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Abstract

Recent literature addressed the monocular 3D pose es-

timation task very satisfactorily. In these studies, different

persons are usually treated as independent pose instances

to estimate. However, in many every-day situations, peo-

ple are interacting, and the pose of an individual depends

on the pose of his/her interactees. In this paper, we inves-

tigate how to exploit this dependency to enhance current –

and possibly future – deep networks for 3D monocular pose

estimation. Our pose interacting network, or PI-Net, in-

puts the initial pose estimates of a variable number of inter-

actees into a recurrent architecture used to refine the pose

of the person-of-interest. Evaluating such a method is chal-

lenging due to the limited availability of public annotated

multi-person 3D human pose datasets. We demonstrate the

effectiveness of our method in the MuPoTS dataset, setting

the new state-of-the-art on it. Qualitative results on other

multi-person datasets (for which 3D pose ground-truth is

not available) showcase the proposed PI-Net. PI-Net is im-

plemented in PyTorch and the code will be made available

upon acceptance of the paper.

1. Introduction

Monocular 3D multi-person human pose estimation

aims at estimating the 3D joints of several people from a

single RGB image. This problem attracts great research

and industrial interests, as it would make possible a number

of applications in many different fields including the

entertainment industry, sports technology, physical therapy

and medical diagnosis. Recent works on multi-person

human pose estimation usually regard different people as

independent instances and estimate the poses one by one

in separate bounding boxes in top-down methods. This

makes all these approaches agnostic about the context

information and specifically about the presence of other

people [4, 13, 26, 33, 34, 36, 44, 45, 50]. However, when

people interact, the pose and motion of every person is

typically dependent and correlated to the body posture of

the people he/she is interacting with.

While context information has been shown to be useful

in tasks such as object detection [2, 14, 39], motion pre-

diction [11] or affordance estimation [12], to the best of

our knowledge, it has not been well developed before in

a body pose estimation. In this paper, we investigate how

these dependencies can be used to boost the performance of

off-the-shelf architectures for 3D human pose estimation.

Concretely, we propose a pose interacting network, PI-Net,

which is fed with the 3D pose of a person of interest and

an arbitrary number of body poses from other people in the

scene, all of them computed with a context agnostic pose

detector. These poses are potentially noisy, both in their ab-

solute position in space as in the specific representation of

the body posture. PI-Net is built using a recurrent network

with a self-attention module that encodes the contextual

information. Since it is unclear how to rank the contextual

information, that is the pose of other persons, regarding

the potential impact on the pose refinement pipeline, we

make the very straightforward assumption that the potential

of a person to refine the pose of the person-of-interest, is

inversely proportional to the square of the distance between

them.

We thoroughly evaluate our approach on the MuPoTS

dataset [34], and using the initial detections of

3DMPPE [36], the current best performing approach

on this dataset. PI-Net exhibits consistent improvement of

the pose estimates provided by 3DMPPE in all sequences

of the dataset, becoming thus, the new state-of-the-art (see

one example in Fig. 1). Interestingly, note that PI-Net can

be used as drop-in replacement for any other architecture

that estimates 3D human pose. Additionally, the size of

the network we propose is relatively small (3.41M training

parameters, while the baseline model has 36.25M parame-

ters), enabling efficient training and introducing a marginal

computational cost at test. Testing on one Geforce1070,

PI-net just cost 0.007s on refining one person while the
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Figure 1: PI-Net peformance. An example of testing on MuPoTS dataset. Poses refined by PI-Net (in green) are closer to

the ground truth (in black) than the baseline (in red). We zoom-in to several parts to clearly appreciate the difference. The

error before and after PI-Net refinement for each person is shown in the table. The average 3D joint error for this example is

reduced from 88.02 mm to 86.19 mm.

baseline cost 0.038s for detecting one root-centered pose

and also extra time on obtaining the bounding boxes and

roots. Our method is lightweight and consistently improves

the baseline.

2. Related Work

2.1. 3D Single-person pose estimation

Deep learning methods for single-person 3D pose esti-

mation follow two different strategies. On one hand, there

are algorithms that directly learn the mapping from image

features to 3D poses [10, 29, 32, 41, 43]. For instance, [29]

propose a joint model for body part detectors and pose re-

gression. Pavlakos et al. [41] introduce a U-Net architecture

to recover joint-wise 3D heatmaps. Sun et al. [48] build a

regression approach using a bone-based representation that

enforces human pose structure. In [49], a differentiable soft-

argmax operation is used for efficiently training a hourglass

network.

Another line of work focuses on recovering 3D human

pose from 2D image features by using models that enforce

consistency between 3D predicted poses and 2D observa-

tions [5, 37, 51]. For instance, Bogo et al. [5] fit a human

body parametric model by minimising the distance between

the projection of the 3D estimation and the 2D predicted

joints. Moreno-Noguer [37] propose to infer 3D pose via

distance matrix regression. Yang et al. [54] use an adver-

sarial approach to ensure that estimated poses are antropo-

morphic.

2.2. 2D multi-person pose estimation

There are two main approaches for multi-person pose

estimation, top-down [8, 30, 47, 53] and bottom-up mod-

els [6, 7, 38, 42]. On the former, a human detector first es-

timates the bounding boxes containing the person. Each

detected area is cropped and fed into the pose estimation

network. The later also follows a two-stage pipeline, where

a model first estimates all human body keypoints, and then

groups them into each person using clustering techniques.

Cao et al. [6, 7] propose a real-time bottom-up method

using Part Affinity Fields to group joints of different person.

The efficiency of these bottom-up approaches makes them

very appropriate to be used as a backbone for later lifting

the 2D joints to 3D [13,40]. The performance of bottom-up

methods has been recently improved by to-down strategies.

Xiao et al. [53] use ResNet [20] as encoder and several de-

convolutional layers as decoder to formulate a simple but

effective baseline. Sunet al. [47] connect the high-to-low

resolution convolution streams in parallel to maintain richer

semantic information. Chen et al. [8] use a cascade pyramid

network to refine the hard keypoints of the initial estimated

results.

2.3. 3D Multi-person pose estimation and contex-
tual information

Similar to their 2D counterparts, 3D multi-person poses

estimation methods can be split into top-down [26, 36, 44,

45, 52] and bottom-up [33, 34, 56] approaches. Mehta et

al. [33, 34] follow a bottom-up strategy, by first estimating

three occlusion-robust location-maps [35] and then mod-
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Figure 2: PI-Net Architecture. Mask-RCNN [19] and PoseNet [36] are used to extract the initial pose estimates p1, . . . ,pN .

These estimates are fed into PI-Net, composed of three main blocks: Bi-RNN, Self-attention and the shared fully-connected

layers. The output of PI-Net refines the initial pose estimates by exploiting the pose of the interactees, yielding q1, . . . ,qN .

eling the association between body keypoints using Part

Affinity Fields [7]. Zanfir et al. [56] formalize the problem

of localizing and grouping people as a binary linear integer

program and solve it by integrating a limb scoring model.

Rogez et al. [44,45], in contrast, propose a top-down ap-

proach, where first, each person 2D bounding box is classi-

fied into one of the anchor clustered 3D poses. These poses

are then refined in a coarse-to-fine manner. Moon et al. [36]

propose an architecture that simultaneously predicts the 3D

absolute position of the root joint and reconstructs the rel-

ative 3D body pose of multiple people. However, despite

the fact that these works estimate the body pose of an ar-

bitrary number of people, each person is processed using

an independent pipeline that does not take into account the

interactions between the rest of people or other contextual

information.

Recently, some works begin to pay attention to using

contextual information in 3D pose estimation problem by

integrating scene constraints [55] or considering the depth-

order to resolve the overlapping problem [24, 28]. Jiang et

al. [24] propose a depth ordering-aware loss to consider

the occlusion relationship and interpenetration of people in

multi-person scenarios. Li et al. [28] divide human rela-

tions into different levels and define 3 corresponding losses

to tell if the orders of different people or different joints are

correct or not. Though contextual information is consid-

ered in these works, they do not really explore the interac-

tion relations between different people in the same activity.

More recently, Fieraru et al. [16] proposed a new dataset of

human interactions with several daily interaction scenarios

and proposed a framework based on contact detection over

model surface regions, but this dataset is not released yet.

In this paper, we propose a method that can be used

in combination with the current state-of-the-art model [36]

and boost its performance by looking at the whole group of

humans. The proposed model is flexible and can be stacked

after any 3D pose estimation model, independently of it be-

ing top-down or bottom-up.

3. PI-Net for Multi-Person Pose Estimation

Our goal is to exploit the interaction information be-

tween N people so as to improve the estimation of their

pose. We assume the existence of an initial 3D pose es-

timate pn ∈ R
J⇥3 of person n = 1, . . . , N , where

J is the number of estimated joints, e.g. obtained from

3DMPPE [36]. All the N poses are in absolute camera co-

ordinates.

Formally, our goal is to improve the initial pose esti-

mates, taking into account the pose of other people:

[q1, . . . ,qN ] = Π(p1, . . . ,pN ), (1)

where qn ∈ R
J⇥3 denotes the pose of person n improved

with the information of the poses of the interactees.

While the idea is very intuitive, the research question is

how to design PI-Net (i.e. Π) so that it satisfies the follow-

ing desirable criteria. Firstly, it shall work in environments

with different number of people N , and not fixed to a par-

ticular scenario. Secondly, the interaction information can

be efficiently exploited and learned using publicly available

datasets. Finally, it has to be generic enough to work with

any 3D monocular multi-person pose estimator.
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3.1. Pipeline of PI-Net

Naturally, the fact that the number of people N is un-

known in advance, points us towards the use of recurrent

neural networks. Such RNN should input the poses esti-

mated by a generic pose estimator, and embed the pose in-

formation into a representation learned specifically to take

the cross-interactions into account. Without loss of gener-

ality, let us assume that the person-of-interest is n = 1,

and hence the pose to refine is p1. We consider using a bi-

directionnal RNN, whose first input is p1, and then the rest

of initial poses are provided in a given order (see below).

Our intuition for using a Bi-RNN is the following. During

the forward pass, and since the first input is p1, the network

can use the information in p1 to extract the features of the

other poses that will best refine p1. In the backward pass,

the network accumulates all this information back to p1,

obtaining:

e1 = Bi-RNN(p1, . . . ,pN ). (2)

The learned embedding e1 ∈ R
N⇥E is supposed to con-

tain the crucial information from all other poses to refine

the pose of the person-of-interest (1 in our example), but

not only. Indeed, given that a priori we do not know which

persons would be more helpful in refining the pose of inter-

est, the computed embedding e1 could contain information

that is not exploitable to refine the pose. In order to take

this phenomenon into account, we soften the requirements

of the Bi-RNN through the use of an attention mechanism

as shown in Figure 2 (bottom-left zoom). Such attention

mechanism aims to improve each embedding by combining

information from the embeddings of other persons. To do

so, we compute a matrix of attention weights:

W ∈ R
N⇥N , Wnm = e>

n
(AATTem + bATT)), (3)

that is then normalised with a row-wise soft-max operation.

AATT and bATT are attention parameters to be learned. The

self-attention weights W encoding the residual interaction

not captured by the Bi-RNN are used to update the embed-

ding vector u1 = We1. Finally, the updated embedding

is feed-forwarded through a few fully connected layers, ob-

taining the final refined pose q1. While, at test time the

self-attention and fully-connected layers are used only for

the person-of-interest, at training time we found it is use-

ful to apply these two operations to all poses, and back-

propagate the loss associated to everyone. This strategy

eases the training. The overall pipeline depicting of PI-Net

is shown in Figure 2.

3.2. Interaction Order

In the previous section we assumed that the order in

which the initial pose estimates pn were presented to the

Bi-RNN was given. Although there is no principled rule

to define the ordering, there are some requirements. For a

given person n, the sequence of poses presented to the net-

work pρn(1), . . . ,pρn(N) has two constraints: (i) each pose

is presented only once and (ii) the first pose is the one to be

refined, i.e. ρn(1) = n. Intuitively, the order should repre-

sent the relevance: the more useful pm is to refine pn, the

closer pm should be to pn in the input sequence, i.e. the

smaller ρn(m) should be. Because finding the optimal per-

mutation is a complex combinatorial optimisation problem

for which there is no ground-truth, we opt for assuming that

the relevance is highly correlated to the physical proximity

between interactees. Therefore, the closer person m is to

person n, the smaller should ρn(m) be. With this rule we

order the initial pose estimates to be fed to the Bi-RNN.

We also consider of using Graph Convolutional Net-

work [25] to model the interaction between different per-

son. Considering a pair of input persons, the node of the

graph represents the coordinate of all the joints of these two

people, and the adjacency matrix learned from the input rep-

resents interaction between these joints. This strategy does

not provide any performance increase, the results will be

discussed in Section 4.4.

3.3. Network Architecture

In order to build and train our PI-Net, we first extract

the initial poses using [36]. In the baseline, Mask-RCNN is

used to detect the people present in the image. After that,

the keypoint detector is applied to each image to detect the

root-based poses and then project them into absolute camera

coordinates. This keypoint detector is based on ResNet50

and 3 addition deconvolutional layers, following [49]. The

set of keypoints for each person in camera coordinates pn,

is therefore obtained. Note that this regressor gives all J

person joints, despite of partial occlusions, the correspond-

ing occluded joints are hallucinated.

These initial pose estimates are then normalised with

their mean and standard deviation, thus obtaining the in-

put pose estimates of our PI-Net, {p1, . . . ,pN}. For each

person n, we feed the PI-Net with the sequence of poses in

the order appropriate for person n (see Section 3.2). The

output qn of PI-Net is the refined pose for person n. PI-

Net is trained with the L1 loss between the refined poses

and the ground-truth in 3D camera coordinates, added for

all detected persons in the training image.

The Bi-RNN is implemented using three layers of gated

recurrent units (GRU [9]). The the self-attention layer pro-

vides a straightforward way to account for person pose in-

teractions. After applying attention, the updated embedding

goes through three fully connected layers to output the re-

fined 3D pose in camera coordinates. These three fully con-

nected layers are shared by all N poses. Consequently, the

proposed PI-Net can be trained and evaluated using images

with different number of people.
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Table 1: Sequence-wise 3DPCK comparison with state-of-the-art methods on the MuPoTS-3D dataset. The first three meth-

ods show the reported results in the corresponding paper, the fourth method and our model is tested with ground truth

bounding boxes and roots. Higher value means better performance.

Sequence S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 AVG

Accuracy for all ground truths

LCR [44] 67.7 49.8 53.4 59.1 67.5 22.8 43.7 49.9 31.1 78.1 50.2 51.0 51.6 49.3 56.2 66.5 65.2 62.9 66.1 59.1 53.8

Singleshot [34] 81.0 60.9 64.4 63.0 69.1 30.3 65.0 59.6 64.1 83.9 68.0 68.6 62.3 59.2 70.1 80.0 79.6 67.3 66.6 67.2 66.0

Xnect [33] 88.4 65.1 68.2 72.5 76.2 46.2 65.8 64.1 75.1 82.4 74.1 72.4 64.4 58.8 73.7 80.4 84.3 67.2 74.3 67.8 70.4

LCR++ [45] 87.3 61.9 67.9 74.6 78.8 48.9 58.3 59.7 78.1 89.5 69.2 73.8 66.2 56.0 74.1 82.1 78.1 72.6 73.1 61.0 70.6

PandaNet [3] - - - - - - - - - - - - - - - - - - - - 72.0

3DMPPE [36] 93.2 75.6 80.3 81.5 84.6 75.3 84.5 69.3 90.1 92.0 81.0 81.0 73.4 73.5 81.8 89.6 88.4 84.3 74.5 70.6 81.2

PI-Net (ours) 93.5 77.4 82.0 82.9 87.2 75.9 84.0 71.5 90.2 92.2 82.5 82.9 74.7 75.7 83.6 91.4 90.6 86.0 74.9 71.1 82.5

Accuracy only for matched ground truths

LCR [44] 69.1 67.3 54.6 61.7 74.5 25.2 48.4 63.3 69.0 78.1 53.8 52.2 60.5 60.9 59.1 70.5 76.0 70.0 77.1 81.4 62.4

Singleshot [34] 81.0 65.3 64.6 63.9 75.0 30.3 65.1 61.1 64.1 83.9 72.4 69.9 71.0 72.9 71.3 83.6 79.6 73.5 78.9 90.9 70.8

LCR++ [45] 88.0 73.3 67.9 74.6 81.8 50.1 60.6 60.8 78.2 89.5 70.8 74.4 72.8 64.5 74.2 84.9 85.2 78.4 75.8 74.4 74.0

Xnect [33] 88.4 70.4 68.3 73.6 82.4 46.4 66.1 83.4 75.1 82.4 76.5 73.0 72.4 73.8 74.0 83.6 84.3 73.9 85.7 90.6 75.8

3DMPPE [36] 93.9 83.0 80.3 81.5 85.4 75.3 84.5 77.2 90.1 92.0 81.0 81.0 74.3 76.0 81.8 89.6 88.4 84.3 75.5 76.2 82.6

PI-Net (ours) 93.9 85.0 81.5 83.0 88.9 75.6 84.7 78.0 90.4 92.2 82.5 82.6 76.0 77.6 83.5 91.5 90.5 85.9 75.7 78.5 83.9

3.4. Implementation details

We use PoseNet of 3DMPPE [36] to generate our in-

put 3D human pose. This model is trained on large-

scale training data which includes H3.6M single-person 3D

dataset [23], MPII [1] and COCO 2D dataset [31], MuCo

multi-person 3D dataset [34], and extra synthetic data. PI-

Net is trained on 33.4k composited MuCo data, which is

contained in the training data of the baseline model. This

ensures that the improvement of PI-Net comparing with the

baseline model is not caused by adding extra training data.

In terms of dimensions, 3DMPPE [36] outputs J = 17
joints in 3D, the hidden recurrent layers are of dimension

256, and the Bi-RNN outputs an embedding vector of di-

mension E = 512. We train our PI-net using Adam opti-

mization and the poly learning rate policy [57], with initial

learning rate of 1e-5, final learning rate of 1e-8, and power

of 0.9, for 25 epochs. Batch size is set to 4.

When testing on an image with n instances, we test for n

independent times, each time with a different ordering, and

just retain the first person in each case.

4. Experiments

We next describe the experiment section, which includes

a description of the datasets, baselines and evaluation met-

rics. We then provide a quantitative and qualitative eval-

uation and comparison to state-of-the-art approaches. We

finalize this section with an exhaustive ablation study of the

PI-Net architecture and hyperparameters.

4.1. Datasets

MuCo-3DHP dataset and MuPoTS-3D dataset. Most ex-

periments discussed below are performed using these two

well-known datasets. They were initially introduced by

Mehta et al. [34] and are typically used as train set and test

set respectively, for the task of multi-person 3D human pose

estimation. MuCo-3DHP is a multi-person 3D human pose

dataset. Our PI-Net is trained on 33.4k MuCo images with

80.7k instances, without any other extra data. MuPoTS-3D

test set includes 8320 images with 23k instances in 20 real

scenes (5 indoor scenes and 15 outdoor scenes). Each scene

contains from 200 to 800 frames extracted from a video,

with 2 or 3 people performing a certain common activity

such as talking, shaking hands or doing sports. These two

datasets are annotated using COCO format and provide both

2D image coordinates and 3D camera coordinates for each

body joint.

COCO dataset. We also perform qualitative results using

the COCO dataset. This is a large-scale multi-person human

pose dataset and, even though it just provides 2D ground

truth labels, it depicts challenging scenes with a large num-

ber of people performing very diverse actions. In particular,

we use examples from the COCO val2017 subset [19].

4.2. Baseline and Evaluation metrics

Our pipeline is capable of refining the poses estimated

by any multi-person pose algorithm, independently of the

strategy it uses. Given these initially estimated poses we

refine them leveraging on the contextual information. In

this paper, we use the recent 3DMPPE [36] as a baseline

and demonstrate both quantitative and qualitative improve-
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Table 2: PA MPJPE (top) and MPJPE (bottom) comparisons of PI-net with the state-of-the-art method [36] used as our

baseline on the MuPoTS dataset. The average value indicated image-wise average. Ground truth bounding boxes and roots

are used for testing. Lower value means better performance.

Sequence S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 AVG

PA MPJPE (mm)

3DMPPE [36] 67.7 102.6 82.7 82.5 79.8 91.1 70.8 110.1 72.8 63.5 88.6 79.6 105.1 110.5 77.5 72.2 73.3 86.8 91.9 120.0 88.4

PI-Net (ours) 65.8 97.7 82.2 82.4 77.7 91.6 68.6 106.3 70.0 60.5 88.0 77.7 102.3 106.6 75.5 70.2 71.5 83.7 88.9 112.6 85.79

MPJPE (mm)

3DMPPE [36] 90.9 159.3 121.8 113.5 107.8 121.1 113.8 138.2 99.7 98.4 119.6 115.4 143.7 151.7 111.7 101.8 105.6 115.8 140.7 187.7 126.0

PI-Net (ours) 87.3 151.3 117.1 109.9 103.9 121.1 108.7 133.9 95.8 93.0 117.0 112.2 141.1 146.2 108.0 98.0 102.5 111.8 136.2 178.4 121.7

Table 3: Joint-wise 3DPCK comparison with state-of-the-art methods on the MuPoTS-3D dataset. The first three methods

show the reported results in the corresponding paper, the fourth method and our model is tested with ground truth bounding

boxes and roots. All ground truths are used for evaluation. Higher value means better performance.

Method Hd. Nck. Sho. Elb. Wri. Hip Kn. Ank. Avg

LCR [44] 49.4 67.4 57.1 51.4 41.3 84.6 56.3 36.3 53.8

single-shot [34] 62.1 81.2 77.9 57.7 47.2 97.3 66.3 47.6 66.0

3DMPPE [36] 78.4 91.9 83.1 79.7 67.0 93.9 84.3 75.3 81.2

PI-Net (ours) 78.3 91.8 87.8 81.9 68.5 94.2 85.3 74.8 82.5

ments. Note that previous state-of-art works such as Pan-

daNet [3] or SingleShot [34] do not provide codes either

for training or testing, and hence, we could not use them

as backbones. The baseline [36] consists of 3 main steps.

Firstly, 2D bounding boxes of humans are detected using

Mask-RCNN [19]. For each detection, a deep network re-

fines the coarse root 3D coordinates obtained from cam-

era calibration parameters and, finally, a fully convolutional

network [49] predicts root-relative 3D pose. Using the 3D

root position, all poses can be represented in a common

camera-coordinates reference.

We evaluate the performance of all methods by reporting

the percentage of keypoints detected by the network that

are within 150mm or less from the ground truth labels

(3DPCK@150mm). This is the usual evaluation metric on

the MuPOTS-3D test set [3, 33, 34, 36, 44, 45].

Notice that the 3DPCK metric depends greatly on the cho-

sen threshold, for completeness, we also provide MPJPE

and PA-MPJPE metrics to evaluate the performances.

MPJPE indicates mean-per-joint-position error after root

alignment with the ground truth [23], and PA-MPJPE de-

notes MPJPE after Procrustes Alignment [18]. Lower

MPJPE and PA-MPJPE indicates better performance.

4.3. Main results

Quantitative results on MuPoTS-3D testset. We report

results of PI-Net on the MuPoTS-3D dataset in Table 1, and

compare to current state-of-the-art methods. Our results are

obtained using the model depicted in Fig. 2, which uses

a bidirectional 3-GRU recurrent layer, followed by a self-

attention layer. We provide results after root alignment with

the ground-truth poses, on the two strategies usually used

on the MuPoTs datasets. In table1, the top-rows Accuracy

for all ground truths evaluates all annotated persons, and

the bottom rows Accuracy only for matched ground truths

evaluates only predictions matched to annotations by their

2D projections with the 2D ground truths. We got improve-

ments on both of the two strategies. PI-Net outperforms all

previous models and improves the state-of-the-art by 1.3%

3DPCK@150mm on average. The improvement is consis-

tent and shows a boost in performance for the majority of

actions, setting a new state-of-the-art on the MuPoTS-3D

dataset. Interestingly, we observe that the largest improve-

ments are produced in those actions that require harmony

and certain synchronization between people, such as prac-

ticing Taekwondo (S2) or playing a ball together (S14). We

use ground truth bounding box and roots to test the base-

line, so the root-relative result is comparable with the ab-

solute result here. To avoid the redundancy, we only re-

port root-relative results, which is widely reported in the

previous works, for the comparison with the state-of-the-art

methods.

Table 2 shows the comparison of sequence-wise perfor-

mance using MPJPE with root alignment and PA-MPJPE

with further rigid alignment. Testing our model on the

MuPoTS test dataset, we reduced the MPJPE error and PA-

MPJPE error by 2.6mm and 4.3mm on average, respec-

tively, in comparison with the baseline results [36]. Again,

results are consistent across different tasks.

Table 3 shows a joint-wise comparison with state-of-art
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Table 4: Comparison of different input orders. Intuitive is

the one described in Section 3.2, from near to far. Inverse is

the opposite. Random means in random order.

Order PA MPJPE (mm) MPJPE (mm)

Reverse 86.09 122.23

Random 85.87 121.88

Intuitive 85.79 121.7

methods using 3DPCK@150mm after root alignment with

ground truths. While we achieve similar performance with

[36] in head, neck and hip, our method consistently outper-

forms the rest of joints on arms and legs (shoulder, elbow,

wrists and knees). Arguably, the joints on the torso have

little influence on the interaction between people, which

comes mostly through the limbs, for example hands and

legs. Hence, it is reasonable that using the context informa-

tion to refine 3D pose predictions gives the most significant

boost in these joints.

Finally, it is worth pointing out that the results for all previ-

ous approaches reported in Tables 1, 2 and 3 are those of the

respective papers. For 3DMPPE [36], however, we tested

on ground-truth bounding boxes and roots to reported these

results.

Qualitative results on COCO. Figure 3 shows qualitative

results on COCO dataset, for which 3D ground truths are

not available. We also include (bottom-right) a failure case,

caused by a misdetection of the baseline. This is maybe

the major limitation of PI-Net, which is designed to refine

poses, but so far, we have not integrated any module to deal

with large deviations on the input poses.

4.4. Ablation Study

We next provide further analysis of the PI-Net architec-

tural design and discuss/interpret the predicted adjacency

matrix obtained in the self-attention layers.

Effect of the Input Order. Table 4 shows the effect of

using different strategies to establish the ordering of the de-

tected people fed into the Bi-RNN layer. We consider three

different order: (i) a random ordering, (ii) our approach

where we select the person of interest followed by people in

order of proximity, and (iii) the inverse approach that per-

son further away is firstly fed into the network. To estimate

the distance between people, we compute the distances be-

tween the root coordinates of the input people to the target

person.

Even though the number of people in images of MuPoTS

dataset is relatively small and therefore the results would

not differ greatly, the ordering in which every person’s in-

formation is processed has an effect in the performance of

the model. As shown in the Table, the ordering we use pro-

vides the best performance and the inverse one results the

Table 5: Importance of self-attention and bidirectionality

(RNN). PI-Net uses a bidirectional RNN followed by a self-

attention layer. We evaluate the impact of each of these

choices: w/o Att. when removing attention, w/o Bi. consid-

ering standard RNN.

Method PA MPJPE(mm) MPJPE(mm)

PI-Net w/o Att., w/o Bi. 86.69 122.7

PI-Net w/o Bi. 86.42 123.10

PI-Net w/o Att. 85.92 122.01

PI-Net 85.79 121.7

Table 6: Ablating the unit of the interaction network:

None [36], Graph Convolutional Networks (GCN); LSTM

and Gated Recursive Units (GRU), with (2,3,4) layers.

Interaction PA MPJPE (mm) MPJPE (mm) # Par.

None [36] 88.36 126.0 133M

GCN 88.67 126.3 34M

2 LSTM 86.45 122.5 2.78M

3 LSTM 86.17 122.3 4.36M

4 LSTM 86.32 121.7 5.93M

2 GRU 86.27 122.2 2.23M

3 GRU 85.79 121.7 3.41M

4 GRU 85.96 122.2 4.59M

worst. This demonstrates the importance of taking context

into account.

Effect of self-attention and bidirectional RNN. In Table 5

we analyse the effect of using the self-attention layer, which

confirms that it helps to boost the performance. We also

study the attention weights predicted by the self-attention

layer. These weight are, as expected, large at the diagonal,

which corresponds to the self-interaction. The larger the

distance between two person is, the smaller the weights tend

to be. Table 5 also compares our approach which employs

Bi-RNN with a standard (not bidirectional) RNN. The abla-

tion of the recurrent unit is done later one. Bi-RNN reduces

0.69mm the MPJPE error and 0.77mm the PA-MPJPE error,

while the self-attention layers gives an extra improvement

of 0.31mm on MPJPE and 0.13mm on PA-MPJPE.

Interaction unit. In Table 6 we report results us-

ing alternative units to take the interaction into account.

More precisely, Graph Convolution Network (GCN) and

LSTM/GRU with different number of layers. For the ex-

periment with GCN, we learned an adjacency matrix for

every pair of persons and represented the interaction be-

tween them. We considered 4 GCN layers to obtain the

refined poses. We also ablated the recurrent unit: GRU or

LSTM [17]. Even though the MPJPE error of 4 LSTM lay-

ers is similar to that of 3 GRU layers, we considered the
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Figure 3: Qualitative results on the COCO dataset. For each pose, a darker color is used to represent the left side of the

person. The bottom-right example corresponds to a failure case, as the ‘red’ and ‘black’ persons should be located in front of

the scene, behind the ’blue’ and ’purple’ persons. This is caused by a misdetection on the root position of the input detected

poses provided by the baseline network, while our network designed for refining the poses could not refine this kind of large

deviation, because this large deviation caused by the baseline network hinder our PI-net from learning the correct context

information for correctly interpreting and refining the prediction.

latter because it performs better after rigid alignment, and

uses much less parameters which enables it to be trained

more efficiently.

5. Conclusion

We propose PI-Net, a pose-interacting network that takes

initial 3D body poses predicted by any pose estimator, and

refine them leveraging on the mutual interaction that occurs

in multi-person scenes. We learn such interactions using 3

main building blocks: a bi-directional RNN, a self-attention

module, and a MLP. PI-Net is very flexible, lightweight

and cost-efficient, and it could improve other approaches

for multi-person 3D human pose estimation, establishing

the new state-of-the-art. This line of work focuses on the

interaction between people to improve perception results.

In the future, we plan to extend this approach to reason on

other contextual information such as objects or structures to

better understand human actions and explore different ways

to interpret relationships in the scene. Exploiting tempo-

ral priors [21,46] and exploring other regression techniques

such as robust deep regression [27] or regression adapta-

tion [15, 22], are also other avenues we will explore.
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