dataset.

The feature map has 8× 8 patches.

Table 3. Comparisons on INbreast dataset. DGFN with ResNet18

yields the best performance.

Methods Acc (%) AUC (%)

AlexNet+Label Assign. MIL [33] 84.16 76.90

AlexNet+ DGFN+ MIL 86.22 78.12

ResNet18+ DGFN+ MIL 88.61 82.19

Pretrained AlexNet+Sparse MIL [33] 90.00 85.86

Pretrained AlexNet+ DGFN + MIL 91.34 87.22

Pretrained ResNet18 + DGFN + MIL 93.18 88.05

Figure 6. AUC (%) comparisons of our best model with state-of-

art methods on ChestX-ray14 dataset.

based on the mean and standard deviation of images from

the ImageNet training set [4]. In our experiments, we em-

ploy a DenseNet121 [12] as the backbone of our DGFN on

ChestX-ray14 dataset. We resize the images to 224 × 224
and further augment the training data with random rotation

and horizontal flipping. During training we use stochastic

gradient descent (SGD) with momentum 0.9 and batch size

16. We use initial learning rates of 0.001 that are decayed

Figure 7. Comparisons of accuracy on CIFAR-10-Noise. Note that

the four models are of similar size with CNN 2.80M, GCN 2.80M,

DCN 3.05M and DGFN 3.40M.

by a factor of 10 each time when the validation loss has no

improvement.

We used the official split released by Wang et al. [27]

with 70% training, 20% testing and 10% validation. While

Yao et al. [30] and Chexnet [21] randomly split the dataset

and ensure that there is no patient overlap between the

splits. Yao et al. [30] noted that there is insignificant per-

formance difference with different random splits. Thus it is

a fair comparsion. We divide the compared methods into

Fine-Tune (FT) and Off-The-Shelf (OTS) based on whether

it used additional data for training. Guendel et al. [11]

used another fully annotated dataset-PLCO Dataset [9] to

facilitate training. While our DGFN and other compara-

ble fine-tuned methods [21, 27, 1] are initialized with Ima-

geNet. Table 4 demonstrates that among the group labeled

fine-tune, DGFN with DenseNet121 outperforms [21, 27, 1]

on all fourteen pathologies from the ChestX-ray14 dataset.

Among the group labeled off-the-shelf, DGFN achieves av-

erage AUC of 78.39% and performs better on 11 out of 14

pathologies than other methods [30, 1]. Figure 6 illustrative

effectiveness of DGFN to enhance variant representations,

which is potentially of great help on automated biomedical

image analysis.

5.3. Experiments on the CIFAR­10 Dataset

To verify the effectiveness of DGFN on the natural im-

age dataset, we conduct extensive experiments on CIFAR-

10 as well as CIFAR-10 with noise. We generate a noisy

version of CIFAR-10 called CIFAR-10-Noise by replacing

the pixel value with 255 at a probability of 1% percentage

to test the network’s robustness to random Gaussian noise.

We train on CIFAR-10 with random flipping and crop as

augmentation . We test on CIFAR-10 and CIFAR-10-Noise

respectively. We use ResNet18 as the backbone and use

SGD optimization with the initial learning rates as 0.05.

The batch size is set as 128 and the total number of train-

ing epochs is 300. Figure 7 is the comparison of test accu-

racy on CIFAR10-Noise with CNN, GCN, DCN and DGFN

of similar sizes. Table 5 shows that the proposed DGFNs
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Table 4. AUC (%) comparisons of DGFN with Off-The-Shelf (OTS) and Fine-Tune (FT) state-of-art methods on ChestX-ray14 dataset.

Bold text emphasizes the highest value among each group.

Pathology
Off-The-Shelf Fine-Tune

Yao et al. Baltruschat et al. DGFN Wang et al. Guendel et al. Chexnet Baltruschat et al. DGFN

(2017) (2019) (Ours) (2017) (2018) (2018) (2019) (Ours)

Atelectasis 73.3 73.2 78.04 71.6 76.7 80.94 80.1 81.78

Cardiomegaly 85.8 75.9 89.01 80.7 88.3 92.48 88.4 92.84

Consolidation 71.7 75.3 79.09 70.8 74.5 79.01 79.6 80.91

Edema 80.6 85.7 87.21 83.5 83.5 88.78 89.1 89.25

Effusion 80.6 80.6 86.89 78.4 82.8 86.38 87.2 87.51

Emphysema 84.2 79.8 81.96 81.5 89.5 93.71 89.4 93.97

Fibrosis 74.3 73.9 76.08 76.9 81.8 80.47 80.0 81.75

Hernia 77.5 81.9 77.83 76.7 89.6 91.64 88.2 92.15

Infiltration 67.5 67.0 68.49 60.9 70.9 73.45 70.2 74.52

Mass 77.8 68.6 76.32 70.6 82.1 86.76 82.2 88.03

Nodule 72.7 66.5 67.19 67.1 75.8 78.02 74.7 78.65

Pleural Thickening 72.4 70.8 73.32 70.8 76.1 80.62 78.6 81.47

Pneumonia 69.0 68.3 72.83 63.3 73.1 76.80 73.3 77.91

Pneumathorax 80.5 79.1 83.17 80.6 84.6 88.87 86.5 89.36

Average 76.1 74.8 78.39 73.8 80.7 84.17 82.0 85.01

Table 5. Comparisons among CNNs, GCNs, DCNs and DGFNs

on CIFAR-10 and CIFAR-10-Noise.

Methods
Kernel

Stages
Acc (%)

Acc with

noise (%)

#Params

(M)

ResNet18 32-64-128-256 90.74 70.72 2.80

ResNet18

(GCNs)

8-16-32-64 88.3 72.81 0.70

16-32-64-128 89.37 74.69 2.80

ResNet18

(DCNs)

16-32-64-128 88.92 74.30 0.83

32-64-128-256 89.79 78.96 3.05

ResNet18

(DGFNs)

8-16-32-64 89.59 76.75 0.98

16-32-64-128 91.03 80.12 3.40

outperform the baseline on CIFAR-10-Noise. With a simi-

lar number of parameters, DGFN with kernel stage 16-32-

64-128 achieves a 2% accuracy improvement beyond DCN,

demonstrating its own superior robustness to random Gaus-

sian noise common on natural images.

6. Conclusion

We have presented a deformable Gabor feature network

(DGFN) to improve the robustness and interpretability for

weakly supervised biomedical image classification. DGFN

integrates adaptive Gabor filters into deformable convolu-

tions, thus sufficiently characterizes spatial variations in ob-

jects and extracts discriminative features for various cate-

gories. Experiments show the DGFN is resistant to Gaus-

sian noise and the architecture is both efficient and com-

pact. DGFN is easily integrated into multi-instance, multi-

label learning to facilitate the classification of biomedical

image with great variations of sizes and shapes of the le-

sions. Extensive experiments demonstrate the effectiveness

of DGFNs on both the INbreast dataset and the ChestX-

ray14 dataset.
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