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Abstract

For the task of image classification, researchers work ar-
duously to develop the next state-of-the-art (SOTA) model,
each bench-marking their own performance against that
of their predecessors and of their peers. Unfortunately,
the metric used most frequently to describe a model’s per-
formance, average categorization accuracy, is often used
in isolation. As the number of classes increases, such as
in fine-grained visual categorization (FGVC), the amount
of information conveyed by average accuracy alone dwin-
dles. While its most glaring weakness is its failure to de-
scribe the model’s performance on a class-by-class basis,
average accuracy also fails to describe how performance
may vary from one trained model of the same architec-
ture, on the same dataset, to another (both averaged across
all categories and at the per-class level). We first demon-
strate the magnitude of these variations across models and
across class distributions based on attributes of the data,
comparing results on different visual domains and different
per-class image distributions, including long-tailed distri-
butions and few-shot subsets. We then analyze the impact
various FGVC methods have on overall and per-class vari-
ance. From this analysis, we both highlight the importance
of reporting and comparing methods based on information
beyond overall accuracy, as well as point out techniques
that mitigate variance in FGVC results.

1. Introduction

Convolutional neural networks and their variants have
taken over the image classification task, both at the gen-
eral level [34] and for fine-grained domains [3, 49]. This
has advanced the state-of-the-art in fine-grained recogni-
tion [4, 9, 13, 23, 25, 45, 50] to previously inconceivable
levels, but with great research comes a need for great report-
ing, and current standards are insufficient. If a given model
yielded the same results every time it was trained, and these
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Figure 1. Results from 10 trained networks in per-class accuracy
plot, sorted according to the average per-class accuracies. Devia-
tion is standard deviation, and the per-class deviation was averaged
across all the classes.

results were the same for every class, then overall average
accuracy would be not only sufficient, but also comprehen-
sive, and additional metrics would be mostly trivial. Unfor-
tunately, this is not the case, and as FGVC transitions from
theory to real-world application, it is critical that both re-
searchers and practitioners have enough information at their
disposal to fairly compare different models.

One of the primary limitations in comparing FGVC
methods is that models with the exact same dataset, train-
ing procedure, and architecture (identically-trained mod-
els) have non-trivial differences (variance) in performance.
Variance is an important concern about a model’s perfor-
mance that is distinct from accuracy — the level of variance
can vary independent of overall accuracy. We investigate a
few main types, two of which are represented in Figure 1.
The first, which we measure as overall deviation in Sec-
tion 3 and Section 4, is the wide distribution of per-class ac-
curacies: for some classes, the trained model is able to clas-
sify nearly all the images correctly, while for a few classes it
accurately classifies less than 20%. The second type of vari-
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Figure 2. Blue Jays, from Flickr. Differences in pose make it dif-
ficult to discern (without prior domain knowledge) whether these
are all images of the same species of bird.

ance, which we measure as per-class deviation in Section 3
and Section 4 is the distribution of accuracies for a given
class between trained instances of a model. The third type,
which is not represented in the figure, is variance in overall
accuracy. Ironically, the variance between results from dif-
ferent trained instances is due primarily to what they have in
common: architecture, training procedure, and dataset.

The architecture is what makes variance possible. Deep
neural networks have a series of layers, with millions of
parameters in total, typically initialized at random. Since
there are so many learned weights, the possible solution
space is enormous, and due to the way these weights are
learned and the way they work together, even a reduced
space consisting only of “good” solutions would still be in-
credibly large. With the introduction of any randomness in
the training pipeline (explained in the following paragraph),
the learned weights will differ even when not randomly ini-
tialized (such as with pretrained networks) and trained mod-
els become like snowflakes, in that it is highly unlikely any
two would ever have the exact same weights. Two trained
models with non-identical weights would logically make
predictions that, while largely similar, have some differ-
ences (variance).

In terms of training procedure, while every new state-
of-the-art (SOTA) approach to FGVC is different, many
share some similarities in their pipelines. The order of train-
ing images presented during training is often shuffled, with
transformations applied that randomly flip, crop, and mod-
ify the color of the images in each batch. While the addition
of randomness to the pipeline through these methods helps
prevent overfitting, it allows for variance between instances
of a model that started off with identical weights.

The dataset is a major factor in determining the level of
variance observed in the evaluation results, as we prove in
Section 3. It is important to remember that the training im-

ages in a dataset are a random sample taken from the space
spanned by the selected visual domain, and a model’s per-
formance can be highly dependent on how representative
this random sample is of the full visual domain. If there are
only a few images for a given class in the training set, it is
unlikely that the spectrum of possible appearances for that
class is adequately represented. Figure 2 illustrates how this
can be difficult — with only 5 images, it would be impossi-
ble to represent each of the 6 poses shown, and even with
more than 20 images it would logically be challenging to
achieve adequate, well-proportioned representation of the
Blue Jay. With a limited training set, performance on the
test data will likely be both (i) worse for the underrepre-
sented classes and (ii) less consistent overall. Additionally,
some classes in a dataset are more challenging to classify
than others. For example, with the 2011 Caltech-USCD
Birds (CUB) dataset [44], many models report very high
accuracy for highly-distinctive birds like the green violetear
but lower accuracy for birds that are hard to differentiate,
such as the common and elegant terns, shown in Figure 3.

Variance can be seriously problematic in a few different
ways. The wideness of the distribution of per-class accu-
racy scores presents challenges for a multitude of practical
use cases. Consider the distribution in Figure 1 as an ex-
ample, and note while some per-class accuracies are near
100%, other are close to 0%. An x-ray classifier with such
a distribution would often fail to classify certain types of
breaks and fractures. Such a bird classifier may never be
sufficiently accurate for the endangered species in the do-
main. Ensemble methods can turn some of the per-class
variance into a strength, but due to resource-consumption,
such an approach may be impractical for many applications,
making variance in performance between trained instances
of the same model an important consideration. For some use
cases, when two models have similar average accuracies, it
may be better to use the model with less variance between
trained instances. However, since data that describes the
variance is often not reported, it is difficult for FGVC prac-
titioners to make such decisions in an informed manner.

Variance also makes fair reporting and comparison of
results quite challenging. Consider two fine-grained re-
searchers, A and B, who develop two different methods for
the classification task. Researcher A, in order to make sure
their results are reproducible, writes a paper where they re-
port an overall accuracy that comes from the average of 10
trials. Researcher B runs 10 trials as well, and unfortu-
nately, the mean accuracy of their results is lower than that
of Researcher A. However, 2 of their trials achieve higher
accuracies than Researcher A’s reported accuracy. Perhaps
unaware that Resarcher A was reporting an average over
several trials, Researcher B reports the maximum from the
10 trials as their overall accuracy. Other readers, not know-
ing which methodology was used to get the overall accuracy
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Figure 3. From left to right: green violetear, common tern and
elegant tern. In CUB, the violetear is visually distinct, while the
common and elegant terns are easily confused.

figure (since it is often not reported or hard to find), assume
that in terms of overall accuracy the method of Researcher
B outperforms the method of Researcher A, when in reality,
Researcher A’s method is better on average. This and other
potential issues can be observed in the experiments we run
using real methods and real data in Section 3.

Therefore, variance presents a major stumbling block
for the fair reporting, comparison, and practical application
of different FGVC models. In this paper, we draw atten-
tion to the variations in performance based on many dif-
ferent factors. We break down and reveal trends describ-
ing how variations in overall accuracy, per-class accuracy,
and range of per-class accuracies can be influenced by vi-
sual domain (dataset), shape of a long-tailed distribution,
optimizer, model architecture, loss function, and number of
training images per class. We both demonstrate the preva-
lence of variance and uncover insights on what drives it.

2. Background and Related Work

One recent and striking example of the variance in model
performance caused by random initialization is the lot-
tery ticket hypothesis [11]. The hypothesis states that for
a dense, randomly initialized network there exists a sub-
network with fewer parameters that can attain the same
or better accuracy in the same or less amount of time
when trained independently on the same task. These sub-
networks are dubbed “winning tickets”, because it is the
unique combination of initial weights and sub-network
structure that allow them to learn effectively. The authors
observed that when the sub-networks were re-initialized
with different random parameters, they failed to achieve the
same level of performance. This precise dependence on the
random initialization is evidence of the large variation that
can occur when training neural models.

As discussed throughout Section 1, variance is an im-
portant subject in FGVC, where classification algorithms
seek to identify the precise category/class within a particu-
lar domain (e.g. genus/species of a bird or make/model/year
of a car). FGVC datasets such as those mentioned earlier
frequently have limited numbers of images per category.
Each image therefore contributes proportionally more to-
ward overall accuracies (and variations therein). Near state-

of-the-art approaches for FGVC include methods that use
pooling [6, 24], attention mechanisms [12, 50] or regular-
ization [9].

Accuracy is the standard metric for comparing results
across fine-grained classification models. However, not all
deep learning disciplines are able to use such a simple met-
ric. Machine translation (MT), a subfield of natural lan-
guage processing, is one such discipline. Similar to FGVC,
MT has seen exciting advances in the past decade with the
development of Neural MT methods [2, 36, 43]. Unlike
FGVC, however, translation is an inherently subjective task,
where there is no single right answer, and preferences vary
between different human evaluators [40].

As a result, MT practitioners have had to be resource-
ful in crafting their evaluation metrics. The most popular
automatic metric is BLEU score [31], which can be calcu-
lated using frameworks such as SacreBLEU [33]. Unfor-
tunately, simple comparison of BLEU scores is inferior to
human evaluation. To try to bridge the gap between human
and machine evaluation of machine translation, recent work
has focused on producing additional metrics that measure
things like linguistic richness [42] or level of formality [29]
in translated text. We take a similarly creative approach in
our proposed evaluation of FGVC systems.

The most significant resource that we are aware of that
addresses the fair reporting and comparison gap in FGVC is
paperswithcode.com [ 1], which facilitates the comparison
of common metrics like top 1 and top 5 accuracy, with links
to both the accompanying paper and code. Our work also
bears some similarity to general machine learning bench-
mark suites, such as the UCI Machine Learning Reposi-
tory [8, 26] and the Penn machine learning benchmark [30].
Instead of focusing merely on accuracy, we propose addi-
tional metrics and ways to evaluate the performance of clas-
sifiers.

3. Variance by Data

The experiments in this section provide evidence of the
different types of variance that we discussed in Section 1.
The analysis here examines how variations in the image data
lead to variance in the results of trained ResNet-50 mod-
els. In Section 3.1, we investigate variance that occurs in
the results of classifiers trained and evaluated on different
datasets. In Section 3.2, we demonstrate how the variance
in long-tailed distributions shows similar trends to variance
across datasets. In Section 3.3, we conduct few-shot exper-
iments to investigate trends unique to higher-variance sce-
narios. These experiments provide many examples of both
intuitive and counter-intuitive trends and types of variance
that occur in FGVC results. Together, they make a com-
pelling case for the need to consider variance metrics in ad-
dition to accuracy metrics, a need we further emphasize in
Section 4.
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Figure 4. Per-class accuracy for each dataset, aggregated across 10 training runs.

The standard deviation (gray band) and mini-

mum/maximum performance (red-colored curves) for each class are shown along with the mean (black curve). The overall mean and
standard deviation across classes are also shown (dotted lines). Bottom right: Overall accuracy for each trial.

Dataset Classes | # Images | Accuracy
Aircraft 100 10000 84.61
Birds 200 11788 81.46
Cars 196 16185 89.86
Dogs 120 28580 82.22
NABirds 555 48000 78.58

Table 1. Baseline performance (averaged over 10 trials) of our
ResNet-50s on different FGVC datasets. This is not intended to be
competitive with state-of-the-art results, but instead gives bench-
marks for our models. From this table onward, “Birds” refers to
CUB.

Training Procedure. Unless otherwise specified, we
use the same network architecture for each of these experi-
ments — a ResNet-50 pre-trained on ImageNet [48]. We use
the implementation available in PyTorch [32]. We optimize
cross-entropy loss using the Adam optimizer [20], starting
with a learning rate of 0.0001. We train for 50 epochs, de-
creasing the learning rate by a factor of 10 at 15, 25, and 35
epochs. During training, we apply random horizontal flips
and take random re-sized crops (224 x 224). During evalua-
tion, our networks take center crops. To place our method in
context, the accuracy scores of this architecture for different
popular fine-grained datasets (FGVC datasets) are provided
in Table 1.

Terminology. We use the term per-class accuracy to re-

fer to the classification accuracy of the subset of images be-
longing to one particular class rather than the whole dataset.
For CUB, which has 200 classes, this means that there are
200 corresponding per-class accuracies: 1 for each class.
Overall deviation refers to the standard deviation of all per-
class accuracy scores for a particular experiment. For exam-
ple, if 10 models are trained and evaluated on CUB, which
has 200 classes, then the overall deviation is the standard
deviation of the 2000 resulting per-class accuracies Per-
class deviation is the standard deviation of per-class accu-
racy across multiple training runs, averaged over all classes.
For the experiments here, where each data point is the result
of 10 training runs, the per-class deviation is computed by
taking the standard deviation of the 10 accuracy scores for a
given class, for all classes, and averaging those standard de-
viations. Whereas overall standard deviation describes the
range of accuracy values and their relationship to the mean,
per-class standard deviation describes the differences in per-
formance between the models for each individual class.

3.1. Variance by Visual Domain

We train and test 10 networks on each of the FGVC Air-
craft [27], Caltech-UCSD Birds, Stanford Cars [21], Stan-
ford Dogs [19], and North American Birds [41] datasets,
which we refer to as Aircraft, Birds, Cars, Dogs, and
NABirds, respectively. More information on the datasets
can be found in Table 1. The results are summarized in Fig-
ure 4 and Figure 5.
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Figure 5. Overall standard deviations, average per-class standard
deviations, and overall average accuracies for different datasets.
Datasets are sorted by overall accuracy.

Clear patterns emerge in Figure 4. For each dataset, the
model tends to do fairly well, correctly labeling more than
75% of all test images. Notice that the distribution of per-
class accuracies vary from 50% to 100%, with most accura-
cies closer to the maximum than the minimum. Critically,
most per-class accuracies are above the mean. While it may
seem beneficial that the average class is labeled more accu-
rately than the overall accuracy conveys, this is actually a
major issue. What this means, and Figure 4 represents this
as well, is that the model performs quite poorly for a non-
trivial subset of classes. Taking Birds as an example, for 25
species, the model fails to accurately label more than 60%
of the images.

This demonstrates the importance of using metrics be-
sides accuracy. While top-1 accuracy conveys how the
model performs on average, it fails to communicate the ma-
jority of the information shown in Figure 4. Overall ac-
curacy communicates little about the minimum and maxi-
mum accuracy, and nothing about the distribution of accu-
racies between those two values. Overall deviation, on the
other hand, expresses much of that information with a single
number. While it does not communicate in concrete terms
the maximum or minimum, when combined with overall
accuracy it can be used to infer much about the shape of
the per-class accuracy curve, including how far from the
mean individual per-class accuracies would be. Indeed, as
expected from the graphs in Figure 4, overall deviations are
fairly high for each dataset, ranging from just under 10%
for Cars to nearly 20% for NABirds.

Another finding, from Figure 5, is that there seems to
be a correlation between overall standard deviation and per-
class standard deviation, meaning that when the per-class
accuracies are distributed closer to the mean, they also tend
to vary less between trained instances of a given model.
Additionally, accuracy seems to have an inverse correlation
with standard deviation, where the datasets with better over-
all accuracy also have 1) tighter distributions and 2) less
disagreement between models.

Some aspects of the variance seem to contradict intu-
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Figure 6. Standard deviations and accuracy results for different
long-tailed subsets of the Birds dataset. The subsets take a lin-
early decreasing number of images from each class, from the high
number (left of dash) to the low number (right of dash). Total
number of images is shown beneath the dash.

ition. For example, as Figure 4 shows, the accuracy for
any given class can vary significantly across different train-
ing runs, despite the fact that they all start from the same
pre-trained weights. With NABirds, for instance, there
were classes for which one ResNet-50 would label images
35% more accurately than another ResNet-50. Another sur-
prising finding is that while it has neither the highest nor
lowest number of classes, and also has neither the high-
est nor lowest number of images per class, the ResNet-50s
we trained achieved their highest accuracies and lowest de-
viations (both overall and per-class) on Cars, which sug-
gests the dataset is inherently easier than some of the others.
Dogs, for example, has more images representing each class
and approximately 60% as many categories, but the yet our
ResNet-50s achieve both less consistent and less accurate
results on Dogs than on Cars.

3.2. Variance with Long-tailed Distribution

Long-tailed distributions were simulated by taking sub-
sets of the Birds dataset, where for a given distribution, the
subset was initialized randomly and then kept the same for
all trials. These subsets involved a “high” number, which
represents the maximum number of images per class for the
subset, and a “low” number, which represents the minimum
number of images per class. Classes were then randomly as-
signed numbers of images so that all numbers from low to
high number were used evenly. Additionally, numbers were
adjusted when possible so that the total number of images
would be multiples of 100. Thus, the 20-5 (high number is
20, low number is 5) distribution had the lowest number of
total images, at 2500, and 30-15 had the most, at 4500.

From Figure 6, note that while accuracy tends to improve
as the number of images increases, that result is strongly de-
pendent on the distribution of images, to the point where the
20-15 distribution is almost 4% better than the 30-5 distri-
bution in terms of average accuracy, even though they both
have 3500 images. The deviations follow the same trends,
but in reverse- they tend to decrease as accuracy increases.
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Figure 7. Left. Follows the convention described in Figure 8. Accuracy for few-shot subsets of the Birds dataset. Right. Standard deviation

and accuracy for the same few-shot subsets.

Figure 6 thus reinforces a key trend from Figure 5 — the cor-
relation between accuracy, overall deviation, and per-class
deviation. There is only one minor deviation from this ten-
dency in the whole chart, when per-class deviation increases
slightly from the 30-5 subset to the 20-10 subset while ac-
curacy increases and overall standard deviation decreases.

Interestingly, both the per-class and overall deviations in
Figure 6 decrease consistently not as the overall number of
images increases, but more so as the minimum number in-
creases. This is likely due to the fact that underrepresented
classes tend to be classified both less accurately (affect-
ing overall deviation) and less consistently between training
runs (affecting per-class deviation).

3.3. Variance In Few-Shot

10 subsets of Birds were taken, with the number of train-
ing images limited from 1 up to 10 images per class, inclu-
sive. We trained 10 models on each subset and averaged
the results. From the graph on the left in Figure 7, we can
see that the variance in overall results changes dramatically
from 1 to 10 images per class, with the distributions getting
much tighter as the number of training images increases.
Note that for these few shot trials, overall accuracy results
can vary by multiple percentage points between trials.

The graph on the right of Figure 6 is even more inter-
esting, as it contradicts some of the trends observed in Sec-
tion 3.1 and in Section 3.2. We see that overall and per-
class deviations are both very high, as could be expected in
a lower accuracy setting. However, variance does not de-
crease monotonically as accuracy increases. In fact, The
variance actually increases with accuracy until the jump
from 4 to 5 images per class. This calls into question
whether variance is as straight-forward as much of this sec-
tion has suggested it may be (varying inversely with accu-
racy), or if it can change independent of accuracy, and thus
can be manipulated directly, similarly to how researchers
currently strive to manipulate (increase) accuracy. Section 4
answers this question, by making it clear that variance ex-
hibits a significant degree of independence from accuracy.
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Figure 8. Overall accuracy for the Birds and Cars datasets trained
with different optimizers. Colored lines show the accuracy results
from each of the 10 trials. Black lines show the mean across the
10 trials. The shaded region represents 3 standard deviations above

and below this mean.

4. Variance by Method

Whereas Section 3 focuses on variance resulting from
different attributes of the dataset, this section is dedicated
to assessing the impact of variance in various methods for
fine-grained visual categorization. In Section 4.1, we exam-
ine popular baseline optimizers and model architectures to
highlight the importance of considering variance in both de-
signing and reporting the results of FGVC pipelines. In Sec-
tion 4.2 we analyze the effect different loss functions have
on variance. Finally, in Section 4.3 we present our findings
on variance in current state-of-the-art methods. From our
discussions on loss functions and state-of-the-art algorithms
we identify techniques that seem to affect variance indepen-
dent of accuracy, and identify necessary future work.

4.1. Variance by Optimizer and Architecture

For optimizers, we compare Adagrad [10],
Adadelta [47], Adam (used in the other experiments),
RMSprop [14], and stochastic gradient descent (SGD). For
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models, we compare DenseNet-161 [17], ResNet-152 [15],
VGGI19 [35] with batch normalization, and Inception
v3 [37].

Figure 8 shows the results of the experiments with op-
timizers. The performance of Adadelta and Adam is sim-
ilar. Nevertheless, it is worth noting that Adadelta has a
lower standard deviation and a higher mean for both Birds
and Cars, while Adam has the higher max for Cars. Also
worth noting is that Adam’s maximum accuracy is higher
than Adadelta’s average accuracy for both datasets. This
could result in the reporting problem described in Section 1
— a researcher using Adam could make it appear as though
Adam has the “better” result by reporting only the maxi-
mum (on Birds) or the average of the best 5 trials (on Cars)
instead of all 10.

Figure 9 shows the variance in overall accuracy for dif-
ferent models trained and evaluated on Birds and Cars. This
offers more evidence to support the importance of reporting
an average over more than 5 trials, without cherry-picking.
With DenseNet-161, for example, while its average accu-
racy for Birds is higher than the average of the 10 Inception-
v3 networks, it is lower than the overall accuracy from 1 of
the Inception-v3 networks. In a similar fashion, the 5 lowest
accuracies for ResNet-152 on Cars overlap with the highest
5 for Inception-v3.

Surprisingly, the networks with the highest accuracy
scores do not always have the most consistent scores. While
the best network by overall accuracy, the DenseNet-161, has
the lowest standard deviation, the worst network, the VGG-
19, seems to be on par with ResNet-152 and Inception-v3
in terms of consistency, despite having a significantly worse
overall accuracy. This highlights the need for comparing
results across multiple runs, and is an additional consider-
ation to take into account when selecting a network type,
especially when resources are limited and ensemble meth-
ods are not feasible.
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Figure 10. Overall model accuracy for models trained with differ-
ent loss functions and tested on the Birds and Cars datasets. Uses
format explained in caption for Figure 8.

4.2. Variance by Loss Function

Deviation

Loss Name Accuracy Overall Per-class
CUB

baseline 81.46%  0.1539  0.03962
labelsmoothing  81.79%  0.1555  0.03942
maxentropy 82.90%  0.1493  0.03556
Cars

baseline 89.89%  0.0987  0.02632
labelsmoothing  90.26%  0.1007  0.02500
maxentropy 90.96%  0.0978  0.02418

Table 2. Presents accuracy and variance results for 10 ResNet-50s
each trained with 3 different loss functions, for CUB and Cars.

Recent work has challenged the notion that one-hot tar-
gets with cross-entropy are the best way to model the
objective for FGVC. We specifically compare 2 differ-
ent approaches to standard one-hot cross-entropy: label-
smoothing [28, 38], which treats the target class as most
probable while assigning a uniform, non-zero probability to
all other classes, and maximum entropy regularization [9],
where regular cross entropy is computed and the entropy of
each prediction vector is subtracted from it to calculate the
overall loss.

The results are somewhat unexpected. While Figure 10
shows that maxentropy outpeforms labelsmoothing which
outperforms baseline crossentropy, as expected, note that
the accuracies for label smoothing are distributed over a
wider range than those of the baseline. In a related vein,
Table 2 shows that overall deviation (which describes the
distribution of per-class accuracies around the mean) is
larger for labelsmoothing than the baseline on both datasets,
which is quite different from the trend we observed in Sec-
tion 3. The existence of a method with higher accuracy and
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Figure 12. Accuracy and deviations for the SOTA models.

also higher variance provides evidence for the idea that vari-
ance can be targeted and solved as its own goal, independent
of accuracy. Future work in loss functions could potentially
focus on lowering the variance.

4.3. Variance in the State-of-the-Art

For state-of-the-art methods, we consider several dif-
ferent high-performing approaches: WS-DAN [16], Fast
MPN-COV [22], DCL [5], S3N [7], Densenetl61 [18],
Densenet161 with maximum entropy regularization, Effi-
cientNet [39], BilinearCNN, and ResNeXt50 [46]. Unlike
in previous sections, we only trained 5 of each of these, and
we evaluate on CUB only. Additionally, we used larger im-
ages — 448x448.

One of the most surprising aspects of Figure 11 is what it
shows about the deviation in overall accuracy, particularly
in how it does not decrease as accuracy increases. High
performing methods such as DCL and WSDAN show large
variations in overall accuracies between the 5 trials. On the
other hand, the lowest performing method, BCNN, and the
second highest, S3N, both have very tight overall accuracy
distributions. It is clear that there is something about the
design of the models that lends itself to more consistent per-
formance, and insofar as it is not always practical to use an
ensemble, there is a real possibility one could get an un-
lucky draw with models such as DCL and WSDAN. It is
therefore important for researchers to consider the consis-

tency of their models, and important for the community to
be aware of how methods stack up in that regard.

The deviations in Figure 12 also do not follow the pat-
terns from the previous sections. The one trend that is
mostly preserved is the correlation between the two devi-
ations, though even that is violated with WSDAN, where
overall deviation decreases while per-class deviation in-
creases. One of the more interesting violations of the
accuracy-deviation correlation is maximum entropy, which
is comparable in variance to enet, which it outperforms by
more than 0.5%. The transition from BCNN to densenet is
similar; while accuracy increases considerably, the devia-
tions also both increase substantially.

Both figures indicate that Bilinear CNN is very unique
in terms of its variance-accuracy relationship. In particular,
despite having the lowest accuracy, it has a low per-class
deviation. Additionally, there is little variance in the overall
accuracy results of BCNN across its 10 trials. Unsurpris-
ingly, it does not have the lowest overall deviation — meth-
ods whose accuracies are closer to 100% will naturally have
lower overall deviations. These results prove that variance
is not completely dependent on accuracy, and some meth-
ods, such as BCNN, are more consistent than methods that
are otherwise considered “better,” such as DCL. Studying
these differences could be the key to minimizing variance
in the highest performing SOTA methods.

5. Conclusion

As incremental improvements to FGVC techniques in-
crease the applicability of automated image classification to
real world problems, it becomes increasingly important to
cultivate a deep understanding of how these methods per-
form, both in absolute and relative terms. The types of vari-
ance demonstrated in this paper reveal an unexplored side
of the FGVC problem. Specifically, this work investigates
variance by demonstrating its prevalence and highlighting
the need for community attention. We give examples of how
to use deviation to quantify different types of variance us-
ing standard deviation calculations. We demonstrate when
intuitive assumptions about the relationship between accu-
racy and variance apply, and when they fail. We promote
the adoption of variance as a problem, and we argue that
minimizing variance is a goal worthy of consideration as re-
searchers continue to develop increasingly accurate FGVC
methods.
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