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Abstract

Due to respectively limited training data, different enti-

ties addressing the same vision task based on certain sensi-

tive images may not train a robust deep network. This paper

introduces a new vision task where various entities share

task-specific image data to enlarge each other’s training

data volume without visually disclosing sensitive contents

(e.g. illegal images). Then, we present a new structure-

based training regime to enable different entities learn task-

specific and reconstruction-proof image representations for

image data sharing. Specifically, each entity learns a pri-

vate Deep Poisoning Module (DPM) and insert it to a pre-

trained deep network, which is designed to perform the

specific vision task. The DPM deliberately poisons con-

volutional image features to prevent image reconstructions,

while ensuring that the altered image data is functionally

equivalent to the non-poisoned data for the specific vision

task. Given this equivalence, the poisoned features shared

from one entity could be used by another entity for further

model refinement. Experimental results on image classifi-

cation prove the efficacy of the proposed method.

1. Introduction

Deep networks, e.g. Convolutional Neural Networks

(CNNs), have achieved state-of-the-art results on many

computer vision tasks [12, 13, 18, 24, 27, 39, 40], which

can be used in many critical production systems [2, 7, 25].

Traditionally, training of these networks requires large-scale

task-specific datasets with many images [44]. However, for

certain vision tasks with restricted images, one entity (insti-

tution/company) may not properly collect sufficient images

for robust deep model learning. To deal with this, various

entities could enlarge training data volume by sharing image

data with each other. Nevertheless, the task-specific images

may contain overly sensitive visual contents that should not

be spread, making the sharing of raw images inappropriate.

Thus, this paper introduces a new task on vision integrity

of preventing image data sharing from visually disclosing

sensitive image contents.

The introduced task of image data sharing against visual

disclosure includes two objectives: 1) the image data (e.g.

convolutional features) shared by different entities should

be same task-specific, so that one entity could utilize data

shared from various entities for the model learning; 2) one

entity should not be able to visually observe the image con-

tents by recovering images from the shared data, e.g. im-

age reconstruction – defined as visual disclosure of sensi-

tive image contents. There are broad practical applications

of this task. For instance, deep model based child exploita-

tion image (CEI) detection and terrorist propaganda image

detection help comfort the online social community. The

model learning requires a large volume of training images,

which may not be easily collected by an individual com-

pany, due to the highly sensitivity of the images. The in-

troduced task allows various companies to share image data

for sensitive vision tasks without spreading uncomfortable

images, which may also violate laws.

Different from the task of privacy preserving, which dis-

entangles utility information from privacy information (e.g.

facial expression v.s. face identity) on a constant dataset,

the introduced task focuses on a collaborative dataset, al-

lowing collaborators (entities) securely sharing and using

the image data to refine deep model learning without un-

desired image spreading. Privacy-preserving methods usu-

ally convert the raw images to image representations by a

certain operation, such as anonymization [21, 48], encryp-

tion [8, 16, 57], privacy-preserving representation learn-

ing [43, 5, 54, 37, 3]. For the introduced task, shared im-

age data should be in the same feature space (the same task

specific), which requires the above operation being shared

among collaborators. Thus, one entity may reverse the op-

eration, e.g. like a black box, to reconstruct the original

images from data shared by other entities, leading to vi-

sual disclosure of image contents. Besides, comparing with

federated learning [29] using extra hardware for simultane-

ous model learning from multiple entities without sharing

image data, the introduced task enables image data sharing

without visual disclosure and allows various entities to train

models individually, leading to enlarged applications.
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Figure 1. An illustration of image data sharing for collaboratively addressing the same task. (a) Each entity uses an individual private

DPM for feature poisonining – training details discussed later; (b) One entity uses its own data and image data shared by others to refine

respective models, e.g. classification decider; (c) Using the refined models for image inference.

This paper focuses on the regime of preventing visual

disclosure of sensitive image contents (e.g. private faces,

illegal images) during image data sharing for a particular

vision task. To illustrate, we take the image classification as

an example of the vision task to be addressed – various en-

tities collaborate on training models on image classification

by sharing their respectively collected image data to each

other. First, one entity pre-trains a specific image classifica-

tion network, and split the network at a specific point into

the image featurizer (consisting of certain starting layers)

and the classification decider (the remaining layers), sim-

ilar to [33, 34]. Entities can use the shared featurizer to

produce feature maps for their images. Instead of sharing

these deep features, which can be easily reconstructed to

the original images by reversing the featurizer, we design a

regime that requires each entity to learn a respective Deep

Poisoning Module (DPM) with various architectures to poi-

son the deep features. By means of adversarial training,

each DPM is optimized to ensure that the poisoned features

are functionally equivalent to the original features for image

classification, while they can not be recovered to the origi-

nal images by reversing the featurizer. As shown in Fig. 1,

with keeping the DPM in private – a partial-release strategy,

the poisoned features shared from one entity can be used by

another entity for refining the classification decider. Mean-

while, without accessing to the DPM, others can not recon-

struct images from the poisoned features, which ensures the

image data sharing against visual disclosure.

Finally, we conduct experiments to verify that the pro-

posed DPM can prevent visual disclosure of sensitive con-

tents during the image data sharing with a minimal loss in

image classification performance. By simulating the pro-

cess of collaborators exploiting the shared image data from

other entities, our experiments demonstrate that the pro-

posed framework is an effective way for image data sharing

for collaboration without visually disclosing sensitive con-

tents.

2. Related Work

To protect information privacy, privacy-preserving data

publishing (PPDP) [6, 56] has been studied for a long time.

It collects a set of individual records and publishes the

records for further data mining, without disclosing indi-

vidual attributes such as gender, disease, or salary [1, 23,

31, 36, 49]. Existing work on PPDP mainly focuses on

anonymization [4, 10, 52] and data slicing [20]. While it

usually handles individual records related to identification,

it is not explicitly designed for general high-dimensional

data, such as images.

Recently, the privacy issue has been attracting an in-

creasing attention by the computer vision and deep learning

community. It is an important task for vision ethics. For

example, MS-Celeb-1M [11, 35] and Duke MTMC [42]

were withdrawn from public release due to privacy is-

sues. Existing methods on preserving privacy in images

and videos usually alter the images or learn image repre-

sentations so that the private information is degraded in the

data. Intuitive perturbations, such as blurring and block-

ing [22, 28, 30], modify the images to reduce privacy in-

formation. De-identification methods [21, 48] partially al-

ter images, for example by obfuscating faces. Encryption-

based approaches [8, 16, 57] train models directly on en-

crypted data. Optimal transformations for producing su-

per low-resolution images or videos in order to avoid leak-

ing sensitive information are learned in [45]. Inspired

by Generative Adversarial Nets (GAN) [9], adversarial ap-

proaches [17, 19, 32, 38, 41, 47, 50, 53, 43, 5, 54, 37, 3]

learn deep obfuscators for images or corresponding convo-

lutional features.

Even though the above methods achieve promising re-

sults on preserving privacy, they can not address the intro-

duced task of image data sharing against visual disclosure.

To enable that one entity utilize image data shared from var-

ious entities, they should apply the same privacy-preserving
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Figure 2. Illustration of the initial pre-training.

operation to convert images to the same feature space. How-

ever, the information to be shared in the image data and the

visual depictions to be protected may not be disentangled

efficiently as privacy-preserving methods distinguish util-

ity and privacy. Thus, the image data shared by one entity

could be reconstructed to visual depictions (the original im-

ages) by reversing the shared privacy-preserving operation

(e.g. by means of reversing a black box), which still leads

to undesired image spreading.

The more similar task to the introduced one is the feder-

ated learning [29] – multiple entities simultaneously update

a model without sharing data to each other. Different from

the introduced task, it usually learns a model on a third-

party hardware, e.g. an extra server, or from cloud side.

Image data are not required to be shared between entities

(clients). This well addresses the data island issue, but lim-

its the independence of each entity. Compared with feder-

ated learning, this paper proposes a new solution for various

entities collaborating with each other to address the same

vision task based on image data sharing with not visually

disclosing sensitive image contents.

3. Proposed Regime

3.1. Overview

The overall image data sharing regime, proposed in this

paper, for collaborations between various entities consists

of three steps:

1 An initial deep network is pre-trained by one entity for

a specific vision task, from which a featurizer is ex-

tracted to convert images to convolutional features;

2 A private Deep Poisoning Module is learned by each

entity to poison the image features for image data shar-

ing with not visually disclosing sensitive contents;

3 Each entity exploits image data shared from others for

deep model refinement to better address the specific

vision task.

3.2. Step 1: Initial Pretraining

The collaboration between entities aims to expand the

volume of training images for each entity addressing the

specific vision task, i.e. image classification. To achieve

this goal, we expect that all entities share the same operation

to converting raw images to certain image representations.

At the beginning of the collaboration, one of the entities

with the most of training samples pre-trains a classification

network Φ based on a specific architecture, such as VG-

GNet [46], ResNet [13], ResNeXt [55] or DenseNet [15],

and the conventional classification loss is adopted for model

optimization:

LC(x, yi) = − log



ep(Φ(x)=yi)/
∑

j

ep(Φ(x)=yj)



, (1)

where yi represents the annotation of the input image x. As

illustrated in Fig 2(a), the pre-trained model Φ is divided

into two sequential modules: the image featurizer ϕ1 and

the classification decider ϕ2:

Φ(x) = ϕ2(ϕ1(x)). (2)

Based on the same featurizer, various entities can convert

their raw images to the image data in the same feature

space. However, the convolutional feature maps can be eas-

ily reconstructed to the original images, due to the rich vi-

sual information remembered in the features. As shown in

Fig. 2(b), the image reconstructor ψ is learned to reverse

the featurizer by minimizing the L1 loss between the origi-

nal image and the reconstructed image:

LR = ‖x− ψ(ϕ1(x))‖1 . (3)

After the pre-training, each entity share the image featur-

izer, classification decider and the image reconstructor with

fixed parameters.

3.3. Step 2: DPM Training

The reconstruction in Fig. 2(b) shows that if one entity

shares the conventional features directly to collaborators,

the collaborators can easily recover the original images,

leading to visually spreading images. To deal with this is-

sue, this paper proposes the regime that each entity designs

a private Deep Poisoning Module (DPM) to poison the im-

age features before sharing. The DPM consists of a sequen-

tial of convolutional layers and activation layers. It is an ex-

tra opertaion that disturbs the original features. Each entity

could keep its DPM in private, so that other entities are de-

nied to learn an image reconstructor to reverse the poisoned

features. The private DPM makes the ground truth (the pairs

of poisoned features and original images) unavailable for re-

constructor learning. Meanwhile, each DPM is also learned

to ensure that the poisoned features are functionally equiva-

lent to the original features (produced directly from the im-

age featurizer) for the classification decider.
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Figure 3. The learning framework of a DPM. The parameters of ϕ1, ϕ2 and ψ are fixed during DPM training.

Specifically, as shown in Fig. 3, the learning of a DPM

is achieved by adversarially optimizing two loss functions.

By fixing the parameters of ϕ1 and ϕ2 and minimizing the

classification loss in Eq. (1), the poisoned features achieve

classification equivalence to the original features:

ϕ2(P (ϕ1(x))) = ϕ2(ϕ1(x)), (4)

where P is the private DPM.

To make the poisoned features not be reversed to the

original images by the pre-trained image reconstructor ψ
(an inverse of the shared featurizer ϕ1), the DPM is also

learned to achieve reconstruction disparity – it makes the

reconstructed image from poisoned features ψ(P (ϕ1(x)))
visually dissimilar to the original one x, by minimizing the

Structural Similarity Index Measure (SSIM) [14, 51]. We

use SSIM(·, ·) ∈ [0, 1] between two images as the loss

function:

LSSIM = SSIM(ψ(P (ϕ1(x))), x). (5)

Besides, the parameters of the pre-trained image reconstruc-

tor is also fixed during DPM learning.

Then, the DPM is finally optimized by the linear combi-

nation of the classification loss and the reconstruction loss:

θP = argmin
θP

LC + λ argmin
θP

LSSIM , (6)

where λ is a hyper-parameter to balance two losses, and θP
represents the parameters of the DPM.

Generally, with fixed parameters in the pre-trained

featurizer, classification decider and image reconstructor,

DPMs of various entities allows various collaborators to

convert their images to deep representations in the same

feature space (i.e. classification equivalence) by feeding

them to partially different operations – the same featurizer

but different DPMs, respectively. This classification equiv-

alence ensures that the poisoned features from different

entities can be combined for classification decider refine-

ment, while the partial sharing of the operations (keeping

DPMs in private) makes the inverse of the operation infea-

sible, which defend against the image reconstruction from

the poisoned features. Compared with deep obfuscated

representations [19, 32, 38, 41, 47, 50, 53], which retain

image classification-related information and suppress the

reconstruction-related information adversarially, the pro-

posed private DPM framework relies on a specific struc-

ture to deny the image reconstructor learning and thus is

more reliable for preventing visual disclosure. To retain the

functional ability of convolutional features for image clas-

sification, Since the reconstruction-related information can

not be eliminated thoroughly to retain the functional ability

of convolutional features for image classification, once the

obfuscator is shared to collaborators for making classifica-

tion equivalence, they can still reverse the image features to

original images.

3.4. Step 3: Classification Decider Refinement

With the shared image featurizer ϕ1 and private DPMs

{P1, P2, ...}, each entity featurizes and poisons its images,

and share the poisoned features to other collaborators, as

shown in Fig. 1(a). Then, each collaborator could combine

the shared image features (poisoned) and its own image fea-

tures (original) to refine the classification decider, as illus-

trated in Fig. 1(b). The sequential combination of the shared

featurizer and its refined classification decider allows an en-

tity to form a more robust deep model for image classifica-

tion task in Fig. 1(c).

4. Experiments

In this section, we first conduct experiments to prove that

the proposed DPM can effectively poison the image features

for image data sharing as expected: 1) the poisoned features

are functionally equivalent to the original ones for a spe-

cific vision tasks, i.e. image classification; 2) the poisoned

image features can not be reconstructed to the original im-

ages for visual disclosure of sensitive image contents. Then,

we compare the the proposed DPM with existing methods,

including conventional perturbations and adversarial obfus-

cation, to clarify its reliability. Furthermore, by simulating

entities exploiting poisoned and shared image features from

others to refine model learning, we also verify the effective-

ness of using DPM for image data sharing among collabo-

rators addressing the same vision task.
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4.1. Configurations

Instead of collecting some specific sensitive images, e.g.

CEIs, which may be inappropriate for exhibition in confer-

ence papers, we use the widely-used ImageNet dataset [44]

(1000-category classification) for simulation. Specifically,

to simulate the task of various entities collaborating to ad-

dress the image classification task, the dataset is randomly

split into two sets, each with images of exclusive 500 cat-

egories (around 640K training images). One of the 500-

category image sets S simulates the image datasets for ad-

dressing the image classification task, while the other one

Q simulates a public image dataset. We suppose that im-

age contents in S should not be visually disclosed during

the image data sharing. Both S and Q contain training and

validation subsets.

Due to its general applicability for computer vision tasks,

we adopt a ResNet [13] architecture as the backbone net-

work. Following the expressions in Table 1 of [13], we use

conv[·] [·] to represent the hook point that splits the archi-

tecture into the image featurizer and the classification de-

cider. For example, conv4 1 indicates that the featurizer

consists of the layers from the start of the architecture until

the first building block of layer4 in the ResNet architecture.

4.2. DPM for Image Data Sharing against Visual
Disclosure

4.2.1 Effectiveness of DPM

Suppose we are an individual entity with the collected im-

age set S and would like to share these image data to others

for image classification model training, i.e. the classifica-

tion decider in Fig. 1. Initially, following the Step 1 in

Sec. 3.2, we conventionally train the 500-category image

classification models based on ResNet50 and ResNet101,

respectively. Given the input images with spatial dimension

224 × 224, the top-1 and top-5 precision on the validation

set of S achieved by ResNet50 are 79.39% and 94.18%, re-

spectively, while that achieved by ResNet101 are 81.13%

and 95.03%, respectively.

Then, the layer point conv4 1 [13] for both models are

selected for network split. The image reconstructor ψ to

reverse the featurizer ϕ1 is composed from the inverse of

bottleneck blocks in ResNet [13]. Specifically, two inverse

bottleneck blocks (CONV1×1 – BN – CONV3×3 – BN –

CONV1× 1 – ReLU) are used before upscaling the spatial

dimension of feature maps by the factor of 2. As the fea-

ture maps with spatial dimension 14 × 14 are upscaled to

224 × 224, a CONV1 × 1 – BN – ReLU – CONV1 × 1
module is appended to produce the reconstructed image.

This image reconstructor is learned as shown in Fig. 2(b)

and optimized by the loss in Eq. (3). Since we would like

to simulate the process of an entity reversing the featurizer

instead of the specific set of image features, the image re-

Backbone Acc. Metric (%)
Convolutional Features

Original Poisoned

ResNet50
top-1 79.39 78.88

top-5 94.18 94.11

ResNet101
top-1 81.13 80.78

top-5 95.03 94.86

Table 1. Image classification results based on the original convolu-

tional features and the poisoned convolutional features, by feeding

them to the pre-trained classification decider, respectively.

w/ poisoningw/o poisoningraw images w/o poisoning w/ poisoning

(a) (b) ResNet50 (c) ResNet101

Figure 4. Qualitative comparison of image reconstruction from the

original convolutional features (second and fourth columns) and

the poisoned convolutional features (third and fifth columns).

constructor is trained on the image set Q.

According to the Step 2 in Sec. 3.3, we design a specific

DPM (P ) with 4 residual blocks from ResNet and insert it

to the pre-trained model. It is optimized based on Eq. (6)

with the hyper-parameter λ = 1.0.

As shown in Table 1, when we feed the original fea-

tures ϕ1(x) and the poisoned features P (ϕ1(x)) to the pre-

trained classification decider ϕ2, the achieved performance

from the same architecture for image classification (top-1

and top-5 accuracy) is quite close, which indicates that the

poisoned features are functionally equivalent to the original

features for the specific image classification.

conv4 1
L1 Distance (↑) SSIM (↓)

Original Poisoned Original Poisoned

ResNet50 0.0443 0.2928 0.6730 0.0070

ResNet101 0.0406 0.2886 0.7009 0.0069

Table 2. Quantitative comparison of image reconstruction results

from the original and poisoned features.
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Meanwhile, we use the L1 distance (Eq. (3)) and SSIM

(Eq. (5)) to quantify the similarity between the recon-

structed images and the original images. As shown in the

second and fourth columns of Table 2, the image recon-

structor is learned as an excellent inverse to the featur-

izer. It well recovers images from the original features. As

the DPM is adopted to poison the features, the inverse of

the featurizer can not recover the images (third and fifth

columns in Table 2). The increasing L1 distance and de-

creasing SSIM indicate that the image similarity between

the reconstructed images and the original images is reduced.

While the DPM is not shared to collaborators and the orig-

inal images are prohibited to sharing, collaborators are pre-

vented from learning image reconstructors to reverse the

DPM. Thus, we use the pre-trained image reconstructor (i.e.

the inverse of the image featurizer) to recover images from

the poisoned features. Besides, Fig. 4 visually compares

the image reconstruction results from the original features

and the poisoned features. The image contents in the recon-

structed images from the poisoned features can hardly be

recognized by human eyes. The visual disclosure of sensi-

tive contents is well defended if these images contain sensi-

tive contents.

To summarize, the above experimental results demon-

strate that the learned DPM poisons the features so that

the poisoned features: 1) are classification equivalent to the

original features, and 2) defend against visual disclosure of

sensitive image contents when being shared.

4.2.2 Sufficiency of DPM

During the above DPM training and evaluation, the same

fixed reconstructor is defended. This pre-trained recon-

structor is an easy objective to optimize against, and in prac-

tice, there may be different networks to reverse the featur-

izer. Therefore, we further design and train five more re-

constructors based on different architectures to reverse the

pre-trained featurizer. These reconstructors are only used

for testing the defensive ability of the DPM, but not used

for DPM training. We denote the only reconstructor used

for DPM training as px2s2, where p indicates the type of

blocks used for building the reconstructor (in this case, a

plain inverse bottleneck block without residual operation),

x2 represents two blocks before upscaling, and s2 means

that the upscaling factor is 2. Similarly, other reconstructors

are denoted as px4s2, rx2s2, rx4s2, rx4s4 and rx2s2 c,
where r indicates inverse residual bottleneck blocks, and c
means the normalization strategy during reconstructor train-

ing is clamp instead of min-max normalization. We feed

the features produced by ϕ1 and their corresponding poi-

soned features created with P to each of the above recon-

structors. The reconstruction results in Fig. 5 indicate that

the learned DPM can defend various reconstructors, which

have not been learned to defend during its training.

4.2.3 Comparison with Existing Methods

In our design, each entity learns an individual DPM to poi-

son image features for image data sharing. To clarify the

advantage of the proposed DPM, we compare it to exist-

ing approaches for addressing visual disclosure of image

contents, including stationary perturbations, such as Gaus-

sian filter (GF), Gaussian noise (GN) and mean filter (MF),

and adversarial representation learning, e.g. DeepObfusca-

tor [19].

By replacing the DPM with directly applying the above

stationary perturbations to convolutional features and feed-

ing the perturbated features to the classification decider and

the image reconstructor, the results shown in the top part of

Table 3 indicate that the perturbations can defend against

image reconstruction to some extent, but also suppress the

ability of the features for image classification. While the

proposed DPM can achieve classification equivalence be-

tween poisoned features and original features, it achieves

more promising results for both remaining image classifica-

tion performance and defending against image reconstruc-

tion. Furthermore, combining stationary perturbations with

DMP still achieves promising results – defending against

the image reconstruction with minimal loss in classifica-

tion performance, as shown in the bottom rows of Table 3.

Meanwhile, the visual comparison of image reconstruction

from image features altered by stationary perturbations and

the proposed DPM in Fig. 6 further validates the advantage

of the proposed DPM over conventional perturbations.

Additionally, we compare the proposed method with a

privacy-preserving method, i.e. DeepObfuscator [19] for

image reconstruction under both conventional privacy pre-

serving and the introduced image data sharing for collabo-

ration. The comparison experiment is conducted on CelebA

dataset [26] for face attribute recognition. Similar to [19],

the first 20 attributes are regarded as the utility in privacy

preserving or the vision task to be addressed in image data

sharing, while the remaining 20 attributes are the privacy,

and the image reconstruction is another privacy and visual

Poisoning
classification (%) reconstruction

top-1 top-5 L1 SSIM

w/o 81.13 95.03 0.0406 0.7009

GN 25.47 45.99 0.1905 0.2635

GF 15.60 30.24 0.1055 0.4699

MF 4.44 10.78 0.1169 0.4334

DPM 80.78 94.86 0.2886 0.0069

GN+DPM 78.10 93.64 0.3339 0.0047

GF+DPM 78.77 93.78 0.3450 0.0041

MF+DPM 71.23 89.96 0.3564 0.0186

Table 3. Result comparison between perturbations and the pro-

posed DPM for remaining image classification performance and

defending image reconstruction simultaneously.
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(a)

(a) (e) (g)(f)(c) (d)(b)

(d)(c)(b) (e) (g)(f)

Figure 5. Comparison of image reconstruction results from the original (left columns) and poisoned (right columns) convolutional features

by reconstructors: (b) px2s2, (c) px4s2, (d) rx2s2, (e) rx4s2, (f) rx4s4 and (g) rx2s2 c. (a): raw images.

raw

images
w/o

poisoning
GN GF MF DPM GN+DPM GF+DPM MF+DPM

Figure 6. Comparison of image reconstruction from different poisoning operations.

disclosure for image data sharing. The VGGNet [46] is

adopted as the backbone for fair comparison and we split

the model at the same point as DeepObfuscator. As shown

in columns 2 to 5 of Table 4, the proposed DPM achieves

better overall results on privacy preserving. Specifically, the

DPM better remains the utility recognition and defends the

reconstruction that leaks privacy. When being adopted to

image data sharing for task-specific collaboration against

visual disclosure, sharing the obfuscator of [19] among col-

laborators results in the reversing of the obfuscator, which

makes the obfuscated features reconstructed to the original

images, as shown in Fig. 7. Also, in columns six and seven

of Table 5, when an entity learns an image reconstructor to

recover images from the original image features, the recon-

structed images are highly similar to the original images,

with L1 distance of 0.0200 and SSIM of 0.9177. Similarly,

reversing the obfuscator of DeepObfuscator also achieves

great reconstruction quality, which is not desired. This is

because there is a large overlap between the recognition-

related information and reconstruction-relation information

in the convolutional features. To guarantee the recognition

performance, the reconstruction-related informaiton can not

be removed thoroughly from the image features. Compared

with DeepObfuscator, the proposed DPM allows each entity

to keep its own DPM in private and maintain the poisoned

features from different DMPs in the same feature space.

Keeping DPM in private denies reversing it for the image

reconstruction from poisoned features. Thus, the proposed

DPM can also be used for privacy preserving, while the

privacy-preserving methods can not address the introduced

task of image data sharing against visual disclosure.

4.3. Entity Collaboration – Model Refinement

In this section, we conduct experiments to verify that the

poisoned features shared from each entity helps others im-

prove the image classification performance. To simulate the

collaborators with limited training images, we define three

subsets of images from the image set S, each of which is
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utility recognition privacy recognition privacy reconstruction image sharing reconstruction

mAPs (↑, %) mAPs (↓, %) L1 (↑) SSIM (↓) L1 (↑) SSIM (↓)

w/o protection 81.08 80.54 0.0200 0.9177 0.0200 0.9177

DeepObfuscator [19] 73.71 65.07 0.2614 0.3997 0.0359 0.8232

DPM 79.53 65.95 0.2573 0.0064 Denied

Table 4. Result comparison between the privacy-preserving obfuscation and the proposed DPM.

(a) (b) (c) (d)

Figure 7. (a) the original image; (b) image reconstruction from

the non-poisoned features; (c) DeepObfuscator defending its ad-

versarial reconstructor; (d) image reconstruction from obfuscated

features (DeepObfuscator) by reversing the obfuscator.

assumed to be collected by an entity (in {E1, E2, E3}) with

10% images (64056 images) from S, denoted as S1, S2 and

S3. Besides, a fourth entity (E4) collects 1% images of

S, denoted as S4. As shown in rows (1 – 4) of Table 5,

when various entities learn classification models individu-

ally from their own images, respectively, the classification

performance is severely limited by the number of training

images.

Suppose the first entity uses S1 pre-trains the clas-

sification network and splits it according to Sec.3.2,

then each of the entity follows the similar procedure to

train individual DPMs (P1, P2, P3 and P4) for fea-

ture poisoning as Sec. 3.3. A shared pool of im-

age features among various collaborators is established

as: {P1(ϕ1(S1)), P2(ϕ1(S2)), P3(ϕ1(S3)), P4(ϕ1(S4))}.

Then, each entity can combine its own image data and the

image data shared from other entities to refine the classifi-

cation decider ϕ2, as shown in Fig. 1(b).

As shown in the rows 7 and 8 in Table 5, two entities E1

andE2 use the poisoned image features from each other and

achieve much better classification performance than train-

ing models based on its own data (rows 1 and 2), respec-

tively. Compared with combining image features directly

(row 6), there is certain loss in performance improvement

due to the poisoning operation leading to information loss.

Besides, when the number of collaborators increases, e.g.

E3 (in rows 9 and 10) exploits data fromE1 andE2, the per-

formance can be further improved and is much better than

just using its own data S3 in row 3. Specially, when entity

E4 train its classification model based on its own images,

the top-1 accuracy is 13.5%. With other entities sharing

image data to E4, it can easily achieve 61.6% top-1 accu-

racy (in row 12). These comparison results indicate that the

image data sharing does benefit entities since they can use

others’ data for its model refinement.

rows image data top-1 top-5

1 – E1 raw images S1 (10%) 52.9 77.7

2 – E2 raw images S2 (10%) 52.7 77.8

3 – E3 raw images S3 (10%) 53.2 77.9

4 – E4 raw images S4 (1%) 13.5 30.3

5 raw images S (100%) 81.1 95.0

6 ϕ1(S1) ∪ ϕ1(S2) 61.2 83.8

7 – E1 ϕ1(S1) ∪ P2(ϕ1(S2)) 59.4 82.6

8 – E2 P1(ϕ1(S1)) ∪ ϕ1(S2) 59.8 83.0

9 – E3 P1(ϕ1(S1)) ∪ P2(ϕ1(S2)) ∪

ϕ1(S3)
62.3 84.5

10 – E3 P1(ϕ1(S1)) ∪ P2(ϕ1(S2)) ∪

P3(ϕ1(S3)) ∪ ϕ1(S3)
62.7 84.7

11 – E4 P1(ϕ1(S1)) ∪ P2(ϕ1(S2)) ∪

ϕ1(S4)
58.4 82.1

12 – E4 P1(ϕ1(S1)) ∪ P2(ϕ1(S2)) ∪

P3(ϕ1(S3)) ∪ ϕ1(S4)
61.6 84.4

Table 5. Classification performance of image classification mod-

els trained/fine-tuned on image data in different representations.

5. Conclusion and Future Work

This paper introduced a new vision task of image data

sharing against visual disclosure of sensitive contents. The

task aims to make various entities refine respective models

by using image data shared by others, but not visually ob-

serve the sensitive content in the shared data. To achieve

this goal, we proposed that each entity inserts an extra Deep

Poisoning Module to the pre-trained network. The DPMs

were learned to make the poisoned features be functionally

equivalent to the non-poisoned features and defend against

the image reconstruction. Being kept in private, DPMs pro-

vided a structure-based approach to prevent the shared im-

age data from visually disclosing sensitive image contents.

Our experiments verified the effectiveness of the proposed

method by simulating the process of sharing data to benefit

collaborators’ model refinement without visually disclosing

sensitive image contents.

Besides, this paper is an initial exploration of the intro-

duced task, there are still many problems to be addressed,

such as the potential non-i.i.d. issue among images from

various entities, expanding to other vision applications, etc.

These issues may be discussed in the future work.
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