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Abstract

Modern video streaming service companies offer mil-

lions of video-titles for its customers. A lot of these ti-

tles have repetitive introductory and recap parts in the be-

ginning that customers have to manually skip in order to

achieve an uninterrupted viewing experience. To avoid this

unnecessary friction, some of the services have recently

added “skip-intro” and “skip-recap” buttons to their video

players before the intro and recap parts start. To efficiently

scale this experience to their entire catalogs, it is impor-

tant to automate the process of finding the intro and recap

portions of titles. In this work, we pose intro and recap de-

tection as a supervised sequence labeling problem and pro-

pose a novel end-to-end deep learning framework to this

end. Specifically, we use CNNs to extract both visual and

audio features from videos, and fuse these features using a

B-LSTM in order to capture the various long and short term

dependencies among different frame-features over time. Fi-

nally, we use a CRF to jointly optimize the sequence label-

ing for the intro and recap parts of the titles. We present a

thorough empirical analysis of our model compared to sev-

eral other deep learning based architectures and demon-

strate the superior performance of our approach.

1. Introduction

The growth of video streaming services has given rise to the

practice of marathon-watching, where users watch a series

of video content in a single extended session [40]. Given

the popularity of this behavior, it is important for streaming

services to provide interfaces that facilitate watching con-

tent in an uninterrupted and frictionless manner.

One source of such friction is the introductory (intro)

content which is usually played in the beginning of a video

and goes over various title-credits e.g. information about the

actors, director and producers. Besides intros, TV episodes

can also contain recap content that summarizes what hap-

pened in the previous episodes in the series. Watching the

intro and recap parts of a title can be repetitive and there-

fore can result in customer fatigue. If the customers want

to skip these content-segments, they have to manually seek

the content forward, which creates unnecessary friction.

To minimize this source of friction, some of the video

streaming companies have recently added “skip-intro” and

“skip-recap” buttons to their video players which appear a

few seconds before the intro or recap parts start. If these

buttons are clicked, the player jumps to the end of intro or

recap parts respectively. These features create a better play-

back experience, increase customer satisfaction, and can

have a positive impact on the long-term user engagement.

To support this experience, one needs to know the times-

tamps where the intro and recap parts of a video-title start

and end such that the “skip-intro” and “skip-recap” buttons

could be placed accordingly. Scrubbing titles for finding

intro and recap timestamps is a labor-intensive manual pro-

cess and requires highly trained human annotators. There-

fore efficiently scaling-up this experience to a streaming

service’s entire catalog with millions of video-titles requires

leveraging Machine Learning to maximally automate this

process.

Choosing a Practical Learning-Based Approach:

There are several learning based approaches that could be

applied to tackle our problem. On the unsupervised end of

the spectrum, one could model intro and recap as differ-

ent types of frequently repeating content and then try to use

content based matching [41] to find them.

Although an advantage of this approach is that it does

not require labeled data for training a parametric model, it

does pose several practical challenges. First, its false pos-

itive rate can be high due to multiple segments of shared

content between two or more episodes. While one could

apply ad-hoc rule-based filtering scheme to remove some

of these false positives, such solutions only address a subset

of these errors and are difficult to generalize. Second, this

approach requires multiple episodes before the content in

different episodes can be matched. When there is only one

episode available in a TV series, this approach is not appli-

cable. Similarly, this approach cannot be applied to Movies

given their singleton nature. Third, this approach does not

work well for titles where the intro content changes for each

episode. Game of Thrones is a popular example of such
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Figure 1: Example of discriminable intro and recap patterns. Note that there is background music playing in recap and

title-credit information is displayed in the frames of intro.

TV series where the intro content changes depending on the

story-arch of a particular episode. Similar challenge exists

for recaps since their constituent shots are not always from

the most immediate previous episode, but can come from

any episode from the season (e.g. in Fox studios show 24).

In this case, it is not clear which episodes should be com-

pared with the current episode to detect recaps. One may try

to compare to all prior episodes, but that poses scalability

and maintainability challenges.

An alternative approach that does not pose the aforemen-

tioned limitations is to view the problem from a supervised

learning perspective. An underlining assumption in super-

vised methods is that there are some frequently occurring

patterns between the features (video content) and the la-

bels (intro and recap timestamps). The fact that humans

can identify whether the content is intro, recap or the actual

content suggests that there are discriminable intro and recap

patterns in the titles. Looking closely at the title data gives

some clues regarding the following common patterns:

• For intros, as shown in Figure 1, the title-credits informa-

tion e.g. producers, distributors, and director’s information

is usually displayed on plain (usually black) background

with high-contrast (usually white) text. When there is a

consecutive series of video frames containing such text, it

is a good indicator that these frames are title-credits. In

addition, there are usually a few seconds of silent transi-

tion period right after the credits where the frames usually

have completely dark background and no foreground con-

tent during this transition time. Moreover, music usually

plays without any speech when credits are showing. There-

fore, music signals could be used as indicators for credits.

• For recaps, usually a series of rapidly changing scenes are

shown, providing a repetitive detectable pattern. Similarly,

many recaps start with an opening sentence such as ”pre-

viously on”, either in audio or as text on the video frames,

along with music playing in the background. In addition,

as shown in Figure 1, there are sometimes a few seconds

of silent transition period with dark frames right after the

recaps similar to intros.

The presence of these discriminative patterns make super-

vised model a promising choice for our problem. Further-

more, such supervised models could be applied to a vari-

ety of previously mentioned practical scenarios where un-

supervised models are not readily applicable. Particularly

for cloud-based services, since it is not practical to access

clients’ entire video-catalog, it is all the more important to

use supervised models that can find intro and recap in each

video uploaded by the customers without requiring any ad-

ditional dependencies. We therefore focus in this work on

exploring supervised learning based approaches to build in-

tro and recap detection model.

Technical Challenges:

There are several key challenges in building a supervised

learning based solution for our problem.

• First, it is unclear how to best formulate the intro and

recap detection into a supervised learning problem. For

instance, the more obvious choice of formulating it as a

regression problem with video as input and intro and re-

cap timestamps as regression targets is likely to give sub-

optimal results since the transition among intro, recap, and

the actual content would not be explicitly modeled.

• Second, while there are some patterns to discern which

parts of a title are intros and recaps, it is unclear what is

the best way to characterize these patterns. One way is to

build an individual detection model for each of these pat-

terns, i.e., a model to detect white text on black background,

while another to detect if music is playing, etc. However,

to ensure high coverage of intros and recaps, such an ap-

proach requires a large list of known patterns which is time-

consuming to identify, and thus, such a list is not likely to be

comprehensive. Even if there was such a comprehensive list

available, it would be expensive to build a model for each

enlisted pattern and practically difficult to maintain them.

• Third, these discriminating patterns can exist in different

data modalities, e.g. the dark background exists in the visual

signal, while music exists in the audio signal. We need to

use multiple data modalities effectively, and it is unclear

how to optimally do that for our problem.

Contributions:

To solve these challenges, we propose a deep learning based

solution that makes the following key contributions:
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• First, our detection approach is trainable end-to-end and

therefore easy to maintain at scale. We use convolution neu-

ral networks (CNN) to extract discriminable visual and au-

dio features from video-titles. These features are fed into a

bidirectional long short term memory (B-LSTM) network

to capture the various long and short term dependencies

among different frame-features. Finally, for optimal tem-

poral smoothing, we use a conditional random field (CRF)

to jointly optimize the labels of all video frames, i.e., recap,

intro, or the actual content.

• Second, our approach allows us to model multiple infor-

mation channels in a unified manner. We present a detailed

empirical analysis of how multi-modal fusion performs for

the problem at hand with both early and late fusion schemes.

• Third, our framework is applicable to both the intro and

recap detection problems and can be extended to detect

other types of video-segments, e.g. end-credits. Our so-

lution is easy to put into production since its inference

does not depend on preceding episodes, thereby reducing

its memory requirements and maintenance overhead.

We present a thorough empirical analysis of our model com-

pared to several other deep learning based architectures and

demonstrate its superior performance. We begin in Sec-

tion 2 by discussing the related work and explaining our

approach in more detail in Section 3. We present our data-

set, evaluation metrics, experiment settings, and a thorough

set of comparative empirical results in Section 4 and discuss

the conclusion and future work in Section 5.

2. Related Work

Automatic intro and recap detection is a relatively new

problem, and closely relates to temporal action localization,

named-entity recognition, and multi-modal fusion. Below,

we briefly go over previous approaches in these three do-

mains and distill how our approach is different from them.

Temporal Action Localization. The problem of finding

semantically meaningful clips or segments within a video is

closely related to the domain of temporal action localization

where the goal is to identify action classes in untrimmed

videos as well as the corresponding start and end times-

tamps of each action [35, 5, 43, 42, 2, 22]. Modern so-

lutions of temporal action localization use a two-stage ap-

proach, where the first stage focuses on generating region

proposals while the second stage focuses on action classi-

fication and boundary refinement [44, 35, 43]. There exist

several end-to-end methods that combine the proposal gen-

eration and action classification steps [2, 42, 22]. A key dif-

ference between temporal action localization and our prob-

lem is that in our case each video only contains at most one

intro and one recap while there could be multiple instances

of the same action in the general temporal action localiza-

tion problem. Another key difference is the tolerance of

R R I I C C C C

Figure 2: Illustration of our sequence labeling for intro and

recap detection problem. Each of the two consecutive blue

bars represent a time interval of a title. The labels above

demonstrate the type of the interval, where R represents re-

cap, I represents intro, and C represents actual title content.

CRF

BLSTM

CNN CNN CNN

R I CR I I C

Figure 3: Overview of our network architecture. Here blue

vertical lines represent the video frames, while the orange

and green bars represent the visual and audio features of the

corresponding frames respectively. Letters R, I and C cor-

respond to recap, intro and actual title content respectively.

action boundary error. In temporal action localization, a de-

tected region is generally considered as a correct detection

when it significantly overlaps with the ground truth where

the significance of overlap is determined by a metric such as

intersection-over-union (IoU) [23] ranging anywhere from

0.1 to 0.9 in general. In contrast, our use-case is signifi-

cantly more sensitive to the detected region boundary. We

can only treat a detected region as a correct detection when

it almost completely overlaps with the ground truth. Thus,

we introduce a metric based on the absolute difference be-

tween identified boundary and ground truth in Section 4.2.

Named Entity Recognition. Another related field to our

problem is Named Entity Recognition (NER) [26, 18, 6],

where the goal is to classify each token in a sentence into

predefined categories, such as name, location, etc. Many

different type of classifiers have been used to recognize

named entities, including Hidden Markov models [25],

maximum entropy Markov models [24], and Conditional

Random Fields (CRFs) [17] for sequence learning [18]. Our

problem is related to NER in the sense that each frame of

a video can be treated as a token and then each token can

be classified as one of the categories, i.e., intro, recap, or

the actual content. Unlike previous solutions for NER, we

adopted bidirectional LSTMs to encode temporal depen-

dencies for video frames and use CRF to optimize the labels

of all video frames.

Multimodal Fusion. Our problem is also related to multi-
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modal fusion. Multi-model fusion has been studied for var-

ious tasks to leverage different types of features, such as

image and text fusion for product classification [12], visual

and audio fusion for video description [14], and temporal

multimodal fusion for learning driving behavior [28]. Var-

ious type of strategies have been studied including Boltz-

mann machines [29], attention [14], and gated recurrent

fusion [28]. Fusion of different modalities can often be

achieved using two general mechanisms: early and late fu-

sion [27, 29, 11]. In early fusion, the features from dif-

ferent modalities are combined together first before feed-

ing them to a model, while in late fusion the features from

each modality are first fed into a separate model and the

model outputs are fused subsequently. While early fusion

allows the model to explore the interaction of different fea-

tures from each modality [12], the choice of early or late

fusion mostly depends on model and sample complexity of

a problem. In this work, we study the effectiveness of early

and late fusion as a function of our model complexity.

3. Model Architecture

We now explain our formulation of intro and recap detec-

tion as a supervised learning problem and introduce the var-

ious components of our model architecture.

We frame intro and recap detection as a sequence label-

ing problem (see Figure 2 for an illustrative example). The

input for our problem is a time series of video intervals and

the goal is to label each time interval with one of three pos-

sible labels, i.e., intro (I), recap (R), or actual content (C).

Note that while in Figure 2 recap starts from the very be-

ginning of the title, followed by intro and then content, this

order is not necessarily always the case. For example, there

are video-titles with cold-openings that jump directly into

the story at the beginning before intros or recaps are shown.

This order-variance in which intro, recap and content can

appear in titles further adds complexity to our problem.

The architecture of the network we propose to overcome

these technical challenges is shown in Figure 3. It consists

of the following three main components:

• CNN for visual and audio feature extraction (§ 3.1).

• B-LSTM for capturing long and short term temporal de-

pendencies among various frame-features (§ 3.2).

• CRF for joint label optimization of video frames (§ 3.3).

We now present these components in more detail.

3.1. CNN for Visual and Audio Features

CNNs are deep networks that leverage the spatial nature of

images to enable extraction of discriminative image fea-

tures. They have been shown to outperform traditional

shallow-learning or hand-crafted Computer Vision tech-

niques and have demonstrated excellent performance in

frame mel-frequency spectra

2-d conv-net 1-d conv-net

visual feature audio feature

visual audio

25ms 25ms 25ms

Figure 4: Detailed illustration of the CNN components for

the visual and audio feature extraction.

mel-frequency spectrum

(60,000 x 24)

1-D conv 32 filters with 1x5 kernel, BN, MAX pooling width = 4

(15,000 x 32)

1-D conv 64 filters with 1x5 kernel, BN, MAX pooling width = 5

(3,000 x 64)

1-D conv 128 filters with 1x5 kernel, BN, MAX pooling width = 5

(600 x 128)

Figure 5: Our 1D ConvNet component: three steps of 1D

convolution, BN, and MAX pooling

many vision tasks (e.g. object recognition [31] and hand-

written digit classification [20]). Moreover, it has been

shown that CNNs can be a powerful way to process audio

signals. For instance, 1D ConvNet [19] can be applied to

raw audio features to accurately capture the frame-level au-

dio transitions resulting in better audio representations for

applications like rare sound event detection [21].

The CNN based feature extraction component we use

in this work has three main steps to compute both visual

as well as audio features (see Figure 4 for illustration).

First, it extracts visual features from video-frames by feed-

ing the frames to a pre-trained CNN. Second, it extracts au-

dio features by applying 1D ConvNet [19] on the log mel-

frequency spectrum of the audio signals. Third, it combines

the audio-visual features using multi-modal data fusion.

Pre-trained CNN for Frame Representation. We use

the Inception V3 deep network [37] pre-trained on Im-

ageNet [32] to extract our frame level visual features.

Specifically, we extract image frames from video titles at

one frame per second (1 FPS), feed these frames into the

Inception-V3 network, and then extract the ReLu activa-

tions of the last hidden layer (2048 dimension) as the frame

feature. The choice of using 1-second temporal granularity

was made due to its suitability for our use case as well as its

effectiveness from a computational complexity perspective.

1D Convolution for Audio Representation. Following the

work in [21], for the audio signal of videos, we first extract
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visual feature audio feature

concat

B-LSTM

CRF

(a)

concat

B-LSTM B-LSTM

CRF

visual feature audio feature

(b)

Figure 6: (a): Early fusion; (b): Late fusion.

log-power mel-frequency spectrum [9] with 24 mel-scale

filters from every 25ms window with 10ms shift between

two consecutive windows. The extracted log-mel spectro-

gram is passed through our 1D ConvNet component to get

the audio features. The 1D ConvNet component has three

steps, where each step consists of a 1D convolution, a batch

normalization (BN), and a MAX pooling layer. The three

steps gradually aggregate the audio signal and results in a

128-d vector for each second of signal as shown in Figure 5.

Audio-Visual Fusion. To leverage the video and audio fea-

tures jointly in a unified way and use them in a signal neu-

ral network model, we explored early and late fusion tech-

nique to combine the two data modalities. For early fu-

sion, as shown in Figure 6a, we concatenate the video fea-

tures (2048 dimension) and audio features after 1D Con-

vNet (128-d). Recall that both these feature spaces are con-

structed over 1 second temporal scale. This results in a 2176

dimension vector for each second of a title and those vectors

serve as the input to the B-LSTM units (note that the net-

work architecture overview shown in Figure 2 is illustrated

with early fusion). For late fusion, as shown in Figure 6b,

instead of fusing the visual-audio features before B-LSTM

units, we feed the visual and audio feature separately to their

own B-LSTM units and then concatenate the outputs of the

B-LSTM units to serve as the input to the CRF units.

3.2. Bi­directional LSTM

Recall that Recurrent Neural Networks (RNNs) are de-

signed to capture the dynamic changes between consecutive

data points along sequences. LSTMs [13] are a variant of

RNNs that are designed to alleviate shortcomings of RNNs,

particularly the gradient vanishing problem [30].

LSTMs however only capture dependencies from the

past, whereas for many sequence labeling problems, it is

beneficial to know both the past and the future dependen-

cies. This is especially true for our intro and recap de-

tection problem. For example, since intro is usually fol-

lowed by the actual title content, knowing the actual title

content has already started will help the model to reaffirm

that the intro has already ended. An elegant solution to sys-

tematically take the future information into consideration

y1 y2 y3 y4

x1 x2 x3 x4

(a)

time

TP

time

FP

time

FP

time

FP

(b)

Figure 7: (a): A Linear-Chain CRF Graph; (b): Examples

of true positive (TP) and false positive (FP). Gray boxes in-

dicate the labeled intro or recap if they exist and blue boxes

indicate the corresponding model detections.

in addition to the past information is to use bi-directional

RNNs [33]. Therefore, we use B-LSTM to consume our

features in our network structure. In addition, since it is

observed that deep RNNs work better than shallower ones

for many problems [38, 15, 16] including sequence labeling

tasks like NER [38] and option mining [15], we stacked two

layers of B-LSTM ( with 512 and 128 neurons respectively).

3.3. Conditional Random Field

While B-LSTMs can model the dependencies among input

information, they do not explicitly account for the depen-

dencies among the output labels. To infer the labels for

an input sequence, it is better to consider the transition be-

tween labels in neighborhoods and jointly infer the optimal

sequence of labels. For example, intro is mostly likely to

be followed by actual title content in a video title, and this

information should be more explicitly modeled to reach op-

timal detection performance. As CRFs [17] provide a way

to model such dependencies, we use a CRF (shown in Fig-

ure 7a) to jointly learn the sequence labeling instead of de-

coding each label independently.

More specifically, let x = {x1, ..., xn} represents an in-

put sequence, where xi is the output from the ith timestamp

in B-LSTM. Let y = {y1, ..., yn} represents a sequence of

labels for x. Then the conditional probability p(y|x) in CRF

is defined as [36]

p(y|x) =
1

Z

I∏

i=1

fi(yi−1, yi, x),

where Z =
∑

y

∏I

i=1
fi(yi−1, yi, x). Similarly, the

the ith potential function fi(yi−1, yi, x) is defined as

exp(WT
yi−1,yi

x + byi−1,yi
). Here W and b are the weight

matrix and bias term corresponding to label pair (yi−1, yi).

171



For CRF training, we use the maximum likelihood es-

timation to train CRF by maximizing the following log-

likelihood loss function over all M training samples:

L(W, b) =
M∑

m=1

log p(y|x;W, b),

During training, it is required to compute the normaliza-

tion constant Z for the likelihood, which can be computed

efficiently using forward-backward algorithm [7]. For in-

ference, we search for the optimal label sequence y∗ with

highest conditional probability y∗ = argmaxy p(y|x;W, b)
efficiently using the Viterbi decoding algorithm [10].

4. Experiments

4.1. Data Deep Dive

We manually collected a data-set containing 46,946 video

titles with 91.4% of the titles being TV episodes and the

remaining ones being movies. Each title runs at 24 or 25

frames per second and is manually reviewed by an operator.

The operators checked the whole video for a list of elements

including intro and recap. The corresponding start and end

timestamps were recorded for both intro and recap when

they existed. Each title could only have one intro and one

recap at most. When the intro or recap did not exist, the

corresponding timestamps fields were left empty. To ensure

label quality, all titles went through a mandatory QA pass

with a maximum of 1.6 speed to verify information against

the provided timestamps.

In our data-set, all of the tagged intro and recap are

within the first 10 minutes of titles. Therefore, we process

each title up to the first 10 minutes (600 seconds) for both

visual and audio feature extraction. Among all of the 46,946

titles, 15,934 (33.9%) titles have recaps, 45,027 (95.9%) ti-

tles have intros, and 14,015 titles have both recaps and in-

tros. Please refer to the supplementary material for more

details of the labeled data-set. For model training, the whole

data-set is randomly split into training (33,717), validation

(8559), and test (4,670) sets based on the normalized series

and movie names. This way, all titles in the same TV series

end up either in one or in the other split to prevent informa-

tion leakage between any pair of the split sets.

4.2. Evaluation Metrics and Training Setup

To quantify the performance of our detection models, we

need to first define how to measure if a detection is valid

(true positive) or not (false positive). Inspired by the true

positive (TP) definition in object detection problem, such

as COCO detection [23], where TP is defined as detections

with Intersection Over Union (IOU) above some threshold,

we define TP as detections where both the start and the end

timestamps are within T seconds from the corresponding

ground truths, where T is the generally small (1-3 secs.) tol-

erance of the timestamp boundary distance. Any detection

that does not meet this criterion is considered as false posi-

tive (FP). Figure 7b shows some illustrative examples of TP

and FP, where gray boxes indicate the labeled intro or re-

cap ground truths and blue boxes indicate model detections.

Anytime the start and end timestamps of the detection are

very close to the ground truth is considered as a TP, while

all other possibilities are considered as FP.

With the above definition of TP, we measure our model

for intro and recap independently using precision and re-

call. Precision is the percentage of correctly detected intros

and recaps among all detections and measures the ability of

a model to identify correct intros and recaps. Recall is the

percentage of ground-truth intros and recaps that are cor-

rectly detected and measures the ability of a model to iden-

tify all ground truth intros and recaps. We also calculate the

F1 score to facilitate model comparison. Parameter opti-

mization is performed using mini-batch SGD [1] with RM-

SProp [8], batch size of 128, and learning rate of 0.001. We

use early stopping [4] based on the performance on the val-

idation set (please see the supplementary material for more

details on experiment setup).

4.3. Results

We now summarize the key results from our experiments.

Table 1 shows the performance of our proposed model on

the validation data-set with 1-second tolerance and com-

pares it with the results from three types of localization

models using visual features, namely Loc-LSTM, Loc-1D

CNN, and Loc-TSN. The first two models are implemented

based on temporal action localization [22, 2], where the

overall loss function is a combination of the classification

loss of intro and recap existence and regression loss of intro

and recap region. The model Loc-LSTM has two layers of

LSTM (with 512 and 128 neurons respectively) before the

loss layer to learn the video representation, while Loc-1D

CNN uses 4 layers of 1D ConvNet (with 1024, 512, 256,

and 128 neurons respectively) to replace the LSTM lay-

ers. The third model is based on temporal segment network

(TSN) [39], where an input video is divided into segments

with 1-second length, and the corresponding temporal seg-

ment supervision is used to train a two-layer fully connected

neural network (with 512 and 128 neurons respectively) to

classify the segments to intro, recap, or actual content.

We can see from Table 1 that our proposed method

has significantly better performance than the alternative ap-

proaches that frame intro and recap detection as a tempo-

ral action localization problem using visual feature. Note

that in our data-set, the average lengths of recap and in-

tro are 54 and 40 seconds respectively, which results in a

substantially high IOU value of 0.981 for recap and 0.975

for intro using 1-second tolerance of timestamp boundary.
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Architecture Name
Intro Recap

Precision Recall F1 Precision Recall F1

Loc-LSTM 0.56% 0.56% 0.56% 0.55% 0.55% 0.55%

Loc-1D CNN 0.41% 0.41% 0.41% 1.20% 1.20% 1.20%

Loc-TSN 8.68% 9.05% 8.86% 0.01% 0.03% 0.02%

Bi-LSTM+ CRF 63.15% 56.79% 59.80% 70.08% 64.15% 66.99%

Table 1: Model comparison using visual feature. For discussion of the results, refer to the 2nd paragraph of section 4.3

# Architecture Name Feature Type
Intro Recap

Precision Recall F1 Precision Recall F1

1 1-layer-LSTM

Audio 13.83% 13.34% 13.58% 27.10% 31.32% 29.05%

Visual 31.90% 32.03% 31.97% 21.33% 26.50% 23.64%

Early Fusion 28.61% 28.81% 28.71% 33.97% 40.18% 36.81%

Late Fusion 38.43% 39.33% 38.87% 40.33% 46.49% 43.19%

2 LSTM

Audio 16.56% 16.52% 16.54% 22.92% 19.41% 21.02%

Visual 37.94% 33.62% 35.65% 46.48% 49.15% 47.78%

Early Fusion 41.23% 41.64% 41.44% 42.66% 48.96% 45.59%

Late Fusion 40.03% 41.01% 40.51% 44.35% 51.99% 47.87%

3 B-LSTM

Audio 31.94% 29.54% 30.69% 49.59% 54.05% 51.73%

Visual 45.81% 46.05% 45.93% 58.46% 61.94% 60.15%

Early Fusion 59.87% 60.68% 60.27% 67.05% 68.43% 67.73%

Late Fusion 49.36% 50.51% 49.92% 58.66% 56.43% 57.52%

4 Bi-LSTM+Viterbi

Audio 36.92% 28.24% 32.00% 51.64% 53.45% 52.53%

Visual 47.68% 42.13% 44.73% 59.30% 60.67% 59.98%

Early Fusion 62.25% 58.66% 60.40% 68.03% 67.92% 67.98%

Late Fusion 51.36% 49.18% 50.25% 62.90% 57.88% 60.29%

5 Bi-LSTM+ CRF

Audio 55.22% 39.32% 45.93% 67.04% 51.77% 58.42%

Visual 63.15% 56.79% 59.80% 70.08% 64.15% 66.99%

Early Fusion 68.56% 64.90% 66.68% 74.68% 70.96% 72.77%

Late Fusion 65.96% 62.18% 64.01% 73.27% 59.97% 65.96%

Table 2: Model performance of different architectures

The particularly low accuracy results we observe for the al-

ternative approaches we tried are similar to those previously

reported in temporal action localization litrature [43] at sim-

ilarly high values of IOUs. In particular, [34] and [5] report

accuracy of 0.20% and 1.30% respectively on ActivityNet

v1.3 data-set [3] at IOU of 0.95. The Loc-TSN approach

performs better than the other two localization based meth-

ods, but since the TSN segments only capture local informa-

tion inside each segment, it does not capture the long term

dependencies over time. In contrast, our proposed method

captures the long and short term dependencies and models

the temporal transitions at the boundaries of intro and recap

more explicitly. This makes it easier for the model to cap-

ture signals such as start and end of title-credits as well as

opening voice like “previously on” thereby resulting in sig-

nificantly better model performance at 1-second tolerance.

Architecture 5 (Bi-LSTM+ CRF) in Table 2 shows the

performance of our proposed on the validation data-set with

1-second tolerance using different types of feature, namely,

audio, visual, early fusion, and late fusion of audio and vi-

sual features. We can see that the early fusion results in the

best model performance among the four types, indicating

that our architecture has the capacity to model both the vi-

sual and audio feature well when they are fed to the model

as inputs. Moreover, the early fusion model is computation-

ally efficient and given the input features only requires 70

ms on average to infer the intro and recap of each video-title

on a GPU machine with one NVIDIA Tesla V100.

We also calculate the performance of our model with

early fusion for different tolerance values on the test data-

set. Similar to metrics on the validation data-set, our model

achieved high accuracy with 73.22% precision, 68.64% re-

call, and 70.85% F1 score for intro and 73.46% precision,

67.89% recall, and 70.57% F1 score for recap on the test

data with 1-second tolerance. In addition, all metrics in-

cluding precision, recall, and F1 score increased by more
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than 8% as the tolerance value is relaxed to 3 seconds. More

detail can be found in the supplementary material.

4.4. Ablation Study

To investigate the contribution of several key components in

our proposed architecture, we compare our model architec-

ture with four other deep learning based architectures. For

all these architectures, the CNN feature extraction compo-

nent is fixed to be the same as the one described in Sec-

tion 3.1. In order to distill the effectiveness of using the

B-LSTM and CRF components, we set up the architecture

comparison to be incremental where only one change is

made for a pair of consecutive architectures considered.

First, we start with a simpler deep learning architecture

with one single LSTM layer (512 neurons) and a dense layer

with softmax activation function (architecture 1 in Table 2).

No CRF layer is used and the cross entropy loss is applied

during model training. During inference, the label with

highest probability is chosen as the prediction at each time-

point. Second, we add an additional LSTM layer with 128

neurons on top of the existing LSTM layer in architecture

1 to analyze the benefit of RNN stacking (architecture 2).

Third, we replace both LSTM layers in architecture 2 with

B-LSTM layers to study the effectiveness of B-LSTM (ar-

chitecture 3). Fourth, instead of always choosing the mostly

likely label for each timepoint, we use Viterbi decoding dur-

ing inference compared to architecture 3 to test whether it

is enough to consider label smoothness only during infer-

ence (architecture 4). Finally, we replace the dense layer in

architecture 3 with a CRF layer and use CRF loss during

training compared to architecture 3 (architecture 5) to an-

alyze the importance of considering label smoothness with

CRF loss in training. The model performances are shown

in Table 2, and we summarize the key findings as follows.

a: B-LSTM and CRF Matters. When comparing the per-

formance of the five architectures, there is a significant im-

provement at each incremental change between each pair

of consecutive architectures. The magnitude of the im-

provement is especially big when LSTM is replaced with

B-LSTM in architecture 3 and when CRF layer is added

in architecture 5. For example, among all models trained

with different features using LSTM architecture 2, the best

one (in terms of F1 score) achieves 41.23% precision and

41.64% recall with early fusion for intro and 44.35% pre-

cision and 51.99% recall with late fusion for recap. When

LSTM layers are replaced with B-LSTM layers in architec-

ture 3, the best one achieves 59.87% precision and 60.68%

recall for intro and 67.05% precision and 68.43% recall for

recap with early fusion. In addition, we can see that while

there is a marginal improvement in F1 score of the early fu-

sion model when adding Viterbi decoding in architecture 4

compared to architecture 3, the magnitude of improvement

is significantly bigger when CRF loss is used during train-

ing in architecture 5, Specifically, when CRF is added in

architecture 5, the best one achieves 68.56% precision and

64.90% recall for intro and 74.68% precision and 70.96%

recall for recap with early fusion.

b: Feature Fusion is Beneficial. When visual and audio

feature are fused together, the fused features generally per-

form significantly better than audio or visual features used

independently especially when B-LSTM and CRF are used.

There are cases where early or late fusion performs worse

than using visual signal only such as the early fusion for

recap in architecture 2 and the late fusion for recap in ar-

chitecture 3, but when B-LSTM and CRF components are

added in architecture 5, both the early and late fusion work

significantly better than audio or visual features used sep-

arately. It is also observed that early fusion results in bet-

ter performance as the complexity of architecture increases,

which suggests that more complex architecture can model

both the visual and audio feature better. In particular, the

architecture 5 with early fusion achieves the best model per-

formance with 68.56% precision and 64.90% recall for intro

and 74.68% precision and 70.96% recall for recap.

c: Stacking Helps. When comparing different data modal-

ities, visual signal has more predictive power than audio

signal for both intro and recap in almost all cases. The

only exception is for the recap in architecture 1 where audio

signal performs better than visual signal, but when LSTM

layers are stacked in architecture 2, visual features start to

outperform audio for recap detection. In addition, stack-

ing LSTM improves the performance of models with fused

features when comparing architecture 1 and architecture 2.

5. Conclusion and Future Work

In this work, we presented a novel end-to-end deep learning

prototype for automated intro and recap identification by

leveraging CNN, B-LSTM, and CRF in an unified frame-

work. We used CNNs to extract visual and audio fea-

tures, fused the features into B-LSTM to capture the context

changes among consecutive frames, and then used CRF to

jointly optimize the sequence labeling for intros and recaps.

We demonstrated that our model can achieve high accuracy

and perform much better compared to several other deep

architectures. We showed that B-LSTM and CRF compo-

nents were critical to get high accuracy and the fused fea-

tures generally perform significantly better than audio or vi-

sual features used independently, especially when B-LSTM

and CRF are used. The approach can be extended to de-

tect other video content, such as end credits, and can also

be applied to other sequence learning applications. Going

forward, we plan to experiment other ways of visual and

audio feature fusion to improve detection accuracy. More-

over, caption information is not incorporated into our model

due to its limited coverage, and we plan to explore ways to

overcome this data limitation to enhance our model.
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