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Abstract

Arbitrary style transfer is an important problem in com-

puter vision that aims to transfer style patterns from an ar-

bitrary style image to a given content image. However, cur-

rent methods either rely on slow iterative optimization or

fast pre-determined feature transformation, but at the cost

of compromised visual quality of the styled image; espe-

cially, distorted content structure. In this work, we present

an effective and efficient approach for arbitrary style trans-

fer that seamlessly transfers style patterns as well as keep

content structure intact in the styled image. We achieve

this by aligning style features to content features using rigid

alignment; thus modifying style features, unlike the existing

methods that do the opposite. We demonstrate the effective-

ness of the proposed approach by generating high-quality

stylized images and compare the results with the current

state-of-the-art techniques for arbitrary style transfer.

1. Introduction

Given a pair of style and a target image, style transfer

is a process of transferring the texture of the style image

to the target image, keeping the structure of the target im-

age unchanged. Most of the recent work in the neural style

transfer is based on the implicit hypothesis is that working

in deep neural network feature space can transfer texture

and other high-level information from one image to another

without altering the image structure much. Recent work

from Gatys et al. [10] (Neural style transfer (NST)) shows

the power of the Convolution Neural Networks (CNN) in

style transfer.

In just a few years, significant effort has been made

to improve NST, either by iterative optimization-based ap-

proaches [18, 22, 23] or feed-forward network approxima-

tion [16, 28, 27, 19, 6, 4, 20, 24, 30, 29]. Optimization-

based methods [10, 18, 22, 23], achieve visually great re-

sults, but at the cost of efficiency, as every style trans-

fer requires multiple optimization steps. On the other

hand, feed-forward network-based style transfer methods

[16, 28, 27, 19, 6, 4, 20, 24, 30, 29] provide efficiency and

quality, but at the cost of generalization. These networks

are limited to a fixed number of styles.

Arbitrary style transfer can achieve generalization, qual-

ity, and efficiency at the same time. The goal is to find a

transformation that can take style and content features as

input, and produce a stylized feature that does not compro-

mise reconstructed stylized image quality.

However, current works in this regard [14, 21, 5, 25]

have failed in the quality of the generated results. Among

these [14, 5] use external style signals to supervise the con-

tent modification on a feed-forward network. The network

is trained by using perpetual loss [16], which is known to

be unstable and produce unsatisfactory style transfer results

[13, 23].

On the contrary, [21, 5, 25] manipulate the content fea-

tures under the guidance of the style features in a shared

high-level feature space. By decoding the manipulated fea-

tures back into the image space with a style-agnostic im-

age decoder, the reconstructed images will be stylized with

seamless integration of the style patterns. However, these

techniques over-distort the content or fail to balance the low

level and global style patterns.

In this work, we address the aforementioned issues by

modifying style features instead of content features during

style transfer. Our hypothesis is if we consider images as

a collection of points in feature space, where each point

represents some spatial information, and if we align these

points clouds using rigid alignment, we can transform these

points without introducing any distortion. By doing so, we

solve the problem of content over-distortion since alignment

does not manipulate content features. Similar to [21, 25],

our method does not require any training and can be ap-

plied to any style image in real-time. We also provide com-

prehensive evaluations to compare with the prior arbitrary

style transfer methods [10, 14, 21, 25], to show that our

method achieves state-of-the-art performance.

Our contributions in this paper are threefold: 1) We

achieve style transfer by using rigid alignment, which is dif-

ferent from traditional style transfer methods that depend

on feature statistics matching. Rigid alignment is well stud-

ied in computer vision for many years and has been very
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Figure 1. Content distortion during style transfer. Regions marked by bounding boxes are zoomed in for a better visualization.

successful in image registration and many problems of that

type. We show that by rearranging the content and style

features in a specific manner (each channel (C) as a point

in R
HW space, where H is height, and W is the width of

the feature), they can be considered as a point cloud of C

points. 2) We provide a closed-form solution to the style

transfer problem. 3) The proposed approach achieves im-

pressive style transfer results in real-time without introduc-

ing content distortion.

2. Related work

Due to the wide variety of applications, the problem of

style transfer has been studied for a long time in computer

vision. Before seminal work by Gatys et al. [10], the prob-

lem of style transfer has been focused as non-photorealistic

rendering (NPR) [17], and closely related to texture synthe-

sis [7, 8]. Early approaches rely on finding low-level image

correspondence and do not capture high-level semantic in-

formation well. As mentioned above, the use of CNN fea-

tures in style transfer has improved the results significantly.

We can divide the current Neural style transfer literature

into four parts.

• Slow optimization-based methods: Gatys et al. [10]

introduced the first NST method for style transfer.

The authors created artistic style transfer by matching

multi-level feature statistics of content and style im-

ages extracted from a pre-trained image classification

CNN (VGG [26]) using Gram matrix. Soon after this,

other variations were introduced to achieve better style

transfer [18, 22, 23], user controls like spatial control

and color preserving [11, 23] or include semantic in-

formation [9, 3]. However, these methods require an

iterative optimization over the image, which makes it

impossible to apply in real-time.

• Single style feed-forward networks: Recently, [16,

28, 27, 19] address the real-time issue by approximat-

ing the iterative back-propagating procedure to feed-

forward neural networks, trained either by the percep-

tual loss [16, 28] or Markovian generative adversar-

ial loss [19]. Although these approaches achieve style

transfer in real-time, they require training a new model

for every style. This makes them very difficult to use

for multiple styles, as every single style requires hours

of training.

• Single network for multiple styles: Later [6, 4, 20,

24] have tried to tackle the problem of multiple styles

by training a small number of parameters for every

new style while keeping rest of the network the same.

Conditional instance normalization [6] achieved it by

training channel-wise statistics corresponding to each

style. Stylebank [4] learned convolution filters for each

style, [20] transferred styles by binary selection units

and [24] trained a meta-network that generates a 14
layer network for each content and style image pair.

On the other hand, [30] trained a weight matrix to com-

bine style and content features. The major drawback is

the model size that grows proportionally to the num-

ber of style images. Additionally, there is interference

among different styles [15], which affects stylization

quality.

• Single network for arbitrary styles: Some recent

works [14, 21, 5, 25, 12] have been focused on cre-

ating a single model for arbitrary style i.e., one model

for any style. Gu et al. [12] rearrange style features

patches with respect to content features patches. How-

ever, this requires solving an optimization problem to

find the nearest neighbor, which is slow, thus not suit-

able for real-time use. Chen et al. [5] swaps the con-

tent feature patches with the closest style feature patch

but fails if the domain gap between content and style

is large. Sheng et al. [25] addresses this problem by

first normalizing the features and then apply the patch

swapping. Although this improves the stylization

quality, it still produces content distortion and misses

global style patterns, as shown in fig. 1. WCT [21]

transfers multi-level style patterns by recursively ap-

plying whitening and coloring transformation (WCT)
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to a set of trained auto-encoders with different levels.

However, similar to [25], WCT also produces content

distortion; moreover, this introduces some unwanted

patterns in the styled image [15]. Adaptive Instance

normalization (AdaIN) [14] matches the channel-wise

statistics (mean and variance) of content features to the

style features, but this matching occurs only at one

layer, which authors try to compensate by training a

network on perpetual loss [16]. Although this does

not introduce content distortion, it fails to capture style

patterns.

The common part of the existing arbitrary style trans-

fer methods, that they all try to modify the content features

during the style transfer process. This eventually creates

content distortion. Different from existing methods, our ap-

proach manipulates the style features during style transfer.

We achieve this in two steps. First, we apply channel-wise

moment matching (mean and variance) between content and

style features, just as AdaIN [14]. Second, we use rigid

alignment (Procrustes analysis [2]) to align style features to

content features. This alignment modifies the style features

to adapt content structure, thus avoiding any content distor-

tions while keeping its style information intact. In the next

sections we describe our complete approach

3. Style transfer in neural net features space

Generally Speaking style transfer as follows Let zc ∈
R

C×H×W is a feature extracted from a layer of a pre-trained

CNN when the content image passes through the network.

Here, H is the height, W is the width, and C is the number

of channels of the feature zc. Similarly, for style image

zs ∈ R
C×H×W represents the corresponding features.

For any arbitrary style transfer method, we pass zs and

zc to a transformation function T which outputs styled fea-

ture zcs as described in eq. (1):

zcs = T (zc, zs). (1)

Reconstruction of zcs to image space gives the styled im-

age. The difficult part is finding the transformation function

T that is style-agnostic like [25, 5, 21], but unlike these, it

captures local and global style information without distort-

ing the content and does not need iterative optimization.

4. Proposed approach

Although AdaIN [14] is not style agnostic, it involves

a transformation which is entirely style agnostic: channel-

wise moment matching. This involves matching channel-

wise mean and variance of content features to those of style

features as follows:

zc′ =

(

zc −Fµ(zc)

Fσ(zc)

)

Fσ(zs) + Fµ(zs). (2)

Here, Fµ(.) and Fσ(.) is channel-wise mean and variance

respectively. Although this channel-wise alignment pro-

duces unsatisfactory styled results, it is able to transfer lo-

cal patterns of style image without distorting content struc-

ture as shown in fig. 1. Moment matching does not provide

a perfect alignment among channels of style and content

features which leads to missing global style patterns and

thus unsatisfactory styled results. Other approaches achieve

this, either by doing WCT transformation [21] or patch re-

placement [25, 5], but this requires content features modi-

fication that leads to content distortion. We tackle this, by

aligning style features to content features instead. In that

way, style features get structure of content while maintain-

ing their global patterns.

One simple way of alignment that prevents distortion is

rigid alignment [2] and (scaling). This involves shifting,

scaling and finally rotation of the points that to be moved

(styled features) with respect to the target points ( content

features after moment matching ). For this we consider both

features as point clouds of size C with each point is in R
HW

space, i.e. zc, zs ∈ R
C×HW (see supplementary section 4

for reasons to choose each point in R
HW space, instead of

R
C space). Now, we apply rigid transformation in follow-

ing steps:

• Step-I: Shifting. First, we need to shift both point

clouds zc and zs to a common point in R
HW space.

We center these point clouds to the origin as follows:

z̄c = zc − µc

z̄s = zs − µs. (3)

Here, µc and µs ∈ R
HW are the mean of the zc and

zs point clouds respectively.

• Step-II: Scaling. Both point clouds need to have the

same scale before alignment. For this, we make each

point cloud to have unit Frobenius norm:

ẑc =
z̄c

‖zc‖F

ẑs =
z̄s

‖zs‖F
. (4)

Here, ‖.‖F represents Frobenius norm.

• Step-III: Rotation. Next step involves rotation of ẑs
so that it can align perfectly with ẑc. For this, we mul-

tiply ẑs to a rotation matrix that can be created as fol-

lows:

argmin
Q

‖ẑsQ− ẑc‖
2

2
s.t. Q is orthogonal. (5)

Although this is an optimization problem, it can be

solved as follows:

‖ẑsQ− ẑc‖
2

2
= tr

(

ẑTs ẑs + ẑTc ẑc
)

− 2 tr
(

ẑTc ẑsQ
)

.

(6)
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content style relu 1 to 4 relu 4

Figure 2. Comparison between the style transfer results, by applying rigid alignment only at the deepest layer (relu 4) instead of every

layer. The third image shows the style transfer result by applying alignment at every layer ({relu 1, relu 2, relu 3, relu 4}). On the other

hand, the last column shows the style transfer result by applying alignment only at the deepest layer (relu 4). Both produce nearly identical

results.
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Figure 3. Video stylization using the proposed approach. Similar to WCT [21] and Avatar-Net [25], the proposed method keeps style

patterns coherent in each frame. However, unlike the other two, the proposed method does not suffer from content distortion. In the case

of WCT [21], the distortion is much worse than Avatar-Net, especially the animal’s face. Animations are provided in the supplementary

material.

Since, tr
(

ẑTs ẑs + ẑTc ẑc
)

term is independent of Q, so

eq. (5) becomes:

argmax
Q

tr
(

ẑTc ẑsQ
)

s.t. Q is orthogonal. (7)

Using singular value decomposition of ẑTc ẑs =
USVT and cyclic property of trace we have:

tr
(

ẑTc ẑsQ
)

= tr
(

USVTQ
)

= tr
(

SVTQU
)

= tr (SH) . (8)

Here, H = VTQU is an orthogonal matrix, as it is

product of orthogonal matrices. Since, S is a diagonal

matrix, so in order to maximize tr (SH), the diagonal

values of H need to equal to 1. Now, we have:

H = VTQU = I

or , Q = VUT . (9)

• Step-IV: Alignment. After obtaining rotation matrix

Q, we scale and shift style point cloud with respect to

the original content features in the following way:

zsc = ‖zc‖F ẑsQ+ µc (10)

zsc is the final styled feature.

This alignment makes style features to adapt content

structure while keeping its local and global patterns in-

tact.

Note: Above we assume that both zc and zs are of

equal size, so as to make the explanation easy. In

case of zc ∈ R
C×HcWc and zs ∈ R

C×HsWs , the

only change will be in eq. (5) where the orthogonal

matrix Q is rectangular and satisfies QTQ = I (i.e.

Q ∈ R
HsWs×HcWc ).
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4.1. Multi­level style transfer

As shown in the [10], features from different layers pro-

vide different details during style transfer. Lower layer fea-

tures (relu 1 and relu 2) provide color and texture informa-

tion, while features from higher layer (relu 3 and relu 4)

provide common patterns details (see fig. 1 in supplemen-

tary material). Similar to WCT [21], we also do this by

cascading the image through different auto-encoders. How-

ever, unlike WCT [21] we do not need to do the alignment

described in section 4 at every level. We only apply the

alignment at the deepest layer (relu4 1).

Doing alignment at each layer or only at deepest layer

(relu4 1) produce identical results as shown in fig. 2. This

also shows the rigid alignment of style features to content is

perfect.

Once the features are aligned, we only need to take care

of local textures at other layers. We do this by applying

moment matching (eq. (2)) at lower layers. The complete

pipeline is shown in the fig. 1 of the supplementary material.

5. Experiments

5.1. Decoder training

We use a pre-trained auto-encoder network from [21].

This auto-encoder network has been trained for general im-

age reconstruction. The encoder part of the network is the

pre-trained VGG-19 [26] that has been fixed, and the de-

coder network is trained to invert the VGG features to im-

age space. Authors in [21] trained five decoders for recon-

structing images from features extracted at different layers

of the VGG-19 network. These layers are relu5 1, relu4 1,

relu3 1, relu2 1 and relu1 1. However, unlike [21], we use

only four decoders in our experiments for multi-level style

transfer. These decoders correspond to relu4 1, relu3 1,

relu2 1 and relu1 1 layers of the VGG-19 network. More

details about the decoders are provided in the section 2 of

supplementary material.

5.2. Comparison with prior style transfer methods

To show the effectiveness of the proposed method, we

compare our results with two types of arbitrary style trans-

fer approaches. The first type is iterative optimization-

based [10] and the second type is fast arbitrary style transfer

method [21, 24, 14]. We present these stylization results in

fig. 4.

Although optimization-based approach [10] performs ar-

bitrary style transfer, it requires slow optimization for this.

Moreover, it suffers from getting stuck at a bad local min-

imum. This results in visually unsatisfied style transfer re-

sults, as shown in the third and fourth rows. AdaIN [14]

addresses the issue of local minima along with efficiency

but fails to capture the style patterns. For instance, in the

Method Execution time (in sec) (512× 512)

Gatys [10] 58

AdaIN [14] 0.13

WCT [21] 1.12

Avatar-Net [25] 0.34

Ours 0.46

Table 1. Execution time (in seconds) comparison for style transfer

among the proposed method and state of the art methods.

third row, the styled image contains colors from the con-

tent, such as red color on the lips. Contrary to this, WCT

[21] and Avatar-Net [24] perform very well in capturing the

style patterns by matching second-order statistics and the

latter one by normalized patch swapping. However, both

methods fail to maintain the content structure in the styl-

ized results. For instance, in the first row, WCT [21] com-

pletely destroys the content structure: mountains and clouds

are indistinguishable. Similarly, in the second and fifth row,

content image details are too distorted. Although Avatar-

Net [24] performs better than WCT [21] as in the first and

fifth rows, it fails too in maintaining content information, as

shown in the second and sixth rows. In the second row, the

styled image does not even have any content information.

On the other hand, the proposed method not only cap-

tures style patterns similar to WCT [21] and Avatar-Net [24]

but also maintains the content structure perfectly as shown

in the first, second, and fifth row where the other two failed.

We also provide a close-up in fig. 1. As shown in the

figure, WCT [21] and Avatar-Net [24] distort the content

image structure. The nose in the styled image is too much

distorted, making these methods difficult to use with hu-

man faces. Contrary to this, AdaIN [14] and the proposed

method keep content information intact, as shown in the last

two columns of the second row. However, AdaIN [14] does

not capture style patterns very well. On the other hand, the

proposed method captures style patterns very well without

any content distortion in the styled image.

In addition to image-based stylization, the proposed

method can also do video stylization. We achieve this by

just doing per-frame style transfer, as shown in fig. 3. The

styled video is coherent over adjacent frames since the style

features adjust themselves instead of content, so the style

transfer is spatially invariant and robust to small content

variations. In contrast, Avatar-Net [25] and WCT [21] con-

tain severe content distortions, with the distortion is much

worse in WCT [21].

5.3. Efficiency

We compare the execution time for style transfer of the

proposed method with state-of-the-art arbitrary style trans-

fer methods in the table 1. We implement all methods

in Tensorflow [1] for a fair comparison. Gatys [10] ap-
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Figure 4. Figure shows comparison of our style transfer approach with existing work. More results are provided in the supplementary

material.

proach is very slow due to iterative optimization steps that

involve multiple forward and backward pass through a pre-

trained network. On the contrary, other methods have very

good execution time, as these methods are feed-forward

network based. Among all, AdaIN [14] performs best

since it requires only moment-matching between content

and style features. WCT [21] is relatively slower as it re-

quires SVD operation at each layer during multi-layer style

transfer. Avatar-Net [25] has better execution time com-

pared to WCT [21] and ours. This is because of the GPU

based style-swap layer and hour-glass multi-layer network.

On the other hand, our method is comparatively slower
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Method log(Lc) log(Ls)

Gatys [10] 4.40 8.28

AdaIN [14] 4.62 8.18

WCT [21] 4.79 7.83

Avatar-Net [25] 4.75 7.77

Ours 4.70 7.87

Table 2. Average content and style loss for the styled images in

fig. 4. Lower values are better.

Content Style

Only MM Only RA MM+RA

Figure 5. Row 2: Style transfer with only moment matching (first

column), only rigid alignment (second column), and the proposed

method (third column).

than AdaIN [14], and Avatar-Net [25] as our method in-

volves SVD operation at relu 4. Additionally, it requires

to pass through multiple auto-encoders for multi-level style

transfer similar to WCT [21]. However, unlike WCT [21]

proposed method needs only one SVD operation as shown

in fig. 2 and thus have better execution time compared to

WCT [21].

5.4. Numeric comparison

In table 2 we show numerical comparison between dif-

ferent style methods. We provide average content loss (Lc)

and style loss (Ls) from [10], for the images in fig. 4:

Lc =
1

2CHW

∑

i,j

∥

∥zci,j − zi,j
∥

∥

2

2
(11)

Ls =
1

4C2H2W 2

∑

i,j

‖Gi,j(zs)−Gi,j(z)‖
2

2
. (12)

Here, zc is the content feature, zs is the style feature, z is

the styled feature, and G(.) provides the Gram matrix. As

shown in the table 2, WCT [21] and Avatar-Net [25] have

smaller style losses because these methods prefer more style

patterns in the styled result. However, as shown in fig. 1

and 4 this leads to content distortion. On the other hand,

Content Style

α = 0.9 α = 0.5 α = 0.1

W
C

T
O

u
rs

Figure 6. Row 2: style transfer using WCT. Row 3: style transfer

with the proposed approach.

AdaIN [14] performs better in terms of content loss as it

maintains more content information, but this produces re-

sults with fewer style patterns. So, any method that per-

forms best in either content loss or style loss will produce

unsatisfactory styled results. A good style transfer method

should perform somewhere in between, which the proposed

method achieves. The proposed method not only performs

well in terms of content loss but is also on par with WCT

[21] and Avatar-Net [25] in terms of style loss. This proves

our intuition that by aligning style features to content fea-

tures, we not only preserve content structure but also effec-

tively transfers style patterns.

Note: Gatys approach [10] should achieve a balanced

content and style score similar to ours, but as mentioned

in [25] (also shown in third and fourth row in fig. 4) [10]

suffers from getting stuck at a bad local minimum. This

results in higher style loss as shown in table 2.

6. Ablation study

6.1. Importance of rigid alignment

As described above, our method achieves style transfer

by first matching the channel-wise statistics of content fea-

tures to those of style features and then align style features

to content features by rigid alignment. To examine the effect

of rigid alignment, we perform the following experiment.

We perform style transfer similar to the pipeline described

in the section 4.1, but we remove rigid-alignment (RA) in

the deepest layer (relu4 1). As shown the fig. 5, moment
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style content
α

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 7. Trade-off between content and style during style transfer. Value of α is increasing from 0 to 1 with an increment of 0.1 from left

to right.

content style style

image image 1 image 2
β

−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 8. Interpolation between styles. Value of β is increasing from 0 to 1 with an increment of 0.1 from left to right.

matching (MM) only transfers low-level style details (in this

case, color) while keeping the content structure intact. On

the other hand, if we use only rigid alignment, it mostly

transfers global style patterns (white strokes around the hair,

second column). Finally, when both are used together (pro-

posed method), the resulting image has both global and

local style patterns; and thus achieves better-styled results

without introducing content distortion.

6.2. Cost of preserving content with higher content
weight

It can be argued that the content structure can be pre-

served by adjusting the content weight (α). However, hav-

ing more content weight comes at the cost of ineffective

style transfer. In fig. 6, we show one such example, where

we compare this trade-off in case of existing work (we use

WCT as an example) and the proposed method. In case

of previous works, to preserve the content structure, higher

content weight is required; but this results in the insufficient

transfer of style patterns (first column). On the other hand,

for sufficient transfer of style patterns, content weight needs

to be reduced; but this creates distorted content in the styled

image (third column in the last row). Our method solves

this problem effectively; it not only transfers sufficient style

patterns, but also preserves the content structure (last col-

umn).

7. User control

Like other arbitrary style transfer methods, our approach

is also flexible to accommodate different user controls such

as the trade-off between style and content, style interpola-

tion, and spatial control during style transfer.

Since our method applies transformation in the feature-

space independent of the network, we can achieve trade-off

between style and content as follows:

z = αzc + (1− α)zsc. (13)

Here, zsc is the transformed feature from eq. (10), zc is con-

tent feature and α is the trade off parameter. Fig. 7 shows

one such example of content-style trade-off.

Fig. 8 shows an instance of linear interpolation between

two styles created by proposed approach. This is done by

adjusting the weight parameter (β) between transformation

outputs (T (zc, zs)) as follows:

z = αzc + (1− α)(βT (zc, zs1) + (1 − β)T (zc, zs2)).
(14)

See section 3 in the supplementary material for details about

spatial control during style transfer.

8. Conclusion

In this work, we propose an effective arbitrary style

transfer approach that does not require learning for every

individual style. By applying rigid alignment to style fea-

tures with respect to content features, we solve the prob-

lem of content distortion without sacrificing style patterns

in the styled image. Our method can seamlessly adapt the

existing multi-layer stylization pipeline and capture style

information from those layers too. Our method can also

seamlessly perform video stylization, merely by per-frame

style transfer. Experimental results demonstrate that the

proposed algorithm achieves favorable performance against

the state-of-the-art methods in arbitrary style transfer. As

a further direction, one may replace multiple autoencoders

for multi-level style transfer by training an hourglass archi-

tecture similar to Avatar-Net for better efficiency.
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