
Effective Fusion Factor in FPN for Tiny Object Detection

Yuqi Gong§† Xuehui Yu§† Yao Ding† Xiaoke Peng† Jian Zhao‡ Zhenjun Han†∗

†University of Chinese Academy of Sciences, Beijing, China
‡Institute of North Electronic Equipment, Beijing, China

{gongyuqi18, yuxuehui17, dingyao16, pengxiaoke19}@mails.ucas.ac.cn

zhaojian@u.nus.edu, hanzhj@ucas.ac.cn

Abstract

FPN-based detectors have made significant progress in

general object detection, e.g., MS COCO and PASCAL

VOC. However, these detectors fail in certain application

scenarios, e.g., tiny object detection. In this paper, we ar-

gue that the top-down connections between adjacent layers

in FPN bring two-side influences for tiny object detection,

not only positive. We propose a novel concept, fusion fac-

tor, to control information that deep layers deliver to shal-

low layers, for adapting FPN to tiny object detection. After

series of experiments and analysis, we explore how to es-

timate an effective value of fusion factor for a particular

dataset by a statistical method. The estimation is dependent

on the number of objects distributed in each layer. Compre-

hensive experiments are conducted on tiny object detection

datasets, e.g., TinyPerson and Tiny CityPersons. Our results

show that when configuring FPN with a proper fusion fac-

tor, the network is able to achieve significant performance

gains over the baseline on tiny object detection datasets.

Codes and models will be released.

1. Introduction

Tiny object detection is an essential topic in the com-

puter vision community, with broad applications including

surveillance, driving assistance, and quick maritime rescue.

FPN-based detectors, fusing multi-scale features by top-

down and lateral connection, have achieved great suc-

cess on commonly used object detection datasets, e.g.,

MS COCO [17], PASCAL VOC [9] and CityPersons [34].

However, these detectors perform poorly on tiny object de-

tection, e.g., TinyPerson [33] and Tiny CityPersons [33]1.

An intuitive question arises: why current FPN-based detec-

tors unfit tiny object detection and how to adapt them to tiny

∗corresponding author §indicates equal contribution.
1Tiny CityPersons is obtained by four times of down-sampling of

CityPersons.

Figure 1. The performance based on different fusion factors on

TinyPerson and Tiny CityPersons. The y-axis shows the perfor-

mance improvement of AP
tiny
50 when given a fusion factor. Fu-

sion factor denotes the coefficient weighted on the deeper layer

when fusing features of two adjacent layers in FPN.(Best viewed

in color)

object detection.

The motivation to answer the problem origins from an in-

teresting phenomenon when analyzing experimental results

of tiny object detection using FPN. As shown in Fig. 1, the

phenomenon is that the performance first increases and then

decreases along with the increasing of information that deep

layers delivering to shallow layers. We define fusion factor

as the coefficient weighted on the deeper layer when fusing

feature of two adjacent layers in FPN.

We further explore why the phenomenon occurs by an-

alyzing the working principle of FPN. We find that FPN

indeed is multi-task learning due to the fusion operation

of adjacent layers. To be more specific, if omitting top-

down connection in FPN, each layer only needs to focus on

detecting objects with the highly relevant scale, for exam-

ple, shallow layers learn small objects and deep layers learn

large objects. However, in FPN, supervised by losses from

other layers indirectly, each layer nearly needs to learn all

size objects, even the deep layers need to learn small ob-

jects. For tiny object detection, there exist two facts need

to be considered. The first one is that small objects domi-
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Figure 2. The performance based on different fusion factors under

APall
50 on different datasets. The y-axis shows the performance

improvement when given a fusion factor. The performance of

TinyPerson and Tiny CityPersons fluctuates with different fusion

factors, while the performance of CityPersons, PASCAL VOC and

MS COCO are relatively stable. (Best viewed in color)

nate the dataset and the second one is that the dataset is not

large. Therefore, each layer not only needs to focus on its

corresponding scale objects, but also needs to get help from

other layers for more training samples. The fusion factor

controls the priorities of these two requirements and then

get a balance of them. The conventional FPN corresponds

to that fusion factor is 1, improper for tiny object detection.

In light of this, firstly, we explore how to explicitly learn

effective fusion factor in FPN from several aspects, for im-

proving the performance of FPN for tiny object detection.

An effective value of fusion factor for a particular dataset

is estimated by a statistical method, which is dependent on

the number of objects distributed to each layer. Secondly,

we further analyze whether fusion factor can be learned im-

plicitly from two aspects. Finally, we explain the rationality

of designing α for tiny object detection in the respective of

gradient backpropagation. Extensive experimental results

indicate that FPN fusion factor provides a significant boost

to the performance of commonly used FPN for tiny object

detection. The main contributions of our work include:

1. We propose a new concept, fusion factor, to describe the

couple degree of adjacent layers in FPN.

2. We analyze how the fusion factor affects the performance

of tiny object detection and further investigate how to de-

sign an effective fusion factor for improving performance.

Moreover, we provide mathematical explanation in details.

3. We show that significant performance improvements

over the baseline on tiny object detection can be achieved

by setting an proper fusion factor to FPN.

2. Related Work

2.1. Dataset for Detection

To deal with various challenges in object detection, many

datasets have been reported. MS COCO [17], PASCAL

VOC [9] and ImageNet [1] are for general object detection.

IVIS [12] is also for general object detection; however, it

has a long tail of categories in images. There are some

datasets applied to specific detection tasks. [4, 8, 31, 7, 6,

10, 34] are scene-rich and well-annotated datasets used for

pedestrian detection task. WiderFace [32] mainly focuses

on face detection, TinyNet [24] involves remote sensing ob-

ject detection in a long-distance and TinyPerson [33] is for

tiny person detection, whose average absolute size is nearly

18 pixels. In this paper, we focus on the tiny person detec-

tion, and the TinyPerson and Tiny CityPersons are used for

experimental comparisons.

2.2. Small Object Detection

Extensive research has also been carried out on the de-

tection of small objects. [33] proposes scale matching

that aligns the object scales from the pretrain dataset to tar-

gets dataset for reliable tiny-object feature representation.

SNIP [25] and SNIPER [26] use a scale regularization strat-

egy to guarantee the size of the object is in a fixed range for

different resolution images. SNIPER uses the method of re-

gion sampling to further improve training efficiency. Super

Resolution(SR) is used to recover the information of low-

resolution objects; therefore, it is introduced to small object

detection. EFPN [5] constructs a feature layer with more

geometric details, which is designed for small objects via

SR. Noh et al. [22] propose a feature level super-resolution

approach using high-resolution object features as supervi-

sion signals and matching the relevant receptive fields of in-

put and object features. Chen et al. [3] propose a feedback-

driven data provider to balance the loss for small object de-

tection. TridentNet [14] constructs parallel multi branches

of different receptive fields and generates more discrimi-

native small objects’ features to improve the performance.

These methods mentioned above improve the performance

of small object detection to some extent.

2.3. Feature Fusion for Object Detection

In the deep network, the shallow layers are generally

lack of abstract semantic information and rich in geomet-

ric details. In contrast, the deep layer is just the oppo-

site of the shallow layer. FPN [15] merges deep layer and

shallow layer features in a top-down way to build a fea-

ture pyramid. PANet [19] proposes a bottom-top way to

help deep layer object recognition with shallow layer de-

tailed features. Kong [13] proposed the method of global

attention and local reconfiguration, which combined the

high-level semantic features with the low-level represen-

tation to reconstruct the feature pyramid. MHN [2] is a

multi-branch and high-level semantic network proposed to

solve the semantic gap problem of merging different fea-

ture maps. In the process of addressing semantic incon-

sistence problem, it significantly improves performance on
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detecting small-scale objects.. Nie [21] introduces a feature

enrichment scheme to generate multi-scale contextual fea-

tures, HRNet [27] performs multi-scale fusion through re-

peated cross parallel convolution to enhance feature expres-

sion, and Libra-RCNN [23] uses the fusion results of all fea-

ture layers to reduce the unbalance between feature maps.

ASFF [18] predicts the weight of features from different

stages via a self-adaptive mechanism when fused again.

SEPC [30] proposes pyramid convolution to improve the

efficiency of feature fusion of adjacent feature layers. Nas-

FPN [11] explores the optimal combination way for fea-

ture fusion of each layer using AutoML. Tan [28] proposes

the learnable weight of feature fusion in BiFPN. These ap-

proaches further improved the effect of feature fusion from

different aspects. However, they all ignore that feature fu-

sion is affected by dataset scale distribution.

3. Effective fusion factor

Two main elements affect the performance of FPN for

tiny person detection, including the downsampling factor

and the fusion proportion between adjacent feature layers.

Previous studies have explored the former element, and con-

clude that the lower downsampling factor is, the better the

performance will be, despite the increased computational

complexity. However, the latter element has been ignored.
FPN aggregates adjacent feature layers in the following

manner:

Pi = flayeri(finneri(Ci) + α
i+1

i ∗ fupsample(P
′

i+1)), (1)

where finner is a 1 × 1 convolution operation for channels

matching, fupsample denotes the 2× upsampling operation

for resolution matching, flayer is usually a convolution op-

eration for feature processing, and α denotes fusion factor.

The conventional detectors set α to 1. The black dashed

box on the right of Fig. 4 shows this process. In practice, if

FPN fuses features from level P2, P3, P4, P5, P6, there are

three different α, including α3
2, α4

3 and α5
4, which represent

the fusion factors between two adjacent layers, respectively.

(Since P6 is generated by directly downsampling the P5,

there is no fusion factor between P5 and P6). The propor-

tion of features from different layers, when they are fused,

are adjusted by setting different α. In the following, the

fusion factor will be deeply investigated and analyzed.

3.1. What affect the effectiveness of fusion factor?

To explore how to obtain the effective α, we first inves-

tigate what can affect the effectiveness of fusion factor. We

hypothesize that four attributes of dataset affect α: 1. The

absolute size of objects; 2. The relative size of objects; 3.

The data volume of the dataset; 4. The distribution of ob-

jects in each layer in FPN.

Firstly, we conduct experiments to evaluate the fusion

factors effect on different datasets. The experimental re-

Figure 3. The performance based on different fusion factor under

APall
50 on different datasets: Tiny CityPersons upsampled ×1, ×2

and Cityperson, respectively. (Best viewed in color)

sults are given in Fig. 2. Different datasets exhibit differ-

ent trends, e.g., the curve peak value, under different fu-

sion factors. The cross-scale datasets, CityPersons, VOC,

and COCO, are not sensitive to the variation of α, except

when α = 0, which corresponds to no feature fusion. How-

ever, on TinyPerson and Tiny CityPersons, the performance

increases first and then decreases with the increase of α,

which means that the fusion factor is a crucial element for

performance, and there exists an optimal value range. In

this paper, the fusion factor greater than 1.1 is not con-

ducted due to the difficulty of converging on TinyPerson,

Tiny CityPersons, and CityPersons.

The common characteristic of TinyPerson and Tiny

CityPersons is that the average absolute size of instances

is less than 20 pixels, which brings a great challenge to net-

work learning. Therefore, we resize images in CityPersons

and COCO to obtain different datasets (Images in CityPer-

sons are zoomed out by 2 times and 4 times, and in COCO

by 4 times and 8 times, respectively). As shown in Fig. 3,

when the absolute size of the objects is reduced, the trends

of performance with the change of α become similar to that

of TinyPerson. For Tiny CityPersons and CityPersons, the

amount of data and the relative size of the objects are pre-

cisely the same; however, the performance changes differ-

ently when the fusion factors increase.

The distribution of objects in each layer in the FPN will

determine whether the training samples are sufficient or

not, which directly affects the feature representation in each

layer. CityPersons shares similar stratification of FPN with

TinyPerson and Tiny CityPersons. Although Tiny CityPer-

sons are obtained by 4 times of downsampling of CityPer-

sons, the stratification of CityPersons in FPN is still sim-

ilar to that of Tiny CityPersons since the anchor of Tiny

CityPersons is also reduced by four times. To be specific, a

large number of tiny objects are concentrated in P2, and P3,

which brings about those objects in deep layers of FPN are

insufficient. However, the trend of performance to fusion

factor on CityPersons differs from that of TinyPerson and

Tiny CityPersons.
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Figure 4. The framework of our method. The dotted boxes on the left show the calculation of NP , where 1 and 0 are positives and negatives,

respectively. The image is from TinyPerson. Red boxes and red points represent anchor boxes and anchor points. For simplification, only

one anchor is displayed with a anchor point. Yellow box and blue box are ground-truth on P3 and P4 layer, respectively. The dotted box

on the right is the framework of original FPN. We can obtain the effective fusion factor α by statistic-based method.

Figure 5. The performance based on different fusion factor under

AP all
50 of different input sizes of MS COCO, showing the influence

of the absolute size of objects. And the Adaptive RetinaNet builds

FPN using P2, P3, P4, P5, P6. (Best viewed in color)

Therefore, we conclude that the absolute size of objects

rather than the other three factors exactly affects the effec-

tiveness of the fusion factor. Accordingly, why and how

fusion factor works are given as follows. α determines how

degree deep layers in FPN participate in the learning of shal-

low layers by reweighting loss in gradient back propagation.

The object in the dataset is tiny-size, which brings many dif-

ficulties for the learning of each layer in FPN. Hence, each

layer’s learning capability is not enough, and the deep lay-

ers have no extra ability to help the shallow layers. In other

words, the supply-demand relationship between deep layers

and shallow layers in FPN has changed when the learning

difficulty of each layer increases and α has to be reduced,

indicating that each layer should be more focused on the

learning of this layer.

Figure 6. The network structure of self-attention.

3.2. How to obtain an effective fusion factor?

To further explore how to get an effective fusion fac-
tor, we design four kinds of α and conduct experiments on
TinyPerson: 1. A brute force solution, which enumerates
α according to the Fig. 1. 2. A learnable manner, where α
is set as a learnable parameter that is optimized by the loss
function. 3. An attention-based method, where α is gen-
erated by the self-attention module, illustrated in the Fig. 6.
4. A statistic-based solution, which utilizes the statistical in-
formation of datasets to compute α, calculated as follows:

α
i+1

i =
NPi+1

NPi

. (2)

where NPi+1
and NPi

represent the number of objects on

the layer Pi+1 and Pi in FPN, respectively. The quantitative

experiments of the four methods are given in the Tab. 1.

Accordingly, we summarize several conclusions.

Firstly, the brute force search explores the best α. Nev-

ertheless, it contains redundant computations, which lim-

its large-scale applications. Secondly, all non-fixed α set-

tings are superior to the baseline, where α is set as 1, the

attention-based method increases the amount of calculation

that cannot be negligible. Thirdly, only the statistic-based
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Method AP
tiny
50 MR

tiny
50

baseline 46.56 88.31

one-α 46.86 88.31

three-α 47.66 87.98

atten-α 47.88 87.80

bf-α 48.33 87.94

S-α 48.34 87.73

Table 1. The performance of AP
tiny
50 on TinyPerson based on dif-

ferent calculation strategies of fusion factor. α in baseline is set

to 1 by default. one-α and three-α represent using one and three

learnable parameters, respectively. atten-α is obtained via atten-

tion mechanism. α-bf represents the optimum via brute force so-

lution. The performance of S-α is obtained via RetinaNet with

S-α. Lower MR(Miss Rate) means better performance.

approach achieves comparable performance with that ob-

tained by the brute force search.

The statistic-based method, named as S-α, sets α accord-

ing to the proportion of the object number between adjacent

layers in the FPN, as shown Eq. 2. The object number is

counted from the whole dataset. We design the formula-

tion based on the fact that for tiny object detection, it is

hard for each layer to capture representative features for de-

tection tasks, which intensifies competition between layers.

More concretely, all layers in different heads want parame-

ters they share to learn proper features for their correspond-

ing detection tasks. Unfortunately, some layers may have

much less training samples than others, leading to that when

updating shared parameters, the gradient of these layers is

at a disadvantage compared with other layers. Therefore,

when NPi+1
is small, or NPi

is large, the method sets a

small α to reduce the gradient generated by the detection

task in Pi layer, vice versa, which prompts the network to

learn detection tasks in each layer equally. Thus, the learn-

ing efficiency of tiny objects is improved.

The statistic procedure of NP and calculation of α are

as follows: 1) Taking IoU as a principle, we choose the an-

chors with the largest IoU with ground-truth as positive in

an image. 2) Based on the positive anchors and the pre-

defined number of anchors in each layer, the number of

ground-truth in each layer is calculated. 3) Repeat steps 1

and 2 on each image in the dataset to get a statistical result,

and then we calculate the α according to Eq. 2, as shown

in the left dashed box of Fig. 4. The calculation procedure

does not involve the front propagation of networks since the

anchor is predefined, and ground-truth is provided by the

dataset. Details are given in Alg. 1.

3.3. Can fusion factor be learned implicitly?

In Section 3.2, the effective α is explored by explicit

learning. We further discuss whether the fusion factor could

be learned implicitly in this section.

Algorithm 1 Fusion Factor Statistics

INPUT: M (M denotes IoU matrixes of all images, Mi is

the IoU matrix of ith image.)

INPUT: A (A denotes the set of all predefined anchors in

the FPN, Ai denotes the set of preset anchors of ith layer.)

INPUT: Listtn (A list which records the number of

ground-truth allocated to each layer, tn represents total

number of [NP2
,NP3

,NP4
,NP5

,NP6
].)

OUTPUT: Listα (A list of α2
3,α3

4,α4
5)

NOTE: 1. According to the IoU matrix, MatchGT ()

selects the anchor with max IoU with a specified ground-

truth as a positive example; 2. CalNumAnchor() counts

the number of anchors matching to the ground-truth of the

corresponding layer; 3. R represents the intermediate result

outputed by MatchGT (), Ri is the result of ith image.

1: listtn ← [0, 0, 0, 0, 0]
2: R← ∅

3: for Mi in M do

4: R←MatchGT (Mi)
5: end for

6: for Ri in R do

7: for Ai in A do

8: NPi
+= CalNumAnchor(Ai, Ri)

9: end for

10: end for

11: for NPi
in Listtn do

12: if i < 4 then

13: αi+1
i =

NPi+1

NPi

14: else

15: αi+1
i =

NPi+1
+NPi+2

NPi

16: end if

17: Listα ← αi+1
i

18: end for

19: return Listα

method AP
tiny
50 MR

tiny
50

baseline 46.56 88.31

0.5-power + α=1 46.94 87.98

0.5-power + α=0.5 48.17 87.17

Table 2. Detection results of σ-power initialization on TinyPerson

Firstly, we analyze the structure of the FPN and find an

equivalent realization of the fusion factor. In the conven-

tional FPN (α = 1), multiplying the parameters of finneri
by σi−2 and dividing the parameters of flayeri by σi−2 is

equivalent to keeping finneri , flayeri fixed and setting α

= σ. Thus, the conventional FPN has the latent ability to

learn the effective α implicitly. We further investigate how

to activate the ability by adjusting initialization of param-

eters of finneri . We carry out experiments with different

initialization of finneri and flayeri by multiplying their cor-
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Figure 7. The performance of clock, person and all classes in

COCO100, which have 6587 clock instances, 268030 person in-

stances and 886284 instances totally. (Best viewed in color)

Figure 8. The structure of FPN.

responding coefficients, which indicate different powers of

σ (α = 1) 2, illustrated in Fig. 8. As shown in Tab. 2, the

setting fails to promote performance over baseline. We fur-

ther conduct an experiment: set α as σ and keep the above

initial configuration of finneri and flayeri , the performance

is similar to that without defining initialization of finneri
and flayeri , shown in Tab. 2, which shows the failure of this

strategy.

Secondly, there is the fact that the learning of a neu-

ral network is data-driven and a phenomenon that Tiny

CityPersons and TinyPerson are sensitive to different α.

They have similar data volumes, which is not large enough.

Motivated by the antagonistic mechanism, we analyze

whether large datasets could propel FPN to implicitly learn

fusion factors. Specifically, set different fusion factors and

explore when the impact of the fusion factor can be off-

set. We carry out confirmatory experiments on COCO100.

In Fig. 5, the peak phenomenon caused by α is evident.

However, COCO is a long-tail dataset (samples of differ-

ent categories are unbalanced). For example, persons ex-

ceed a quarter of COCO, and other categories are relatively

much less. Therefore, we further explore the impact of α on

different categories which have different data volumes. As

shown in the Fig. 7, the peak phenomenon caused by α is

greatly weakened when the category is the person. We argue

2We set σ=0.5 in experiments.

that the network possesses the ability to learn fusion factor

latently when the training dataset is large enough. Even in

COCO, most of categories are not satisfies the requirement,

resulting in that the final performance are sensitive to fusion

factor.

3.4. Mathematical explanation for fusion factor

We discuss the mathematical fundamentals of α from the

perspective of gradient propagation. Without loss general-

ity, we use α4
3 and C4 as an example to analyze how the

fusion factor in FPN affects parameter optimization of the

backbone. The gradient of C4 layer can be represented as

Eq. 3.

∆C4 =

− η ∗ [

NP4∑

i=1

∂(lossP4
)

∂C4

+

NP5∑

i=1

∂lossP5

∂C4

︸ ︷︷ ︸

∆C
deep

4

+

α4
3 ∗ (

NP2∑

i=1

∂lossP2

∂P
′

3

+

NP3∑

i=1

∂lossP3

∂P
′

3

) ∗
∂P

′

3

∂C4

︸ ︷︷ ︸

∆Cshallow
4

],

(3)

where lossPi
denotes the classification and regression loss

corresponding to the ith layer.

Eq. 3 means there are two kinds of tasks that affect C4:

object detection in deep layers(P4, P5) and object detec-

tion in shallow layers(P2, P3). While applying bigger α4
3,

C4 will acquire more information used for detection task of

shallow layers, and lost more information used for detec-

tion task of deep layers, vice versa. In addition, the deep

and shallow is relative. P4 is deep layer to P3 and a shallow

layer to P5.

For detection in larger object dataset, such as COCO800,

the information of object is rich, and even detection head

learns a lot of highly relevant information. If we give up

part of information for detection of deep layers(apply small

α4
3), the final performance almost does not decline and if

we keep them(apply big α4
3), the performance will neither

not be greatly improved. As a result, the setting of α4
3 is

less sensitive on such dataset.The larger the dataset objects,

the less sensitive it is to α setting. In other words, the per-

formance of α4
3 setting in a larger range is almost the same.

The analysis is consistent with the Fig. 5.

For detection in tiny object dataset, the amount of in-

formation is not enough, which means that the amount of

information that can be learned at each layer is less. There-

fore, detection tasks in deep layers and shallow layers both

prefer that C4 can retain more information that is beneficial

to themselves, that is, they prefer to obtain the greater ra-

tio of gradient of C4. Detection task in P2 and P3 incline

to a greater α4
3. However, P4, P5 incline to a smaller the

α4
3. Finally, the optimal performance lies in a compromise

value. The more deviated from this value, the worse the
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Detector MR
tiny
50 MR

tiny1
50 MR

tiny2
50 MR

tiny3
50 MRsmall

50 MR
tiny
25 MR

tiny
75

FCOS [29] 96.28 99.23 96.56 91.67 84.16 90.34 99.56

RetinaNet [16] 92.66 94.52 88.24 86.52 82.84 81.95 99.13

FreeAnchor‡ [35] 89.66 90.79 83.39 82.34 73.88 79.61 98.78

Libra RCNN [23] 89.22 90.93 84.64 81.62 74.86 82.44 98.39

RetinaNet† 88.31 89.65 81.03 81.08 74.05 76.33 98.76

Grid RCNN [20] 87.96 88.31 82.79 79.55 73.16 78.27 98.21

Faster RCNN-FPN [15] 87.57 87.86 82.02 78.78 72.56 76.59 98.39

RetinaNet-SM [33] 88.87 89.83 81.19 80.89 71.82 77.88 98.57

RetinaNet-MSM [33] 88.39 87.8 79.23 79.77 72.18 76.25 98.57

Faster RCNN-FPN-SM [33] 86.22 87.14 79.60 76.14 68.59 74.16 98.28

Faster RCNN-FPN-MSM [33] 85.86 86.54 79.2 76.86 68.76 74.33 98.23

RetinaNet with S-α(ours) 87.73 89.51 81.11 79.49 72.82 74.85 98.57

Faster RCNN-FPN with S-α(ours) 87.29 87.69 81.76 78.57 70.75 76.58 98.42

RetinaNet+SM with S-α 87.00 87.62 79.47 77.39 69.25 74.72 98.41

RetinaNet+MSM with S-α 87.07 88.34 79.76 77.76 70.35 75.38 98.41

Faster RCNN-FPN+SM with S-α 85.96 86.57 79.14 77.22 69.35 73.92 98.30

Faster RCNN-FPN+MSM with S-α 86.18 86.51 79.05 77.08 69.28 73.9 98.24

Table 3. Comparisons of MRs on TinyPerson.

Detector AP
tiny
50 AP

tiny1
50 AP

tiny2
50 AP

tiny3
50 AP small

50 AP
tiny
25 AP

tiny
75

FCOS [29] 17.90 2.88 12.95 31.15 40.54 41.95 1.50

RetinaNet [16] 33.53 12.24 38.79 47.38 48.26 61.51 2.28

FreeAnchor‡ [35] 44.26 25.99 49.37 55.34 60.28 67.06 4.35

Libra RCNN [23] 44.68 27.08 49.27 55.21 62.65 64.77 6.26

RetinaNet† 46.56 27.08 52.63 57.88 59.97 69.6 4.49

Grid RCNN [20] 47.14 30.65 52.21 57.21 62.48 68.89 6.38

Faster RCNN-FPN [15] 47.35 30.25 51.58 58.95 63.18 68.43 5.83

RetinaNet-SM [33] 48.48 29.01 54.28 59.95 63.01 69.41 5.83

RetinaNet-MSM [33] 49.59 31.63 56.01 60.78 63.38 71.24 6.16

Faster RCNN-FPN-SM [33] 51.33 33.91 55.16 62.58 66.96 71.55 6.46

Faster RCNN-FPN-MSM [33] 50.89 33.79 55.55 61.29 65.76 71.28 6.66

RetinaNet with S-α(ours) 48.34 28.61 54.59 59.38 61.73 71.18 5.34

Faster RCNN-FPN with S-α(ours) 48.39 31.68 52.20 60.01 65.15 69.32 5.78

RetinaNet+SM with S-α 52.56 33.90 58.00 63.72 65.69 73.09 6.64

RetinaNet+MSM with S-α 51.60 33.21 56.88 62.86 64.39 72.60 6.43

Faster RCNN-FPN+SM with S-α 51.76 34.58 55.93 62.31 66.81 72.19 6.81

Faster RCNN-FPN+MSM with S-α 51.41 34.64 55.73 61.95 65.97 72.25 6.69

Table 4. Comparisons of AP s on TinyPerson.

performance will be. Because if it prefers the deep layers

or shallow layers too much, the important information from

the other layers will be ignored.

4. Experiment

Experimental setting: The codes are based on Tinyben-

mark [33]. If there is no special statement, we choose the

pre-trained ResNet-50 on ImageNet as the backbone, and

RetinaNet is chosen as a detector. There are 12 epochs to-

tally and the initial learning rate is set to 0.005, which then

decreased by 10 and 100 times at the 6th epoch and the

10th epoch, respectively. Anchor size is set to (8, 16, 32,

64, 128), and aspect ratio is set to (0.5, 1.0, 2). Due to the

dense objects (more than 200) in some images in TinyPer-

son, we select images with less than 200 objects for training

and testing. In terms of data augmentation, only flip hori-

zontal is adopted in our experiments.And we use the origi-

nal image/sub-image size.

Evaluation standard: According to Tinybenmark [33], we

mainly use Average Precision(AP) and Miss Rate(MR) for

evaluation. AP is a widely used metric in various object

detection tasks, reflecting both the precision and recall ra-

tio of detection results. Due to TinyPerson is a pedestrian

dataset, MR is also used as the evaluation standard. And the

threshold value of IoU is set to 0.25, 0.5, and 0.75. Tinyben-

mark [33] further divides tiny[2, 20] into 3 sub-intervals:

tiny1[2, 8], tiny2[8, 12], tiny3[12, 20]. In this paper, we

pay more attention to whether the object can be found out

rather than the location accuracy; therefore, we choose IoU

= 0.5 as the main threshold for evaluation.
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4.1. Experiment on TinyPerson

The average absolute size of persons in TinyPerson is 18

pixels. And the aspect ratio of persons in TinyPerson varies

greatly. Moreover, the diversity of persons is more com-

plicated, making the detection more difficult. TinyPerson

contains 794 and 816 images for training and inference, re-

spectively. Most images in TinyPerson are large, resulting

in insufficient GPU memory. Therefore, the original images

are cut into sub-images with overlapping during the training

and inference.

4.1.1 Comparisons with other SOTA detectors

We compare the performance of detectors with the pro-

posed S-α with state of the art methods on TinyPerson [33].

Due to the extremely small(tiny) size, the performance of

SOTA detectors significantly decreases, as shown in Tab. 3

and Tab. 4. FreeAnchor‡ and RetinaNet† are improved ver-

sions with building FPN using the P2, P3, P4, P5, P6 and

adjusting anchor size to [8, 16, 32, 64, 128]. The improved

versions of RetinaNet is used in subsequent experiments.

The imbalance of positive and negative examples is severe

on TinyPerson. The performance of two-stage detectors is

better than one-stage detectors. Faster RCNN with S-α im-

proves the performance by 1.04% and 0.28% of AP
tiny
50 and

MR
tiny
50 , respectively, without adding more parameters of

the network. It shows that the modification based on FPN

is beneficial to the two-stage detectors. The performance

of RetinaNet with S-α is better than other detectors except

SM/MSM [33]. SM/MSM needs to perform pretraining on

COCO via scale matching between COCO and TinyPerson,

and then finetune on TinyPerson, while RetinaNet with S-α

is only based on the pre-trained model on ImageNet. Reti-

naNet with S-α achieves comparable performance without

adding a new network parameter. SM/MSM (the SOTA

method) and S-α are complementary, shown in Tab. 4 and

Tab. 3. RetinaNet+SM with S-α achieves a new SOTA and

improves the AP
tiny
50 and MR

tiny
50 over RetinaNet+SM by

4.08% and 1.87%.

4.1.2 Comparisons with Different Backbones

detector backbone AP
tiny
50 MR

tiny
50

RetinaNet
ResNet-50 46.56 88.31

ResNet-101 46.99 88.16

RetinaNet ResNet-50 48.34 87.73

with S-α ResNet-101 47.99 87.81

Table 5. Object detection results with different backbones on the

TinyPerson.

The performance of with RetinaNet S-α, shown in

Tab. 5, has been improved 1.78% and 1% of AP
tiny
50 with

ResNet-50 and ResNet-101, respectively. Compared with

ResNet-50, ResNet-101 has no better performance in tiny

person detection, which may be caused by the tiny absolute

size. In the case of the fixed size of images, tiny objects are

mainly distributed in P2 and P3 of FPN, and there are fewer

training samples in deep layers. The extra 51 blocks of

ResNet-101 compared with ResNet-50 are located in stage-

4 of ResNet, which is too deep to help tiny object recogni-

tion, but increases the calculation burden.

4.2. Experiment on other tiny datasets

detector AP
tiny
50 MR

tiny
50

RetinaNet 36.36 78.03

RetinaNet with bf-α 38.94 75.91

RetinaNet with S-α 38.60 76.45

Table 6. Object detection results on the Tiny CityPersons.

detector AP AP50
all

RetinaNet 14.60 27.96

RetinaNet with bf-α 14.68 28.09

RetinaNet with S-α 14.86 28.27

Table 7. Object detection results on the COCO100.

RetinaNet with S-α has also made improvement with

Resnet-50 as the backbone on Tiny CityPersons and

COCO100, given in Tab. 6 and Tab. 7, the bf represents

the optimum via brute force solution.The result show that

RetinaNet with S-α is still valid on other tiny datasets as

good as the best result of brute force algorithm.

5. Conclusion

In this paper, inspired by the phenomenon that fusion

factor affects the performance of tiny object detection, we

analyze why the fusion factor affects the performance and

explore how to estimate an effective fusion factor to provide

best positive influence for tiny object detection. We futher

provide the mathematical explanation for the above state-

ment from the perspective of gradient propagation in FPN.

We conclude that adjusting the fusion factor of adjacent lay-

ers of FPN can adaptively propell shallow layers to focus on

learning tiny objects, which leads to improvement for tiny

object detection. Moreover, extensive experiments demon-

strate the effectiveness of our method by configuring differ-

ent experimental conditions, including different detectors,

different backbones and different datasets. In the future, we

will extend our method to other scale dataset and other dif-

ficult object detection tasks, such as occluded or truncated.
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