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Abstract

Modern video streaming service companies offer mil-
lions of video-titles for its customers. A lot of these ti-
tles have repetitive introductory and recap parts in the be-
ginning that customers have to manually skip in order to
achieve an uninterrupted viewing experience. To avoid this
unnecessary friction, some of the services have recently
added “skip-intro” and “skip-recap” buttons to their video
players before the intro and recap parts start. To efficiently
scale this experience to their entire catalogs, it is impor-
tant to automate the process of finding the intro and recap
portions of titles. In this work, we pose intro and recap de-
tection as a supervised sequence labeling problem and pro-
pose a novel end-to-end deep learning framework to this
end. Specifically, we use CNNs to extract both visual and
audio features from videos, and fuse these features using a
B-LSTM in order to capture the various long and short term
dependencies among different frame-features over time. Fi-
nally, we use a CRF to jointly optimize the sequence label-
ing for the intro and recap parts of the titles. We present a
thorough empirical analysis of our model compared to sev-
eral other deep learning based architectures and demon-
strate the superior performance of our approach.

1. Introduction

The growth of video streaming services has given rise to the
practice of marathon-watching, where users watch a series
of video content in a single extended session [40]. Given
the popularity of this behavior, it is important for streaming
services to provide interfaces that facilitate watching con-
tent in an uninterrupted and frictionless manner.

One source of such friction is the introductory (intro)
content which is usually played in the beginning of a video
and goes over various title-credits e.g. information about the
actors, director and producers. Besides intros, TV episodes
can also contain recap content that summarizes what hap-
pened in the previous episodes in the series. Watching the
intro and recap parts of a title can be repetitive and there-
fore can result in customer fatigue. If the customers want

to skip these content-segments, they have to manually seek
the content forward, which creates unnecessary friction.

To minimize this source of friction, some of the video
streaming companies have recently added “skip-intro” and
“skip-recap” buttons to their video players which appear a
few seconds before the infro or recap parts start. If these
buttons are clicked, the player jumps to the end of intro or
recap parts respectively. These features create a better play-
back experience, increase customer satisfaction, and can
have a positive impact on the long-term user engagement.

To support this experience, one needs to know the times-
tamps where the intro and recap parts of a video-title start
and end such that the “skip-intro” and “skip-recap” buttons
could be placed accordingly. Scrubbing titles for finding
intro and recap timestamps is a labor-intensive manual pro-
cess and requires highly trained human annotators. There-
fore efficiently scaling-up this experience to a streaming
service’s entire catalog with millions of video-titles requires
leveraging Machine Learning to maximally automate this
process.

Choosing a Practical Learning-Based Approach:

There are several learning based approaches that could be
applied to tackle our problem. On the unsupervised end of
the spectrum, one could model intro and recap as differ-
ent types of frequently repeating content and then try to use
content based matching [41] to find them.

Although an advantage of this approach is that it does
not require labeled data for training a parametric model, it
does pose several practical challenges. First, its false pos-
itive rate can be high due to multiple segments of shared
content between two or more episodes. While one could
apply ad-hoc rule-based filtering scheme to remove some
of these false positives, such solutions only address a subset
of these errors and are difficult to generalize. Second, this
approach requires multiple episodes before the content in
different episodes can be matched. When there is only one
episode available in a TV series, this approach is not appli-
cable. Similarly, this approach cannot be applied to Movies
given their singleton nature. Third, this approach does not
work well for titles where the intro content changes for each
episode. Game of Thrones is a popular example of such
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Figure 1: Example of discriminable infro and recap patterns. Note that there is background music playing in recap and

title-credit information is displayed in the frames of intro.

TV series where the intro content changes depending on the
story-arch of a particular episode. Similar challenge exists
for recaps since their constituent shots are not always from
the most immediate previous episode, but can come from
any episode from the season (e.g. in Fox studios show 24).
In this case, it is not clear which episodes should be com-
pared with the current episode to detect recaps. One may try
to compare to all prior episodes, but that poses scalability
and maintainability challenges.

An alternative approach that does not pose the aforemen-
tioned limitations is to view the problem from a supervised
learning perspective. An underlining assumption in super-
vised methods is that there are some frequently occurring
patterns between the features (video content) and the la-
bels (intro and recap timestamps). The fact that humans
can identify whether the content is intro, recap or the actual
content suggests that there are discriminable intro and recap
patterns in the titles. Looking closely at the title data gives
some clues regarding the following common patterns:

e For intros, as shown in Figure 1, the title-credits informa-
tion e.g. producers, distributors, and director’s information
is usually displayed on plain (usually black) background
with high-contrast (usually white) text. When there is a
consecutive series of video frames containing such text, it
is a good indicator that these frames are title-credits. In
addition, there are usually a few seconds of silent transi-
tion period right after the credits where the frames usually
have completely dark background and no foreground con-
tent during this transition time. Moreover, music usually
plays without any speech when credits are showing. There-
fore, music signals could be used as indicators for credits.

e For recaps, usually a series of rapidly changing scenes are
shown, providing a repetitive detectable pattern. Similarly,
many recaps start with an opening sentence such as “’pre-
viously on”, either in audio or as text on the video frames,
along with music playing in the background. In addition,
as shown in Figure 1, there are sometimes a few seconds
of silent transition period with dark frames right after the
recaps similar to intros.

The presence of these discriminative patterns make super-
vised model a promising choice for our problem. Further-

more, such supervised models could be applied to a vari-
ety of previously mentioned practical scenarios where un-
supervised models are not readily applicable. Particularly
for cloud-based services, since it is not practical to access
clients’ entire video-catalog, it is all the more important to
use supervised models that can find intro and recap in each
video uploaded by the customers without requiring any ad-
ditional dependencies. We therefore focus in this work on
exploring supervised learning based approaches to build in-
tro and recap detection model.

Technical Challenges:
There are several key challenges in building a supervised
learning based solution for our problem.

e First, it is unclear how to best formulate the intro and
recap detection into a supervised learning problem. For
instance, the more obvious choice of formulating it as a
regression problem with video as input and intro and re-
cap timestamps as regression targets is likely to give sub-
optimal results since the transition among intro, recap, and
the actual content would not be explicitly modeled.

e Second, while there are some patterns to discern which
parts of a title are intros and recaps, it is unclear what is
the best way to characterize these patterns. One way is to
build an individual detection model for each of these pat-
terns, i.e., a model to detect white text on black background,
while another to detect if music is playing, etc. However,
to ensure high coverage of intros and recaps, such an ap-
proach requires a large list of known patterns which is time-
consuming to identify, and thus, such a list is not likely to be
comprehensive. Even if there was such a comprehensive list
available, it would be expensive to build a model for each
enlisted pattern and practically difficult to maintain them.

e Third, these discriminating patterns can exist in different
data modalities, e.g. the dark background exists in the visual
signal, while music exists in the audio signal. We need to
use multiple data modalities effectively, and it is unclear
how to optimally do that for our problem.

Contributions:
To solve these challenges, we propose a deep learning based
solution that makes the following key contributions:
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o First, our detection approach is trainable end-to-end and
therefore easy to maintain at scale. We use convolution neu-
ral networks (CNN) to extract discriminable visual and au-
dio features from video-titles. These features are fed into a
bidirectional long short term memory (B-LSTM) network
to capture the various long and short term dependencies
among different frame-features. Finally, for optimal tem-
poral smoothing, we use a conditional random field (CRF)
to jointly optimize the labels of all video frames, i.e., recap,
intro, or the actual content.

e Second, our approach allows us to model multiple infor-
mation channels in a unified manner. We present a detailed
empirical analysis of how multi-modal fusion performs for
the problem at hand with both early and late fusion schemes.

e Third, our framework is applicable to both the intro and
recap detection problems and can be extended to detect
other types of video-segments, e.g. end-credits. Our so-
lution is easy to put into production since its inference
does not depend on preceding episodes, thereby reducing
its memory requirements and maintenance overhead.

We present a thorough empirical analysis of our model com-
pared to several other deep learning based architectures and
demonstrate its superior performance. We begin in Sec-
tion 2 by discussing the related work and explaining our
approach in more detail in Section 3. We present our data-
set, evaluation metrics, experiment settings, and a thorough
set of comparative empirical results in Section 4 and discuss
the conclusion and future work in Section 5.

2. Related Work

Automatic intro and recap detection is a relatively new
problem, and closely relates to temporal action localization,
named-entity recognition, and multi-modal fusion. Below,
we briefly go over previous approaches in these three do-
mains and distill how our approach is different from them.

Temporal Action Localization. The problem of finding
semantically meaningful clips or segments within a video is
closely related to the domain of temporal action localization
where the goal is to identify action classes in untrimmed
videos as well as the corresponding start and end times-
tamps of each action [35, 5, 43, 42, 2, 22]. Modern so-
lutions of temporal action localization use a two-stage ap-
proach, where the first stage focuses on generating region
proposals while the second stage focuses on action classi-
fication and boundary refinement [44, 35, 43]. There exist
several end-to-end methods that combine the proposal gen-
eration and action classification steps [2, 42, 22]. A key dif-
ference between temporal action localization and our prob-
lem is that in our case each video only contains at most one
intro and one recap while there could be multiple instances
of the same action in the general temporal action localiza-
tion problem. Another key difference is the tolerance of

Figure 2: Tllustration of our sequence labeling for intro and
recap detection problem. Each of the two consecutive blue
bars represent a time interval of a title. The labels above
demonstrate the type of the interval, where R represents re-
cap, I represents intro, and C represents actual title content.
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Figure 3: Overview of our network architecture. Here blue
vertical lines represent the video frames, while the orange
and green bars represent the visual and audio features of the
corresponding frames respectively. Letters R, I and C cor-
respond to recap, intro and actual title content respectively.

action boundary error. In temporal action localization, a de-
tected region is generally considered as a correct detection
when it significantly overlaps with the ground truth where
the significance of overlap is determined by a metric such as
intersection-over-union (IoU) [23] ranging anywhere from
0.1 to 0.9 in general. In contrast, our use-case is signifi-
cantly more sensitive to the detected region boundary. We
can only treat a detected region as a correct detection when
it almost completely overlaps with the ground truth. Thus,
we introduce a metric based on the absolute difference be-
tween identified boundary and ground truth in Section 4.2.
Named Entity Recognition. Another related field to our
problem is Named Entity Recognition (NER) [26, 18, 6],
where the goal is to classify each token in a sentence into
predefined categories, such as name, location, etc. Many
different type of classifiers have been used to recognize
named entities, including Hidden Markov models [25],
maximum entropy Markov models [24], and Conditional
Random Fields (CRFs) [17] for sequence learning [18]. Our
problem is related to NER in the sense that each frame of
a video can be treated as a token and then each token can
be classified as one of the categories, i.e., intro, recap, or
the actual content. Unlike previous solutions for NER, we
adopted bidirectional LSTMs to encode temporal depen-
dencies for video frames and use CRF to optimize the labels
of all video frames.

Multimodal Fusion. Our problem is also related to multi-
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modal fusion. Multi-model fusion has been studied for var-
ious tasks to leverage different types of features, such as
image and text fusion for product classification [12], visual
and audio fusion for video description [14], and temporal
multimodal fusion for learning driving behavior [28]. Var-
ious type of strategies have been studied including Boltz-
mann machines [29], attention [14], and gated recurrent
fusion [28]. Fusion of different modalities can often be
achieved using two general mechanisms: early and late fu-
sion [27, 29, 11]. In early fusion, the features from dif-
ferent modalities are combined together first before feed-
ing them to a model, while in late fusion the features from
each modality are first fed into a separate model and the
model outputs are fused subsequently. While early fusion
allows the model to explore the interaction of different fea-
tures from each modality [12], the choice of early or late
fusion mostly depends on model and sample complexity of
a problem. In this work, we study the effectiveness of early
and late fusion as a function of our model complexity.

3. Model Architecture

We now explain our formulation of intro and recap detec-
tion as a supervised learning problem and introduce the var-
ious components of our model architecture.

We frame intro and recap detection as a sequence label-
ing problem (see Figure 2 for an illustrative example). The
input for our problem is a time series of video intervals and
the goal is to label each time interval with one of three pos-
sible labels, i.e., intro (1), recap (R), or actual content (C).
Note that while in Figure 2 recap starts from the very be-
ginning of the title, followed by intro and then content, this
order is not necessarily always the case. For example, there
are video-titles with cold-openings that jump directly into
the story at the beginning before intros or recaps are shown.
This order-variance in which intro, recap and content can
appear in titles further adds complexity to our problem.

The architecture of the network we propose to overcome
these technical challenges is shown in Figure 3. It consists
of the following three main components:

e CNN for visual and audio feature extraction (§ 3.1).

e B-LSTM for capturing long and short term temporal de-
pendencies among various frame-features (§ 3.2).

o CREF for joint label optimization of video frames (§ 3.3).

We now present these components in more detail.

3.1. CNN for Visual and Audio Features

CNNs are deep networks that leverage the spatial nature of
images to enable extraction of discriminative image fea-
tures. They have been shown to outperform traditional
shallow-learning or hand-crafted Computer Vision tech-
niques and have demonstrated excellent performance in
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Figure 4: Detailed illustration of the CNN components for
the visual and audio feature extraction.
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Figure 5: Our 1D ConvNet component: three steps of 1D
convolution, BN, and MAX pooling

many vision tasks (e.g. object recognition [31] and hand-
written digit classification [20]). Moreover, it has been
shown that CNNs can be a powerful way to process audio
signals. For instance, 1D ConvNet [19] can be applied to
raw audio features to accurately capture the frame-level au-
dio transitions resulting in better audio representations for
applications like rare sound event detection [21].

The CNN based feature extraction component we use
in this work has three main steps to compute both visual
as well as audio features (see Figure 4 for illustration).
First, it extracts visual features from video-frames by feed-
ing the frames to a pre-trained CNN. Second, it extracts au-
dio features by applying 1D ConvNet [19] on the log mel-
frequency spectrum of the audio signals. Third, it combines
the audio-visual features using multi-modal data fusion.
Pre-trained CNN for Frame Representation. We use
the Inception V3 deep network [37] pre-trained on Im-
ageNet [32] to extract our frame level visual features.
Specifically, we extract image frames from video titles at
one frame per second (1 FPS), feed these frames into the
Inception-V3 network, and then extract the ReLu activa-
tions of the last hidden layer (2048 dimension) as the frame
feature. The choice of using 1-second temporal granularity
was made due to its suitability for our use case as well as its
effectiveness from a computational complexity perspective.
1D Convolution for Audio Representation. Following the
work in [21], for the audio signal of videos, we first extract
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Figure 6: (a): Early fusion; (b): Late fusion.

log-power mel-frequency spectrum [9] with 24 mel-scale
filters from every 25ms window with 10ms shift between
two consecutive windows. The extracted log-mel spectro-
gram is passed through our 1D ConvNet component to get
the audio features. The 1D ConvNet component has three
steps, where each step consists of a 1D convolution, a batch
normalization (BN), and a MAX pooling layer. The three
steps gradually aggregate the audio signal and results in a
128-d vector for each second of signal as shown in Figure 5.
Audio-Visual Fusion. To leverage the video and audio fea-
tures jointly in a unified way and use them in a signal neu-
ral network model, we explored early and late fusion tech-
nique to combine the two data modalities. For early fu-
sion, as shown in Figure 6a, we concatenate the video fea-
tures (2048 dimension) and audio features after 1D Con-
vNet (128-d). Recall that both these feature spaces are con-
structed over 1 second temporal scale. This resultsin a 2176
dimension vector for each second of a title and those vectors
serve as the input to the B-LSTM units (note that the net-
work architecture overview shown in Figure 2 is illustrated
with early fusion). For late fusion, as shown in Figure 6b,
instead of fusing the visual-audio features before B-LSTM
units, we feed the visual and audio feature separately to their
own B-LSTM units and then concatenate the outputs of the
B-LSTM units to serve as the input to the CRF units.

3.2. Bi-directional LSTM

Recall that Recurrent Neural Networks (RNNs) are de-
signed to capture the dynamic changes between consecutive
data points along sequences. LSTMs [13] are a variant of
RNNS that are designed to alleviate shortcomings of RNNSs,
particularly the gradient vanishing problem [30].

LSTMs however only capture dependencies from the
past, whereas for many sequence labeling problems, it is
beneficial to know both the past and the future dependen-
cies. This is especially true for our intro and recap de-
tection problem. For example, since intro is usually fol-
lowed by the actual title content, knowing the actual title
content has already started will help the model to reaffirm
that the intro has already ended. An elegant solution to sys-
tematically take the future information into consideration
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Figure 7: (a): A Linear-Chain CRF Graph; (b): Examples
of true positive (TP) and false positive (FP). Gray boxes in-
dicate the labeled intro or recap if they exist and blue boxes
indicate the corresponding model detections.

in addition to the past information is to use bi-directional
RNNs [33]. Therefore, we use B-LSTM to consume our
features in our network structure. In addition, since it is
observed that deep RNNs work better than shallower ones
for many problems [38, 15, 16] including sequence labeling
tasks like NER [38] and option mining [15], we stacked two
layers of B-LSTM ( with 512 and 128 neurons respectively).

3.3. Conditional Random Field

While B-LSTMs can model the dependencies among input
information, they do not explicitly account for the depen-
dencies among the output labels. To infer the labels for
an input sequence, it is better to consider the transition be-
tween labels in neighborhoods and jointly infer the optimal
sequence of labels. For example, intro is mostly likely to
be followed by actual title content in a video title, and this
information should be more explicitly modeled to reach op-
timal detection performance. As CRFs [17] provide a way
to model such dependencies, we use a CRF (shown in Fig-
ure 7a) to jointly learn the sequence labeling instead of de-
coding each label independently.

More specifically, let © = {1, ..., 2, } represents an in-
put sequence, where z; is the output from the i timestamp
in B-LSTM. Let y = {y1, ..., y» } represents a sequence of
labels for x. Then the conditional probability p(y|z) in CRF
is defined as [36]

I
1
p(ylz) = 7 H filyi-1,9i, @),
i=1

I
where Z = > Ty filyi-1,9i,2).
the i potential function f;(y;_1,vi,x) is defined as

exp(W,._, ,.@ +by,_, ). Here W and b are the weight

matrix and bias term corresponding to label pair (y;_1,y;)-

Similarly, the
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For CRF training, we use the maximum likelihood es-
timation to train CRF by maximizing the following log-
likelihood loss function over all M training samples:

M
L(W,b) = > logp(y|z; W, b),

m=1

During training, it is required to compute the normaliza-
tion constant Z for the likelihood, which can be computed
efficiently using forward-backward algorithm [7]. For in-
ference, we search for the optimal label sequence y* with
highest conditional probability y* = arg max, p(y|z; W, b)
efficiently using the Viterbi decoding algorithm [10].

4. Experiments
4.1. Data Deep Dive

We manually collected a data-set containing 46,946 video
titles with 91.4% of the titles being TV episodes and the
remaining ones being movies. Each title runs at 24 or 25
frames per second and is manually reviewed by an operator.
The operators checked the whole video for a list of elements
including intro and recap. The corresponding start and end
timestamps were recorded for both intro and recap when
they existed. Each title could only have one infro and one
recap at most. When the intro or recap did not exist, the
corresponding timestamps fields were left empty. To ensure
label quality, all titles went through a mandatory QA pass
with a maximum of 1.6 speed to verify information against
the provided timestamps.

In our data-set, all of the tagged intro and recap are
within the first 10 minutes of titles. Therefore, we process
each title up to the first 10 minutes (600 seconds) for both
visual and audio feature extraction. Among all of the 46,946
titles, 15,934 (33.9%) titles have recaps, 45,027 (95.9%) ti-
tles have intros, and 14,015 titles have both recaps and in-
tros. Please refer to the supplementary material for more
details of the labeled data-set. For model training, the whole
data-set is randomly split into training (33,717), validation
(8559), and test (4,670) sets based on the normalized series
and movie names. This way, all titles in the same TV series
end up either in one or in the other split to prevent informa-
tion leakage between any pair of the split sets.

4.2. Evaluation Metrics and Training Setup

To quantify the performance of our detection models, we
need to first define how to measure if a detection is valid
(true positive) or not (false positive). Inspired by the true
positive (TP) definition in object detection problem, such
as COCO detection [23], where TP is defined as detections
with Intersection Over Union (IOU) above some threshold,
we define TP as detections where both the start and the end
timestamps are within T seconds from the corresponding

ground truths, where T is the generally small (1-3 secs.) tol-
erance of the timestamp boundary distance. Any detection
that does not meet this criterion is considered as false posi-
tive (FP). Figure 7b shows some illustrative examples of TP
and FP, where gray boxes indicate the labeled intro or re-
cap ground truths and blue boxes indicate model detections.
Anytime the start and end timestamps of the detection are
very close to the ground truth is considered as a TP, while
all other possibilities are considered as FP.

With the above definition of TP, we measure our model
for intro and recap independently using precision and re-
call. Precision is the percentage of correctly detected intros
and recaps among all detections and measures the ability of
a model to identify correct intros and recaps. Recall is the
percentage of ground-truth intros and recaps that are cor-
rectly detected and measures the ability of a model to iden-
tify all ground truth intros and recaps. We also calculate the
F} score to facilitate model comparison. Parameter opti-
mization is performed using mini-batch SGD [1] with RM-
SProp [8], batch size of 128, and learning rate of 0.001. We
use early stopping [4] based on the performance on the val-
idation set (please see the supplementary material for more
details on experiment setup).

4.3. Results

We now summarize the key results from our experiments.
Table 1 shows the performance of our proposed model on
the validation data-set with 1-second tolerance and com-
pares it with the results from three types of localization
models using visual features, namely Loc-LSTM, Loc-1D
CNN, and Loc-TSN. The first two models are implemented
based on temporal action localization [22, 2], where the
overall loss function is a combination of the classification
loss of intro and recap existence and regression loss of intro
and recap region. The model Loc-LSTM has two layers of
LSTM (with 512 and 128 neurons respectively) before the
loss layer to learn the video representation, while Loc-1D
CNN uses 4 layers of 1D ConvNet (with 1024, 512, 256,
and 128 neurons respectively) to replace the LSTM lay-
ers. The third model is based on temporal segment network
(TSN) [39], where an input video is divided into segments
with 1-second length, and the corresponding temporal seg-
ment supervision is used to train a two-layer fully connected
neural network (with 512 and 128 neurons respectively) to
classify the segments to intro, recap, or actual content.

We can see from Table 1 that our proposed method
has significantly better performance than the alternative ap-
proaches that frame intro and recap detection as a tempo-
ral action localization problem using visual feature. Note
that in our data-set, the average lengths of recap and in-
tro are 54 and 40 seconds respectively, which results in a
substantially high IOU value of 0.981 for recap and 0.975
for intro using 1-second tolerance of timestamp boundary.
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Architecture Name — Intro — Recap

Precision | Recall Fy Precision | Recall F
Loc-LSTM 0.56% 0.56% 0.56% 0.55% 0.55% 0.55%
Loc-1D CNN 0.41% 0.41% 0.41% 1.20% 1.20% 1.20%
Loc-TSN 8.68% 9.05% 8.86% 0.01% 0.03% 0.02%
Bi-LSTM+ CRF 63.15% 56.79% | 59.80% | 70.08% 64.15% | 66.99%

Table 1: Model comparison using visual feature. For discussion of the results, refer to the 2"¢ paragraph of section 4.3

. Intro Reca

# | Architecture Name | Feature Type Precision | Recall Fy Precision Recaﬁ Fy
Audio 13.83% | 13.34% | 13.58% | 27.10% | 31.32% | 29.05%
| LlayerLST™ Visual 31.90% | 32.03% | 31.97% | 21.33% | 26.50% | 23.64%
Early Fusion | 28.61% | 28.81% | 28.71% | 33.97% | 40.18% | 36.81%
Late Fusion | 38.43% | 39.33% | 38.87% | 40.33% | 46.49% | 43.19%
Audio 16.56% | 16.52% | 16.54% | 22.92% | 19.41% | 21.02%
> | LsT™ Visual 37.94% | 33.62% | 35.65% | 46.48% | 49.15% | 47.78%
Early Fusion | 41.23% | 41.64% | 41.44% | 42.66% | 48.96% | 45.59%
Late Fusion | 40.03% | 41.01% | 40.51% | 44.35% | 51.99% | 47.87%
Audio 31.94% | 29.54% | 30.69% | 49.59% | 54.05% | 51.73%
3 | BLSTM Visual 4581% | 46.05% | 45.93% | 58.46% | 61.94% | 60.15%
Early Fusion | 59.87% | 60.68% | 60.27% | 67.05% | 68.43% | 61.73%
Late Fusion | 49.36% | 50.51% | 49.92% | 58.66% | 56.43% | 571.52%
Audio 36.92% | 28.24% | 32.00% | 51.64% | 53.45% | 52.53%
. .. [ Visual 4768% | 42.13% | 44.73% | 59.30% | 60.67% | 59.98%
4 | BIELSTM=Viterbi | o o 162.25% | 58.66% | 60.40% | 68.03% | 67.92% | 67.98%
Late Fusion | 51.36% | 49.18% | 50.25% | 62.90% | 57.88% | 60.29%
Audio 5522% | 39.32% | 45.93% | 67.04% | 51.77% | 58.42%
. Visual 63.15% | 56.79% | 59.80% | 70.08% | 64.15% | 66.99%
S| BELSTM+ CRE e rision [ 68.56% | 64.90% | 66.68% | 74.68% | 70.96% | 72.77%
Late Fusion | 65.96% | 62.18% | 64.01% | 73.27% | 59.97% | 65.96%

Table 2: Model performance of different architectures

The particularly low accuracy results we observe for the al-
ternative approaches we tried are similar to those previously
reported in temporal action localization litrature [43] at sim-
ilarly high values of IOUs. In particular, [34] and [5] report
accuracy of 0.20% and 1.30% respectively on ActivityNet
v1.3 data-set [3] at IOU of 0.95. The Loc-TSN approach
performs better than the other two localization based meth-
ods, but since the TSN segments only capture local informa-
tion inside each segment, it does not capture the long term
dependencies over time. In contrast, our proposed method
captures the long and short term dependencies and models
the temporal transitions at the boundaries of intro and recap
more explicitly. This makes it easier for the model to cap-
ture signals such as start and end of title-credits as well as
opening voice like “previously on” thereby resulting in sig-
nificantly better model performance at 1-second tolerance.
Architecture 5 (Bi-LSTM+ CRF) in Table 2 shows the
performance of our proposed on the validation data-set with

1-second tolerance using different types of feature, namely,
audio, visual, early fusion, and late fusion of audio and vi-
sual features. We can see that the early fusion results in the
best model performance among the four types, indicating
that our architecture has the capacity to model both the vi-
sual and audio feature well when they are fed to the model
as inputs. Moreover, the early fusion model is computation-
ally efficient and given the input features only requires 70
ms on average to infer the intro and recap of each video-title
on a GPU machine with one NVIDIA Tesla V100.

We also calculate the performance of our model with
early fusion for different tolerance values on the test data-
set. Similar to metrics on the validation data-set, our model
achieved high accuracy with 73.22% precision, 68.64% re-
call, and 70.85% F1 score for intro and 73.46% precision,
67.89% recall, and 70.57% F} score for recap on the test
data with 1-second tolerance. In addition, all metrics in-
cluding precision, recall, and F score increased by more
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than 8% as the tolerance value is relaxed to 3 seconds. More
detail can be found in the supplementary material.

4.4. Ablation Study

To investigate the contribution of several key components in
our proposed architecture, we compare our model architec-
ture with four other deep learning based architectures. For
all these architectures, the CNN feature extraction compo-
nent is fixed to be the same as the one described in Sec-
tion 3.1. In order to distill the effectiveness of using the
B-LSTM and CRF components, we set up the architecture
comparison to be incremental where only one change is
made for a pair of consecutive architectures considered.
First, we start with a simpler deep learning architecture
with one single LSTM layer (512 neurons) and a dense layer
with softmax activation function (architecture 1 in Table 2).
No CREF layer is used and the cross entropy loss is applied
during model training. During inference, the label with
highest probability is chosen as the prediction at each time-
point. Second, we add an additional LSTM layer with 128
neurons on top of the existing LSTM layer in architecture
1 to analyze the benefit of RNN stacking (architecture 2).
Third, we replace both LSTM layers in architecture 2 with
B-LSTM layers to study the effectiveness of B-LSTM (ar-
chitecture 3). Fourth, instead of always choosing the mostly
likely label for each timepoint, we use Viterbi decoding dur-
ing inference compared to architecture 3 to test whether it
is enough to consider label smoothness only during infer-
ence (architecture 4). Finally, we replace the dense layer in
architecture 3 with a CRF layer and use CRF loss during
training compared to architecture 3 (architecture 5) to an-
alyze the importance of considering label smoothness with
CRF loss in training. The model performances are shown
in Table 2, and we summarize the key findings as follows.
a: B-LSTM and CRF Matters. When comparing the per-
formance of the five architectures, there is a significant im-
provement at each incremental change between each pair
of consecutive architectures. The magnitude of the im-
provement is especially big when LSTM is replaced with
B-LSTM in architecture 3 and when CRF layer is added
in architecture 5. For example, among all models trained
with different features using LSTM architecture 2, the best
one (in terms of F} score) achieves 41.23% precision and
41.64% recall with early fusion for intro and 44.35% pre-
cision and 51.99% recall with late fusion for recap. When
LSTM layers are replaced with B-LSTM layers in architec-
ture 3, the best one achieves 59.87% precision and 60.68%
recall for intro and 67.05% precision and 68.43% recall for
recap with early fusion. In addition, we can see that while
there is a marginal improvement in F score of the early fu-
sion model when adding Viterbi decoding in architecture 4
compared to architecture 3, the magnitude of improvement
is significantly bigger when CRF loss is used during train-

ing in architecture 5, Specifically, when CRF is added in
architecture 5, the best one achieves 68.56% precision and
64.90% recall for intro and 74.68% precision and 70.96%
recall for recap with early fusion.

b: Feature Fusion is Beneficial. When visual and audio
feature are fused together, the fused features generally per-
form significantly better than audio or visual features used
independently especially when B-LSTM and CRF are used.
There are cases where early or late fusion performs worse
than using visual signal only such as the early fusion for
recap in architecture 2 and the late fusion for recap in ar-
chitecture 3, but when B-LSTM and CRF components are
added in architecture 5, both the early and late fusion work
significantly better than audio or visual features used sep-
arately. It is also observed that early fusion results in bet-
ter performance as the complexity of architecture increases,
which suggests that more complex architecture can model
both the visual and audio feature better. In particular, the
architecture 5 with early fusion achieves the best model per-
formance with 68.56% precision and 64.90% recall for intro
and 74.68% precision and 70.96% recall for recap.

c: Stacking Helps. When comparing different data modal-
ities, visual signal has more predictive power than audio
signal for both intro and recap in almost all cases. The
only exception is for the recap in architecture 1 where audio
signal performs better than visual signal, but when LSTM
layers are stacked in architecture 2, visual features start to
outperform audio for recap detection. In addition, stack-
ing LSTM improves the performance of models with fused
features when comparing architecture 1 and architecture 2.

5. Conclusion and Future Work

In this work, we presented a novel end-to-end deep learning
prototype for automated intro and recap identification by
leveraging CNN, B-LSTM, and CRF in an unified frame-
work. We used CNNs to extract visual and audio fea-
tures, fused the features into B-LSTM to capture the context
changes among consecutive frames, and then used CRF to
jointly optimize the sequence labeling for intros and recaps.
We demonstrated that our model can achieve high accuracy
and perform much better compared to several other deep
architectures. We showed that B-LSTM and CRF compo-
nents were critical to get high accuracy and the fused fea-
tures generally perform significantly better than audio or vi-
sual features used independently, especially when B-LSTM
and CRF are used. The approach can be extended to de-
tect other video content, such as end credits, and can also
be applied to other sequence learning applications. Going
forward, we plan to experiment other ways of visual and
audio feature fusion to improve detection accuracy. More-
over, caption information is not incorporated into our model
due to its limited coverage, and we plan to explore ways to
overcome this data limitation to enhance our model.
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