
Style Consistent Image Generation for Nuclei Instance Segmentation

Xuan Gong1, Shuyan Chen1, Baochang Zhang2, David Doermann1

1University at Buffalo 2Beihang University

{xuangong, shuyanch, doermann}@buffalo.edu bczhang@buaa.edu.cn

Abstract

In medical image analysis, one limitation of the applica-

tion of machine learning is the insufficient amount of data

with detailed annotation, due primarily to high cost. An-

other impediment is the domain gap observed between im-

ages from different organs and different collections. The dif-

ferences are even more challenging for the nuclei instance

segmentation, where images have significant nuclei stain

distribution variations and complex pleomorphisms (sizes

and shapes). In this work, we generate style consistent

histopathology images for nuclei instance segmentation. We

set up a novel instance segmentation framework that inte-

grates a generator and discriminator into the segmentation

pipeline with adversarial training to generalize nuclei in-

stances and texture patterns. A segmentation net detects

and segments both real nuclei and synthetic nuclei and pro-

vides feedback so that the generator can synthesize images

that can boost the segmentation performance. Experimen-

tal results on three public nuclei datasets indicate that our

proposed method outperforms previous nuclei segmentation

methods.

1. Introduction

In biomedical image analysis, instance detection and

segmentation is an important task that assigns a semantic

and object-level label at each pixel. A unique ID for each

instance facilitates the further study of the nuclei spatial dis-

tribution to help understand the biological evolution of the

cells concerning, for example, disease. In digital pathol-

ogy, nuclear pleomorphism is required for tumor and cancer

grading, and the spatial distribution of cancer nuclei is used

as a prognostic for cancer prediction.

One challenge for deep learning is that it is data-hungry

and often requires extensive and detailed annotation. For

nuclei segmentation, both training and validation data typ-

ically require structured annotations, including bounding

boxes and instance masks. These requirements increase the

overall cost and time for data collection. For example, a

training dataset consisting of 50 image patches (12M pixels)

takes 120-230 hours of an expert pathologist’s time [11].

A promising solution to the problem of the lack of well-

labeled data is generating sample-label pairs. Generating

synthetic data has been a hot topic recently and has been

shown to significantly improve detection and classification

performance [39, 9, 42]. The success of learning from syn-

thetic images inspires us to study how to synthesize labeled

nuclei images from existing annotations.

Nuclei images are intrinsically different from natural im-

ages and pose unique challenges for data generation. First,

the distribution of sizes and shapes is quite diverse, and

overlap and occlusion make the spatial variance more com-

plicated. There are often large chromatic quality and den-

sity variations in hematoxylin and eosin (H&E) stained mi-

croscopy images. When datasets [21] are collected from

multiple sites, differences of stain pigment and optical de-

vices lead to a larger domain gap. Finally, widely used nu-

clei datasets [43, 21, 32] often combine the H&E stained

images from different organ tissues, further increasing style

variance, including stain quality and density. These vari-

ations of morphisms and style make automatic nuclei seg-

mentation more difficult.

Some researchers have proposed learning a robust rep-

resentation of nuclei images to incorporate the benefits of

Generative Adversarial Networks (GANs) for synthesizing

realistic pathology images from nuclei masks [11, 12, 30].

Current works usually synthesize nuclei using generative

adversarial networks that demand a tremendous amount of

data and elaborate manual work to generalize the appear-

ance distribution (CycleGan [49]). However, there is still

a gap between generating visually appealing images and

improving the performance of downstream tasks like seg-

mentation. For example, we may need extra focus on the

boundary quality of generated samples for the segmentation

task, but this is not a significant consideration for detection.

In other words, there is no direct feedback from the down-

stream task network to the generator, which means the gen-

erator cannot be trained to target the specific downstream

task.

We propose a style consistent adaptation module for the

challenge of the diverse style of the nuclei images. Adver-

3994



Figure 1. The framework of the proposed method. Our approach synthesizes images to help improve the nuclei instance segmentation. The

segmentation net is integrated into the generator-discriminator loop.

sarial training is incorporated in the system to narrow the

gap between visual-appealing-image generation and task-

beneficial-image generation. In Fig. 1, we illustrate our pro-

posed framework, which extends AdaIN [13] to a MaskR-

CNN [8] based instance segmentation pipeline. We first

combine nuclei deformation and adaptive instance normal-

ization (AdaIN) in a generator to generalize the variability

of nuclei pleomorphism and chromatic stain in the H&E im-

ages. The generator, discriminator, and instance segmenta-

tion pipelines are then integrated to synthesize nuclei im-

ages with less bias then real nuclei distributions. Previously

proposed generative models only optimize for image real-

ism and not for segmentation accuracy. To this end, we

jointly optimize the generative model and segmentation net-

work in an adversarial manner to provide a generalized rep-

resentation of the nuclei and improve instance segmentation

performance. Our contributions are summarized as follows:

1. We extend AdaIN to a generator, including instance

deformation and style adaptation, to synthesize nuclei

images with higher variances and realism, generating

significantly better nuclear pleomorphisms and texture

patterns.

2. We incorporate a generator into the instance segmen-

tation pipeline so that the segmentation network can

provide direct feedback to synthesize images that boost

segmentation performance.

3. Experimental results on three nuclei histopathology

datasets show that our approach leads to state-of-the-

art performance compared with previous nuclei seg-

mentation methods.

2. Related Work

2.1. Instance Segmentation

Deep learning-based instance segmentation is widely

studied and can be categorized into proposal-free and

proposal-based methods [7, 8, 45]. Proposal-free methods

focus on morphology distribution and spatial relationships

among all the objects in the images. Chen et al. [3] uti-

lizes object boundaries to learn foreground probability maps

and separate instances. Proposal-based methods are typi-

cally based on object detection. Mask R-CNN [8] uses a

feature pyramid network (FPN) as the backbone to extract

high-level features at multiple scales and feed them into a

region proposal network (RPN) to generate regions of in-

terest (ROIs). The ROIs are resized to fixed sizes and fed

into a box branch and a mask branch to predict the class and

mask separately. Following the fundamental framework of

Mask R-CNN, panoptic segmentation [20, 19] proposes to

unify semantic segmentation and instance segmentation.

For nuclei segmentation, panoptic segmentation is effi-

cient and incorporates global semantic information. Cell R-

CNN [4] jointly trains a semantic segmentation network and

a Mask R-CNN with a shared backbone. Liu et al. [26] fur-

ther designs a feature fusion module to incorporate global

information during inference. Zhou et al. [48] explores in-
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stance relationships and augments features from contextual

information. Other improvements focus on the fine-grained

segmentation around the boundary. [35] proposes a vari-

ance constrained cross-entropy loss that encourages the net-

work to learn the spatial relationship between pixels in the

same instance. [17] adds nuclei-boundary prediction as an

intermediate step. We take advantage of both of these ap-

proaches in our segmentation pipeline, using internal layer

supervision incorporating global information, and employ-

ing focal loss for fine-grained boundary determination.

2.2. ImagetoImage Translation

Facilitated by Generative Adversarial Networks

(GANs) [6], conditional GAN [31, 15] dominates the task

of image-to-image translation. Unpaired image-to-image

translation methods [29, 49, 18] remove the requirement

of paired-image supervision. Cycle-consistent Genera-

tive Adversarial Networks (CycleGan) [49, 14, 38], for

example, enforces a bi-directional prediction between the

source and target domain. AdaIN [13] designs simple yet

efficient adaptive instance normalization to enable arbitrary

style transfer with small scale training data. AdaIN has

been used to generate person specific eyes from semantic

mas [2].

Several works have proposed unsupervised approaches

to synthesize histopathology images, due to the limited

availability of labeled medical imaging data. Inspired by

CycleGan, stainGan [37] eliminates stain color variation

rather than performing for stain normalization. Re-staining

Gan [47] is a CycleGan based method that transforms H&E

stained images into immunohistochemistry (IHC) stained

images. Mahmood utilizes CycleGan to transform content

masks in the source domain and generate histopathology

images as the target [30]. Similarly, Hu et al. [12] uses gen-

erative adversarial networks to learn a cell-level visual rep-

resentation of histopathology images. They show that clas-

sification, segmentation, and detection can be carried out

in an unsupervised manner with generative models. Hou et

al. [11] fuses background and foreground with an instance

mask and further refines the synthetic patch in a heteroge-

neous way.

2.3. Synthesis combined with Task

Some GAN models integrate auxiliary classifiers into

the pipeline beyond the generator and discriminator’s basic

adversarial training [50]. Auxiliary Classifier GAN (AC-

GAN) [33] assesses the diversity of classes. Cycada [10]

adds a task loss to the generative model for semantic seg-

mentation. Ganin et al. [5] incorporates a domain classifier

for the adversarial training. The methods intend to improve

the generated image’s realism for either a target class or a

target domain, which is also known as domain adaptation

[41].

Another approach is to utilize synthetic data to augment

data for tasks such as detection and segmentation through

adversarial training. A-Fast-RCNN [44] generates hard data

augmentation transformations for the detector with adver-

sarial training. Several works synthesize images for small-

sized object detection [23], pedestrian detection [34, 46],

and disease localization [28]. Liu et al. [27] applies adver-

sarial domain adaptation to instance segmentation, but the

aim is to adapt between two domains for unsupervised seg-

mentation. Besides, image inpainting techniques [1, 40] are

also used for synthesizing nuclei images [11].

For supervised instance segmentation, simply training

the previously proposed generative models may yield mi-

nor improvements as they optimize image realism rather

than task accuracy. To this end, we develop a framework

that jointly optimizes the generative model and segmenta-

tion model such that the generated images improve the per-

formance of instance segmentation.

3. Our Approach

Our method generates training images to directly im-

prove instance segmentation performance.

3.1. Framework

The framework consists of a generator, an image-

level discriminator, and an instance-level segmentation net

(Fig. 1). The discriminator attempts to determine whether

an image is real or synthetic. The instance segmentation net

provides feedback to the generator about whether the gen-

erated images can improve segmentation performance.

Generator: Our generator includes a pre-synthesis

mechanism and a refinement model based on adaptive in-

stance normalization (AdaIN) [13]. The first step deforms

nuclei instances as masks and merges a combination of fore-

ground and background properties. The second step uses a

generative model that enables style transfer from the ini-

tialized synthetic image to the real image based on train-

ing with a very limited number of images. The encoder

is a fixed VGG-19 network to extract high-level features.

The decoder learns to invert the output of adaptive instance

normalization in the image space. We add a skip architec-

ture [36] to preserve the content’s high-frequency details to

guarantee that the synthetic image is aligned with the de-

formed instance label. Our generator is very efficient at

generating realistic nuclei images with only tens of train-

ing images. We will provide more details of the generator

in Section 3.2.

Discriminator: As with a traditional discriminator in

GANs, our discriminator attempts to classify an image

is real or synthetic. We use the discriminator for super-

resolution [22] to boost the synthetic images with realistic

stain patterns at the image level. The discriminator learns to
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Figure 2. Illustration of instance deformation. The foreground and

background are combined through deformed mask.

distinguish the synthetic nuclei images from real nuclei im-

ages, while the generator is optimized to synthesize realistic

images to fool the discriminator.

Segmentation Net: This net is based on Mask R-

CNN [8] for instance segmentation to evaluate instance re-

alism. We add semantic supervision for panoptic image seg-

mentation. The instance branch and semantic branch share

the ResNet-50 feature pyramid network as the backbone.

The network learns to detect and segment both real and syn-

thetic nuclei instances. Like the discriminator, the result of

segmentation is fed back to the generator and guides the

synthesis at the instance level. The generator is optimized

to synthesize instances that are difficult for the segmentation

net to detect and segment. This mechanism of adversarial

training makes the segmentation net more robust, thus im-

proving the instance segmentation performance.

3.2. Image Synthesis

Histopathology image synthesis includes 1) a pre-

synthesis step with deformation to generalize the spatial

characteristics of nuclei instances such as size and shape

and 2) a refine-synthesis step to adapt the synthesis images

to the style of the real images. The pre-synthesis deforms

the size and shape of the nuclei instances for an initial syn-

thetic image. The refine-synthesis is to refine the initial

synthetic image with the real image via adaptive instance

normalization.

Deformation. As illustrated in Fig. 2, we utilize real

histopathology images’ spatial and texture characteristics to

generate initial synthetic images. The deformed images re-

sult from a background/foreground fusion in Hematoxylin,

Eosin, DAB (HED) color space [11]. Given a real image

Figure 3. Illustrations of the synthetic images. The original image

x1 is used for instance deformation. The style image x2 is to refine

the initial synthetic image ID(x1).

x, we first create a background patch B(x) by identifying

and inpainting nuclei regions. Second, we simulate the nu-

clei’s texture and intensity characteristics in the real images

to create a foreground patch N(x). We randomly resize and

deform the contour of each instance and blur the instances.

The foreground and background patches are augmented in

the Hematoxylin and Eosin channels, respectively. Mask

blur and patch augmentation are to make the fusion more re-

alistic. Finally, we combine the augmented foreground and

background patches based on the deformed instance mask

M(x) to produce the initial synthetic image ID(x).

ID(x)i,j =

{

B(x)i,j if M(x)i,j = 0,

N(x)i,j if M(x)i,j 6= 0,
(1)

where i,j is the pixel index, and Mi,j = 0, ..., N is the

background or instance index.

Synthesis. The fusion result based on the deformed in-

stance may have some artifacts, so we use AdaIN [13] as

the baseline of our generative model for style adaptation.

The input includes one initial synthetic image ID(x1) as

the content and one real image x2 as the style. We denote

the generated image as x̃ = G(x1, x2) = RS(ID(x1), x2).
We use pre-trained layers before relu4 1 of VGG-19 as
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Figure 4. Overall backpropagation mechanism.

the encoder Ge to extract multi-scale features of content and

style images. The content image’s high-level features are

adapted to the mean µ and variance σ of the content image

to output t through adaptive instance normalization. We set

up the decoder Gd with additional skip connections to en-

sure that the synthetic image x̃ = Gd(t) is consistent with

ID(x1) in content and thus aligned with the correspond-

ing instance label ỹ = M(x1). The generation loss Lg is a

combination of content loss Lcontent and style loss Lstyle:

Lg = Lcontent + γLsytle

= ||Ge(Gd(t))− t||2

+ γ
∑

l

||µ(φl(x̃))− µ(φl(x2))||
2

+ γ
∑

l

||σ(φl(x̃))− σ(φl(x2))||
2,

(2)

where φi(i = 1...4) denotes the output of layer relu1 1,

relu2 1, relu3 1, and relu4 1 in the VGG encoder,

respectively. Fig. 3 illustrates the synthetic images x̃ =
G(x1, x2). We will illustrate more synthetic images in the

supplementary material.

3.3. Task guided Generative Models

The generator G′s objective is to generate images with

deformed instances that are both realistic and help improve

instance segmentation performance. Thus we design the

discriminator D for realism evaluation and segmentation

net S for instance segmentation. One of our main contribu-

tions is that the gradients derived from segmentation losses

are backpropagated to the generator to boost the synthetic

images, so they are useful for the instance segmentation.

The generator’s optimization is similar to the gradient rever-

sal layer (GRL) [5] for adversarial training but at both im-

age and instance levels. The overall backpropagation mech-

anism is illustrated in Fig. 4.

Algorithm 1 Training Strategy.

Input: generator G (including instance mask defor-

mation M ), discriminator D, segmentation net S, real

histopathology images R, mini-batchsize m.

Pretrain: Pretrain G and D using Eq. 4.

Pretrain S on R using Eq. 5.

for number of training iterations do

Sample mini-batch images x1, x2 ∈ R
Forward G to get x̃ = G(x1, x2) and ỹ = M(x1)
Update G by ascending its stochastic gradient

∇G

1

m

∑

(x1,x2)

[logD(x̃) + Ls(S(x̃), ỹ) + λLg(x̃, x1, x2))]

Update D by descending its stochastic gradient

∇D

1

m

∑

(x1,x2)

[logD(x̃) + log(1−D(x2))]

Update S by descending its stochastic gradient

∇S

1

m

∑

(x1,x2)

[Ls(S(x1), y1) + Ls(S(x̃), ỹ)]

end for

3.3.1 Adversarial Training at the Image Level

The generator G tries to synthesize realistic histopathology

images that are indistinguishable with real nuclei images.

Simultaneously, the discriminator D learns to classify real

images as real and synthetic images as fake. We denote

the distribution of the real domain and synthesis domain as

R and F , respectively. The adversarial loss at image level

Limg adv(G,D) can be written as:

max
G

min
D

E
x∼R

[log(1−D(x))] + E
x̃∼F

[logD(x̃)]

=max
G

min
D

E
x∼R

[log(1−D(x2)) + logD(G(x1, x2))].

(3)

Considering that the synthetic image should be consistent

with the initial synthetic image ID(x1) in content and real

image x2 in style, the joint training of G and D at the global

image-level becomes

Lglobal(G,D) = Limg adv(G,D) + λLg(G), (4)

where λ is a balancing hyperparameter and is fixed during

training.

3.3.2 Adversarial Training at Instance Level

Instance Segmentation. Based on Mask R-CNN, we use

ResNet-50 as the feature pyramid network’s backbone to

extract features at multiple scales. The region proposal net-

work focuses on instance detection and segmentation and

these features are fed to a semantic segmentation branch
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to learn semantic-level features. The semantic supervision

directly applies to the backbone and facilitates the extrac-

tion of the most distinguishable features as the input to the

region proposal network. Thus the additional semantic su-

pervision contributes to the instance detection and segmen-

tation. In addition, we replace the cross-entropy loss with

a focal loss [24] setting λ = 2 for bounding box classifica-

tion and instance segmentation. The aim is to give a larger

penalty to the instances/pixels that are less distinguishable

on dense images. Thus the loss for instance segmentation

Ls is defined as:

Ls =Lanchor−cls(ce) + Lanchor−reg + Lbbox−cls(fl)

+ Lbbox−reg + Lins−seg(fl) + Lsem−seg(ce),
(5)

where Lanchor−cls(ce) and Lbbox−reg are the losses for

the classification (cross-entropy) and the anchor regres-

sion of the region proposal network (RPN), Lbbox−cls(fl)

and Lbbox−reg are the classification loss (focal loss) and

bounding box regression for the region of interest (ROI),

Lins−seg(fl) is the focal loss for instance segmentation, and

Lsem−seg(ce) is the cross-entropy loss for semantic segmen-

tation. We fuse the semantic features with the instance pre-

dictions during inference to output the final result, similar

to the feature fusion mechanism in [26].

Adversarial Segmentation Loss: Given the generative

model G for the generator and the net S for instance seg-

mentation, the adversarial segmentation loss at the instance

level Lins adv(G,S) can be written as:

max
G

min
S

E
x∼R

[Ls(S(x), y)] + E
x̃∼F

[Ls(S(x̃), ỹ)]

=max
G

min
S

E
x∼R

[Ls(S(x1), y1) + Ls(S(G(x1, x2)),M(x1))],

(6)

where y1 is the pixel level instance annotation of the image

x1, and ỹ = M(x1) is the instance annotation of the syn-

thetic image x̃ = G(x1, x2). Segmentation net S is trained

to minimize segmentation loss. The generator aims to syn-

thesize images that can help to improve the performance of

the instance segmentation. Thus G is optimized to maxi-

mize segmentation loss on synthetic images to generate im-

ages that the segmentation net has not seen and cannot pre-

dict well. The intuition is to generalize the nuclei instances

and improve the robustness. Similar ideas have been pro-

posed in DetectorGAN [28], which trains the generator ad-

versarially to improve detection performance.

Alternatively, the generator could minimize the task-

specific loss on synthetic images like ACGAN [33]. In this

case, the auxiliary loss on synthetic images is minimized

to improve the generator’s realism. However, in our frame-

work, the segmentation net should dominate since the goal

is to improve instance segmentation performance. Synthetic

instances may be biased away from the true data distribution

and distract from the segmentation net’s optimization [11].

Thus minimizing segmentation losses on synthetic images

may not help and may even harm the segmentation perfor-

mance on real images. Our experiments show that mini-

mizing the task-specific losses on synthetic images like AC-

GAN decreases the segmentation performance on real im-

ages.

3.4. Overall Losses and Training

Our method should generate images that: (1) have in-

stances that generalize the spatial characteristics of nuclei

(pre-synthesis); (2) simulate the textures and styles of real

histopathology images (refine-synthesis); (3) are indistin-

guishable from real images, both at the image (discrimi-

nator) and the instance (segmentation net) levels; and (4)

contribute to the performance of instance segmentation. We

have introduced all of these in our approach. The adversar-

ial loss includes an image-level adversarial loss Limg adv

and an instance-level adversarial loss Lins adv .

Ladv = Limg adv(G,D) + Lins adv(G,S)

=min
D

E
x2∼R

[log(1−D(x2))] + min
S

E
x1∼R

[Ls(S(x1), y1)]

+ max
G

min
D

E
x1,x2∼R

[logD(G(x1, x2))]

+ max
G

min
S

E
x1,x2∼R

[Ls(S(G(x1, x2),M(x1)))].

(7)

The overall losses can be written as

L = Ladv(G,D, S) + λLg(G). (8)

We pre-train the discriminator-generator pair (G,D)
with global loss at the image level for faster convergence

and pre-train the segmentation net S with real histopathol-

ogy images. Note that we first pre-train (G,D) and S sepa-

rately and then train them jointly. The optimization process

is shown in Algorithm 1.

4. Experiments

4.1. Datasets

In our experiments, we use the following three datasets.

Cell17: The MICCAI 2017 Digital Pathology Challenge

dataset [43] (Cell17) consists of H&E stained histology

images. It contains 64 annotated images, and the train-

ing and testing sets contain eight images from four differ-

ent diseases: glioblastoma multiforme (GBM), lower-grade

glioma (LGG) tumors, head and neck squamous cell carci-

noma (HNSCC), and non-small cell lung cancer (NSCLC).

The image sizes are either 500 × 500 or 600 × 600 at 20×
or 40× magnification.

TCGA: The MICCAI 2018 multi-organ segmentation

challenge (MoNuSeg) used H&E stained tissue images cap-

tured at 40x magnification from the Cancer Genome Atlas

(TCGA) archive. We refer to this as TCGA-kumar [21].
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Method
AJI Pixel-F1 Obj-F1

seen unseen all seen unseen all seen unseen all

Kumar et al. [32]
0.5154
±0.0835

0.4989
±0.0806

0.5083
±0.0695

0.7301
±0.0590

0.8051
±0.1006

0.7623
±0.0946

0.8226
±0.0853

0.8322
±0.0764

0.8267
±0.0934

DIST [32]
0.5594
±0.0598

0.5604
±0.0663

0.5598
±0.0781

0.7756
±0.0489

0.8005
±0.0538

0.7863
±0.0550

- - -

Mask R-CNN [8]
0.5438
±0.0649

0.5340
±0.1283

0.5396
±0.0929

0.7659
±0.0481

0.7658
±0.0608

0.7659
±0.0517

0.6987
±0.1344

0.6434
±0.1908

0.6750
±0.1566

Cell R-CNN [4]
0.5547
±0.0567

0.5606
±0.1100

0.5572
±0.0800

0.7746
±0.0446

0.7752
±0.0577

0.7748
±0.0485

0.7587
±0.0969

0.7481
±0.1488

0.7542
±0.1166

Cell R-CNN v2 [26]
0.5758
±0.0568

0.5999
±0.1160

0.5861
±0.0841

0.7841
±0.0439

0.8078
±0.0611

0.7943
±0.0512

0.8014
±0.0757

0.8023
±0.1081

0.8017
±0.0871

Cell R-CNN v3 [25]
0.5975
±0.0568

0.6282
±0.0924

0.6107
±0.0726

0.7967
±0.0453

0.8256
±0.0520

0.8091
±0.0487

0.8317
±0.0694

0.8383
±0.0598

0.8345
±0.0631

Ours
0.6301
±0.0696

0.6613
±0.0633

0.6346
±0.0674

0.8159
±0.0145

0.8305
±0.0107

0.8180
±0.0131

0.8351
±0.0304

0.8434
±0.0276

0.8379
±0.0292

Table 1. Experimental comparisons on the TCGA dataset.

Method Pixel-F1 Dice

Pix2Pix [16] 0.6208 ±0.1126 0.6351 ±0.0706

Mask R-CNN [8] 0.8004 ±0.0722 0.7070 ±0.0598

Cell R-CNN [4] 0.8216 ±0.0625 0.7088 ±0.0564

Liu et al. [26] 0.8645 ±0.0482 0.7506 ±0.0491

Ours 0.8622 ±0.0087 0.8216 ±0.0103

Table 2. Experimental comparisons on the Cell17 dataset.

The training sets consist of 30 annotated 1000 × 1000
patches and around 22,000 nuclei boundary annotations

from the 30 slide images of different patients. These im-

ages show highly varying properties since they are from 18

different hospitals and seven different organs (breast, liver,

kidney, prostate, bladder, colon, and stomach). For the test

set, there are 14 images with additional 7000 nuclei bound-

ary annotations.

TNBC: The Triple Negative Breast Cancer (TNBC) [32]

dataset consists of 50 annotated 512 × 512 images at 40×
magnification with a total of 4022 annotated cells. The im-

ages are sampled from 11 patients at the Curie Institute.

There are three to eight images for each patient. The image

data includes low cellularity regions, which can be stromal

areas or adipose tissue, and high cellularity areas consisting

of invasive breast carcinoma cells.

4.2. Metrics

In our experiments, we evaluate detection, semantic seg-

mentation, and instance segmentation. We use object-level

F1-score as the detection metric:

F1 =
2TP

FN + 2TP + FP
, (9)

where TP , FN , and FP represent the number of true-

positive (corrected detected objects), false-negative (ig-

nored objects), and false-positive (detected objects without

corresponding ground truth) detections with an IOU thresh-

old of 0.5. The pixel-level F1-score is used as a semantic

metric in segmentation. For the task of instance segmenta-

tion in histology images, the object-level Dice score [3] is

one of the mainstream metrics to evaluate instance overlap

and shape similarity, respectively. For the Cell17 dataset,

we use the F1 score and Dice score to evaluate instance

segmentation performance. For consistency with the cur-

rent state-of-the-art TCGA and TNBC datasets, we employ

the Aggregated Jaccard Index (AJI) [21] as the metric of

instance segmentation. AJI computes an aggregated inter-

section cardinality numerator and an aggregated union car-

dinality denominator for all ground truth and segmented nu-

clei at the pixel level. We denote Ti as the binary mask of

the ground truth nuclei instance i, Pj as the binary mask of

the predicted nucleus instance j, and J(i) as the index of

predicted instances with the largest IOU with ground truth

nucleus Ti:

J(i) = argmax
j∈{j|j 6=J(i′)}

Ti ∩ Pj

Ti ∪ Pj

, (10)

where i′ = 1, ..., (i−1). In this way, each predicted instance

can only be used once as J(i). The AJI metric is written
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Methods AJI Pixel-F1

Mask R-CNN [8] 0.5350 ±0.0993 0.7393 ±0.0977

Cell R-CNN [4] 0.5747 ±0.1061 0.7637 ±0.1080

Cell R-CNN V2 [26] 0.5986 ±0.0847 0.7793 ±0.0772

Cell R-CNN V3 [25] 0.6313 ±0.0750 0.8037 ±0.0557

Ours 0.6316 ±0.0597 0.8231 ±0.0137

Table 3. Experimental comparisons on TNBC dataset.

Training data
Dice Pixel-F1

Real data Syn Method Adv training?

✓ - -
0.7823
±0.0221

0.8501
±0.0342

✓ CycleGan ✗
0.7213
±0.0563

0.8033
±0.0332

✓ Ours ✗
0.7487
±0.0325

0.8156
±0.0143

✓ CycleGan ✓
0.7842
±0.0184

0.8471
±0.0118

✓ Ours ✓
0.8216
±0.0103

0.8622
±0.0087

Table 4. Synthesis Comparison on Cell17 dataset.

Sem Bbox FL Mask FL Dice Pixel-F1

✗ ✗ ✗
0.7173
±0.0276

0.8143
±0.0398

✓ ✗ ✗
0.7594
±0.0243

0.8447
±0.0352

✗ ✓ ✗
0.7321
±0.0274

0.8403
±0.0373

✓ ✓ ✗
0.7667
±0.0236

0.8476
±0.0381

✓ ✓ ✓
0.7823
±0.0221

0.8501
±0.0342

Table 5. Ablation Study on Cell17 dataset. We report the results

only trained with real data.

as

AJI =

∑

i

|Ti ∩ PJ(i)|

∑

i

|Ti ∪ PJ(i)|+
∑

j∈S

|Pj |
, (11)

where S = {j|j 6= J(i), ∀i} is the set of false prediction

instances without corresponding ground truth.

4.3. Experiments and Results

Cell17: In this experiment, we resize all the images to

512 × 512 and employ basic data augmentation, including

horizontal and vertical flipping and rotations of 90o, 180o,

and 270o. We randomly crop the image into patches of size

256 and pre-train (G,D) pair using the same optimization

settings as in AdaIN [13]. We pre-train the segmentation net

S with Adam (lr=1e− 4) with a batch size of 2 for 3000 it-

erations. The hyperparameter γ is 0.5 and λ is 10. The joint

training optimizes with Adam (lr=1e− 5) with a batch size

of 1. The other Mask R-CNN based methods used for com-

parison [4, 26] use ResNet-101 as its backbone. In Tab. 2,

we compare with existing semantic and instance segmenta-

tion models, including Pix2Pix [16], Mask R-CNN [8], Cell

R-CNN [4] and the currents state-of-the-art [26].

TCGA: In this experiment, we randomly select one im-

age from each organ in the training set for validation. Dur-

ing training, we crop the original 1000× 1000 patches into

four 512×512 patches. The training settings are the same as

with Cell17. In addition to the basic data augmentation used

in the experiments of Cell17, we add Gaussian blurring due

to the high level of noise of this dataset. Note the TCGA

test set images come from organ tissues such as breast, kid-

ney, and lung, but lung examples are not seen in the training

set. Thus we report the performances of images from seen

organs and unseen organs separately in Tab. 1. The com-

parisons show that our method outperforms other works on

both pixel level and instance level metrics.

TNBC: For our TNBC experiment, we use the same data

split as the current state-of-the-art [26, 25]. We employ

the same training settings as Cell17. The comparison in

Tab. 3 shows that our method significantly outperforms oth-

ers on pixel level F1 and achieves comparable performance

on AJI.

4.4. Ablation Study

In Tab. 4, we show that simply training generative mod-

els does not yield satisfactory performance since they opti-

mize for image realism rather than instance segmentation.

We employ the same training setting for all the comparison

methods training with synthetic data. And we use the same

optimization setting with [26] for the setting where only

real data is used for training. In addition, Tab. 5 compares

the performances of segmentation net with and without se-

mantic supervision, with cross-entropy and focal loss for

bounding box classification, and with cross-entropy and fo-

cal loss for the instance mask. Note that we only train with

real data for this comparison in Tab. 5. And we combine the

semantic features with instance predictions during inference

when semantic supervision is used for training.

5. Conclusion

In this work, we propose a style-consistent generation

method for nuclei instance segmentation in histology im-

ages to deal with insufficient data. We generalize the spa-

tial characteristics and stain patterns through instance defor-

mation and style adaptation. Furthermore, we integrate the

generator into the segmentation pipeline and optimizer the

generator with adversarial training on the synthetic images.

Experimental results show that the synthetic images help to

improve the instance segmentation performance.
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