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Abstract

Providing an explanation of the operation of CNNs that

is both accurate and interpretable is becoming essential in

fields like medical image analysis, surveillance, and au-

tonomous driving. In these areas, it is important to have

confidence that the CNN is working as expected and ex-

planations from saliency maps provide an efficient way of

doing this. In this paper, we propose a pair of complemen-

tary contributions that improve upon the state of the art for

region-based explanations in both accuracy and utility. The

first is SWAG, a method for generating accurate explana-

tions quickly using superpixels for discriminative regions

which is meant to be a more accurate, efficient, and tunable

drop in replacement method for Grad-CAM, LIME, or other

region-based methods. The second contribution is based on

an investigation into how to best generate the superpixels

used to represent the features found within the image. Using

SWAG, we compare using superpixels created from the im-

age, a combination of the image and backpropagated gradi-

ents, and the gradients themselves. To the best of our knowl-

edge, this is the first method proposed to generate explana-

tions using superpixels explicitly created to represent the

discriminative features important to the network. To com-

pare we use both ImageNet and challenging fine-grained

datasets over a range of metrics. We demonstrate experi-

mentally that our methods provide the best local and global

accuracy compared to Grad-CAM, Grad-CAM++, LIME,

XRAI, and RISE.

1. Introduction

As Convolution Neural Networks have become more

common in sensitive applications such as medical diagnos-

tics [37] or surveillance [38], the more techniques have be-

come necessary to explain a model’s predictions. In partic-

ular there is a conflict between how well a technique can

create explanations that precisely show how a model under-

stands an image, against how well an explanation aligns to

interpretable regions within the image. The latter is key to

allowing humans to understand an explanation, whilst the

former is key to explaining the model accurately. How then

does a technique meet these explainability requirements?

In particular, is there a technique that can generate explana-

tions which are both accurate and present themselves in an

interpretable way?

Doshi-Velez and Kim [8] raised a number of important

questions regarding explanations. Important to our work

are “cognitive chunks”, the basic units of explanations, and

task-related factors such as time constraints or whether the

explanation is to be local or global. Techniques are often

fixed in form and quantity of cognitive chunks present in

their explanation, i.e. Class Activation Mapping (CAM)

based methods [6, 24, 43] all rely on a coarse feature map

taken from the final convolution layer of the network to gen-

erate their explanations (i.e. 14×14 or 7×7 for VGG16 and

ResNet50 respectively). This results in a large cognitive

chunk, which could result in explanations being inaccurate,

or at worse, misleading. Gradient based methods such as

Deep Taylor [16] or Excitation Backprop [42] are limited

in their approach to giving every individual pixel a score

with no large-scale spatial coherency. In these approaches,

a cognitive chunk is therefore equal to one pixel, too low

level a feature to accurately explain a decision in a compre-

hensible way [39]. Black-box explanation methods such

as LIME [21] and RISE [19] are able to vary the number

of cognitive chunks (superpixels for LIME, grid cells for

RISE) by altering how they generate their perturbation re-

gions. However, this flexibility comes at the cost of hav-

ing to pass the same image thousands of times through the

network. Another limiting factor is that, as the number of

cognitive chunks is increased, the number of passes should

also be increased accordingly.

To address these issues, we propose a pair of com-
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plementary techniques. The first is SWAG (Superpixels

Weighted by Average Gradients), a method that allows us to

produce explanations using discrete, moderately-sized cog-

nitive chunks, that perform well across a range of datasets

and input domains. SWAG uses superpixels as a basis for

the cognitive chunks, which are then weighted using the av-

erage of the back-propagated guided gradients [30]. How-

ever, concerns have been raised about using superpixels as

a basis for explanations, as they may not correctly capture

discriminative regions [19]. A recent method, XRAI, at-

tempts to alleviate this in two ways. The first is by having

multiple sets of overlapping superpixels, the second is by

artificially expanding the underlying superpixels by a fixed

amount. However, neither of these techniques take into ac-

count how the network is interpreting the image. We hy-

pothesise that introducing a pixel based saliency map such

as backpropagated gradients into the superpixel decision

making process will produce regions that better align with

the model’s use of features. We, therefore, investigate two

alternative methods for incorporating saliency maps (based

on Simple Linear Iterative Clustering (SLIC) [1]) when cre-

ating superpixels. The first method is to modify SLIC so

that it not only uses the pixel colour values from the im-

age, but also takes into account the importance of the pixels

to the model as determined by a saliency map. The sec-

ond method is to simply disregard the pixel values from the

image and only use the saliency map as a basis for creat-

ing the superpixels. The intuition behind generating super-

pixels using the contributions of a saliency map is that this

should cause superpixels to not solely form boundaries be-

tween colour regions as with traditional superpixels, but to

form boundaries between regions of high and low impor-

tance to the network.

This allows us to create superpixels that both describe

important image features and the areas important to the net-

work. In this paper, we show that our proposed methods are

able to produce explanations that offer improved local and

global explanations over other comparable techniques. Our

method also has advantages over methods such as LIME,

RISE, and XRAI as it only requires a single forward and

backward pass to generate an explanation.

2. Related Work

There are multiple ways to create explanations of how

a network is behaving. These could broadly be split into

observing how the network itself functions, or how the net-

work interprets an input image. Examples of methods that

try to explain the the units within a network are Network

Dissection [4], Concept Activation Vectors [14] and Acti-

vation Maximization [17, 40]. As our proposed method at-

tempts to explain the input space, in this section we focus

on similar techniques.

A common method of creating explanations is to back-

propagate through the network to the input space. This was

first investigated in the works by Zeiler and Fergus [41], and

Simonyan et al. [27]. Here, the gradients are backpropa-

gated through the network as they would be at training time,

except instead of being backpropagated from a loss func-

tion, they are backpropagated from the prediction score for

the desired class. These techniques were further built upon

with the use of guided backpropagation [30], then expanded

by combining the gradient with the activations during back-

propagation in works such as Layer-wise Relevance Prop-

agation (LRP) [3], Deep Taylor [16], and Excitation Back-

prop [42]. Integrated Gradients [26] propose that, instead

of using a single input, it is better to have a range of scaled

inputs (i.e. from zeros to the original input values) and inte-

grate the corresponding gradients.

Using the final activation layer as a basis for explana-

tions has proved to be a popular method. First proposed by

Zhou et al. [43], Class Activation Maps (CAM) weight and

combine the final activation layer using a global average

pooling layer. This produces a coarse heat map that centres

around the region of the image that is important. This was

generalised with Grad-CAM [24] which removed the need

for the average pooling layer, instead weighting the activa-

tion maps using the mean of the gradient. Grad-CAM++ [6]

was later introduced to increase the weak-localisation abil-

ity of the method. Finally, creating explanations through the

use of multiple perturbations is common. The first example

of this for CNNs was the use of a sliding square to occlude

regions of the image [41]. As multiple images are passed

to the network with regions occluded, a heatmap of how

the network output varies due to the occlusion is built. Lo-

cal Interpretable Model-agnostic Explanations (LIME) [21]

uses superpixels as a foundation for the regions to perturb,

and then uses the output scores to learn a model to accu-

rately determine the importance of each superpixel to the

decision making process. Subsequently, a number of tech-

niques have made use of superpixels as the framework of

an explanation. Seo et al. [25] and Kapishnikov et al. [12]

have independently introduced methods of generating ex-

planations produced using multiple levels of superpixels be-

fore fusing them together to produce a single explanation.

XRAI uses integrated gradients as a method to weight the

superpixel regions. As with LIME, this is a computation-

ally expensive method of creating explanations. SHAP, an

explanation method based on shaply values, also makes use

of superpixels via KernelSHAP [15]. An alternative method

for creating explanations using perturbations is Random-

ized Input Sampling for Explanation of Black-box Mod-

els (RISE) [19]. This method generates random masks at

a lower resolution than the input and perturbs the input

space with these. Whilst the perturbation techniques all

have the ability to produce accurate explanations, they are

inefficient compared to other methods. This is due to the
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multiple passes through the network required, for example

LIME typically uses 1,000 passes and RISE uses 4,000 (for

VGG16) and 8,000 (for ResNet50).

3. Improved CNN Explanation via SWAG and

Gradient-Based Superpixels

Explanations for CNNs can take many forms; however,

when explaining how an input image is interpreted by the

network, we can broadly split these into either pixel-based

(an individual score for every pixel), or region-based (larger

regions are used). The popularity of techniques such as

Grad-CAM or LIME suggest that region-based techniques

offer an increased level of interpretability, that is, they pro-

duce an explanation that is easier to understand. However,

using these methods comes at the trade-off of the spatial ac-

curacy of the explanation. Pixel-based explanations, where

each pixel is individually scored, offer the explanation that

can most precisely identify pixels important to the network.

Intuitively this makes sense as it has been shown repeat-

edly through adversarial examples that, by changing only a

small selection of pixels, the accuracy of the model can be

compromised [32]. Although pixel-based explanations are

accurate, they are often described as being of low-quality or

less interpretable [35]. In this section, we propose SWAG,

a method of weighting superpixels using a backpropagated

gradient, and discuss complimentary methods, for generat-

ing superpixels using the backpropagated gradient that bet-

ter capture the discriminative regions of the image.

3.1. SWAG

The core idea of our method is to take gradient values

backpropagated to the input and pool them into discrete re-

gions. This requires two separate elements to be generated

and combined. To generate the gradients, we use guided-

backprop [30] as we found this to perform marginally better

when compared to regular backpropagated gradients [27].

This is expanded upon further in a sanity check in Sec-

tion 4.1.3. For the network architectures of interest this pro-

duces an image M ∈ R
224×224×3. As per [27], each pixel

(i, j) in the final gradient is obtained by taking the max of

the absolute values: Mi,j = maxc|Mi,j,c|, where c is the

colour channel. Now each pixel represents a score relating

to how important it is to the network’s decision.

To define the discrete regions with which to pool the

gradients, we use superpixels. We use Simple Linear It-

erative Clustering (SLIC) [1], a fast method that accurately

adheres to object boundaries [31]. Using SLIC, we are able

to control the number of superpixels we generate. Through

experimentation we found that starting with 300 superpix-

els provides a good balance between accuracy and weak-

localisation ability (see Section 4.3). With a method for

generating superpixels and the values to weight them, we

produce an explanation Ei ∈ R by weighting each super-

pixel region Ri (where Ri is the set of pixels belonging to

the ith superpixel), with the mean values of M found within

that superpixel:

Ei =
1

|Ri|

∑

M ∩Ri. (1)

Justification for the use of the mean can be found in the

supplemental materials.

3.2. Gradient­Based Superpixels

A number of previous methods have used superpixels as

the basis for their explanations [12, 21, 25]. However, it has

been noted in previous work [19] that the use of superpixels,

whilst aligning well the boundaries of the image, may not

align well to regions of the image important to the network.

Indeed, in the XRAI method [12], superpixel boundaries are

artificially dilated by 5 pixels to incorporate additional edge

regions within the superpixel.

In this section, we propose two novel ways of generating

the underlying superpixels for use in explanations. This is

done by incorporating guided backpropagated gradients as a

basis upon which to build the superpixels. We propose cre-

ating superpixels using only the backpropagated gradients,

as well as a combination of both the image and the gradient.

We first begin by examining how SLIC works us-

ing a colour image. SLIC generates superpixels by

clustering pixels in both colour and co-ordinate space:

[li, ai, bi, xi, yi], where l, a and b represents the CIELAB

colour space [7], and x, y are pixel co-ordinates. SLIC pro-

ceeds to cluster these to produce cluster centres Ci. Super-

pixels are allowed to expand or contract within a limited

range, in the original SLIC algorithm this is fixed at 2ws

from the cluster centre point. Here ws =
√

N/K, where

N is the number of pixels in the image, and K is the de-

sired number of superpixels. To determine whether a pixel

(position j) belongs to a given superpixel, its distance to the

centre value of the superpixel (at position i) is measured.

Here, distance is defined as a combination of both colour

distance dc, and spatial distance ds:

dc =
√

(lj − li)2 + (aj − ai)2 + (bj − bi)2, (2)

ds =
√

(xj − xi)2 + (yj − yi)2. (3)

These distances are then combined to give a single distance

value D′ for each pixel within a superpixel:

D′ =

√

(

dc
wc

)2

+

(

ds
ws

)2

. (4)

Due to the differing scales of dc and ds, a scaling compo-

nent is used for each. For scaling colour distances, a value
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Figure 1: Qualitative comparison between methods using ImageNet and ResNet50. Best viewed in colour. Further examples

are in the supplementary materials

wc is used. When this is large, priority is given to the spa-

tial component, and when it is small, priority is given to the

colour distance. The original paper uses a wc value of 10.

Spatial distance is scaled by ws which seeks to maintain the

grid like structure of the superpixels. Clustering proceeds

iteratively as in k-means clustering.

Superpixels are designed to adhere to boundaries within

an image which makes them useful as a starting point for

CNN explainability methods [21]. However, by confining

a superpixel method to only taking into account the colour

space and distance when generating superpixels, we are po-

tentially creating superpixels in a way that does not lead

to producing the most accurate explanations. For example,

this process could be splitting an important region of an im-

age across superpixels, when it may be beneficial to have

it represented by a single superpixel. We, therefore, pro-

pose a method of incorporating a gradient component into

the SLIC algorithm. To begin with, we introduce a gradi-

ent component g to the initial superpixel description vec-

tor: Ci = [li, ai, bi, xi, yi, gi]
T . Here, g is a pixel within

our gradient-based explanation M that provides a single

score for each pixel. Here, M is scaled between [0, 100]
to match the range of LAB values. To compute the dis-

tance between pixels and the superpixel centre dg , as with

the spatial and colour distances, we calculate the Euclidean

distance: dg =
√

(gj − gi)2. Following this, we alter the

distance function D′ to incorporate dg:

D′ =

√

(

dc
wc

)2

+

(

ds
ws

)2

+

(

dg
wg

)2

. (5)

We also introduce a new parameter wg that allows us to con-

trol the weighting of the newly introduced gradient element.

These give superpixels that are created by combining both

the image and gradient, by removing the dc component we

are able to produce superpixels using only the gradient:

D′ =

√

(

ds
ws

)2

+

(

dg
wg

)2

. (6)

Superpixels created using both the image and gradient

are labelled with a subscript I+G, whilst those with only

the gradient are labelled with a subscript G. For example,

SWAGI+G and SWAGG respectively.

Examples of SWAG using both regular superpixels and

our modified methods can be seen in Figure 1 in the

columns marked SWAG, SWAG I+G, and SWAGG.

4. Image Experiments

In this section, we conduct a number of experi-

ments to examine accuracy (both local and global), weak-

localisation ability, and efficiency. We report results across

multiple datasets: ImageNet [23], Caltech-UCSD Birds

200(CUB200) [36], Stanford Dogs [13], and Oxford Flow-

ers 102 [18]. Excepting ImageNet, these are all fine-

grained datasets, presenting an additional challenge to ex-

isting explainability methods where discriminative features

may occupy a small region of the image. All work is con-

ducted with PyTorch using pre-trained VGG16 [28] and

ResNet50 [10] networks for ImageNet. These models were

fine-tuned for the fine-grained datasets for 50 epochs with

a learning rate of 0.001 for both VGG16 and ResNet50.

Top-1 validation accuracies for VGG16 and ResNet50 re-

spectively are: CUB200 (82.22%, 85.42%), Stanford Dogs

(79.60%, 85.09%), and Oxford Flowers (94.95%, 92.24%).

We compare against the following region-based tech-

niques: Grad-CAM, Grad-CAM++, LIME, XRAI, and

RISE. We show results using SLIC superpixels generated

from both the image and gradient independently, as well as

using our combined image and gradient method. Baselines
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are often used to evaluate how well a technique performs.

In the work by Hooker et al. [11], random noise and So-

bel edge detection [29] are used as baselines to compare

against various saliency map techniques. However, as we

are explicitly comparing against region-based explanation

approaches, we instead use two additional baselines based

on the Euclidean distance from a specific pixel. We use

both a centre point Euclidean distance map (referred to as

centre), as well as the Euclidean distance to a uniformly

randomly chosen pixel (referred to as random). Whilst we

believe it is unfair to compare pixel based methods against

region based methods due to their inherent precision, we

include results for Guided-Backpropagation as it is used for

weighting our superpixels. We will see that it provides good

local accuracy compared to all region based methods, but

poor global accuracy. Our method performs well for both.

4.1. Accuracy (Images)

Explanation accuracy is a measure of how well a method

can score regions or pixels of an image important to the

network. Whilst some methods have used humans to help

evaluate the trustworthiness of an explanation [6, 21], it

has been shown that these are vulnerable to confirmation

bias [2]. It has also been noted that human-centric evalua-

tions are potentially unreliable as they are measuring how

a human interprets the input image, rather than how the

network does [19]. To this end, we rely on automatic ac-

curacy measures. Whilst a number of methods for deter-

mining accuracy have been proposed, scoring or ranking

methods can be inconsistent between different techniques

as they can seek to evaluate different aspects of the expla-

nation [33]. In particular, we note the difference between

measuring the accuracy for local explanations versus global

explanations. Measuring the accuracy of a local explanation

allows us to see how well an explanation captures which re-

gions of the input image are important to the network when

a specific decision is made. In contrast, global accuracy

pertains to how well an explanation is at finding all regions

of the image that have the potential to influence the net-

work’s decision, regardless of whether they are used for the

local explanation [8]. We conduct experiments to measure

both the local and global accuracy. For a local metric, we

use the deletion technique by Petsiuk et al. [19]. For the

global metric, we use Remove and Retrain (ROAR) from

Hooker et al. [11].

4.1.1 Local Accuracy: Deletion

In this set of experiments, a saliency value is computed for

each pixel. (For techniques that use superpixels, all pixels

within a superpixel are assigned the same value.) Pixels are

then iteratively removed (by setting to 0). Pixels are deleted

in order of importance, most important first. As in Petsiuk’s

experiment [19], pixels are deleted in batches of 1792 ( 1

28

of the total number of pixels). At each iteration the image

is evaluated by the network and the softmax score recorded.

We do this for the all the dataset’s validation sets and av-

erage the softmax scores. Note that to ensure fairness we

run all experiments using the original implementations for

LIME [22], RISE [20] and XRAI [12]. The only alteration

made is to support a PyTorch backend where required. The

deletion metric offers a view of what determines local accu-

racy. It measures both how well a method can determine the

regions of the image used by the network and how precise

the explanation is. The intuition is that deleting the regions

important to a network will force the network to alter its de-

cision. Therefore, as the important regions of the image are

deleted, the softmax score will decrease accordingly. This

local metric measures the area under the curve (AUC) as

features are deleted from the input image. The deletion re-

sults can be found in Table 1 and Figure 2.

SWAG is shown to be able to generate better expla-

nations using superpixels generated using either regular

SLIC or our modified version across all datasets and mod-

els tested, apart from one (Stanford Dogs with ResNet50).

We believe that LIME performs well for the Stanford Dogs

dataset as the number of superpixels used in LIME seems to

better match discriminative regions (typically a dogs head)

than SWAG (which tends to focus on the eyes and mouth).

Qualitative examples of the Stanford Dogs dataset can be

found in the supplemental material. The complementary

techniques of SWAG alongside our proposed superpixel

methods improve upon all other techniques by a significant

margin, except the Dogs / ResNet50 combination.

4.1.2 SWAGI+G Optimisation

We use the test for local accuracy as a basis to understand

how the colour and gradient weights within SWAGI+G in-

fluence the performance. We perform a grid search using

ResNet50 and Stanford Dogs over the wc and wg values

from 4 to 20 in steps of 2. We chose these values as in

the original SLIC implementation, a value of 10 is chosen.

By increasing to 20, it halves the influence of the channel,

whilst decreasing to 5 doubles its influence. We found that

a wc value of 20 gave best results. Figure 3 shows how the

AUC score alters depending on wg , reaching a minimum at

wg = 8. Further discussion can be found in the supplemen-

tal material.

4.1.3 Sanity Check

As a sanity check, we perform the local accuracy measure-

ment using SWAG with the standard image superpixels. In

addition to using guided-backpropagation to weight the su-

perpixels, we use random noise, Sobel edges and vanilla

gradients. Results in Table 2.
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ImageNet CUB200 Stanford Dogs Flowers 102

Method VGG16 ResNet50 VGG16 ResNet50 VGG16 ResNet50 VGG16 ResNet50

Random 0.274 0.303 0.296 0.317 0.337 0.371 0.446 0.425

Centre 0.153 0.177 0.153 0.168 0.200 0.233 0.221 0.223

Grad-CAM 0.105 0.142 0.060 0.099 0.097 0.150 0.237 0.235

Grad-CAM ++ 0.111 0.147 0.069 0.101 0.104 0.149 0.217 0.234

LIME 0.105 0.125 0.059 0.074 0.087 0.107 0.214 0.218

RISE 0.116 0.124 0.057 0.072 0.113 0.129 0.250 0.244

XRAI 0.105 0.137 0.053 0.063 0.090 0.117 0.227 0.188

SWAG 0.092 0.119 0.051 0.062 0.083 0.123 0.206 0.168

SWAGI+G 0.084 0.109 0.050 0.060 0.080 0.118 0.195 0.151

SWAGG 0.073 0.095 0.046 0.057 0.077 0.110 0.177 0.137

Guided-Backprop 0.051 0.074 0.040 0.046 0.042 0.080 0.122 0.086

Table 1: Area under the curve for the deletion experiment. Lower is better. Numbers in bold are the best region based

explanations. Note how well the pixel based method performs.

ImageNet CUB200 Stanford Dogs Oxford Flowers

V
G

G
1

6

0 5 10 15 20 25

Removal Steps

0.0

0.2

0.4

0.6

0.8

1.0

S
of
tm

ax
S
co
re

0 5 10 15 20 25

Removal Steps

0.0

0.2

0.4

0.6

0.8

1.0

S
of
tm

ax
S
co
re

0 5 10 15 20 25

Removal Steps

0.0

0.2

0.4

0.6

0.8

1.0
S
of
tm

ax
S
co
re

0 5 10 15 20 25

Removal Steps

0.0

0.2

0.4

0.6

0.8

1.0

S
of
tm

ax
S
co
re

R
es

N
et

5
0

0 5 10 15 20 25

Removal Steps

0.0

0.2

0.4

0.6

0.8

1.0

S
of
tm

ax
S
co
re

0 5 10 15 20 25

Removal Steps

0.0

0.2

0.4

0.6

0.8

1.0

S
of
tm

ax
S
co
re

0 5 10 15 20 25

Removal Steps

0.0

0.2

0.4

0.6

0.8

1.0

S
of
tm

ax
S
co
re

0 5 10 15 20 25

Removal Steps

0.0

0.2

0.4

0.6

0.8

1.0
S
of
tm

ax
S
co
re

Centre G-CAM++ GB Grad-CAM LIME RISE Random SWAG SWAGG SWAGI+G XRAI

Figure 2: Local accuracy AUC charts. Best viewed in a PDF viewer with zoom ability. Zoomed in graphs featuring the

bottom left hand region can be found in the supplemental material.

4.1.4 LIME - Alternative Superpixels

We propose that our method for creating superpixels using

the backpropagated gradient can be used as an alternative

for other explanation techniques based on superpixels. In

this experiment we compute the local accuracy results us-

ing LIME with the I, I+G, and G methods for generating

superpixels using SLIC with 50 superpixels. Our results us-

ing ImageNet are found in Table 3. Note the image only

superpixel is different to the scores in Table 1 as here we

use SLIC whereas by default LIME uses Quick Shift [34].

From these results we can see that by using our superpixel

methods as a drop in replacement for Quick Shift we are

able to obtain much better local accuracy results.
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Figure 3: AUC change as we alter the wg . Lower AUC is

better.

Method Explanation VGG16 ResNet50

SWAGImage

GB 0.092 0.119

Van 0.134 0.190

Rand 0.170 0.210

Sobel 0.154 0.188

Table 2: Sanity check showing how the use of other pixel

scoring methods does not perform as well. Lower is better.

Method VGG16 ResNet50

LIMEI 0.107 0.126

LIMEI+G 0.090 0.108

LIMEG 0.082 0.099

Table 3: Local accuracy results for LIME. Changing Quick

Shift to SLIC and our variants (I+G and G). Lower is better.

4.1.5 Global Accuracy: Remove and Retrain (ROAR)

The previous deletion experiment seeks to gain an under-

standing of how well a technique explains how a model has

learnt to represent a class by the removal of image regions.

However, work by Hooker et al. [11] suggests that there is

a subtlety with this experiment as the images with regions

removed are passed back into the network, fall out of the

distribution used for training. They argue that it becomes

unclear if the performance degradation of a technique in the

previous experiment comes from the change in data distri-

bution, or because the technique is genuinely removing im-

portant features. They propose an alternative method that

requires retraining the network after every stage of feature

removal (for removal percentages of [0, 10, 30, 50, 70, 90]).

To ensure fairness, they repeat the experiment five times

for each method tested. For every explanation technique

tested, 30 models are trained, each requiring a new dataset

of training and validation images with the correct percent-

age of pixels removed. Due to the high storage and compu-

tational requirements, we are only able to show results for

the smaller datasets of CUB200 and Stanford Dogs using

Method CUB200 Dogs

Centre 0.284 0.393

Grad-CAM 0.219 0.344

G-CAM++ 0.218 0.342

LIME 0.210 0.364

SWAG 0.173 0.320

SWAGI+G 0.172 0.319

SWAGG 0.179 0.324

Guided Backprop 0.231 0.435

Table 4: ROAR AUC results. Lower is better.
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Figure 4: ROAR results. A sharper drop is better.

ResNet50. We also omit RISE and XRAI as the amount of

time taken to generate explanations makes this metric infea-

sible. We again measure the AUC to obtain a quantitative

result, these are shown in Table 4 and Figure 4.

We see that for both datasets our methods performs bet-

ter than all the other methods tested at locating features

of global importance. Interestingly, despite its strong lo-

cal accuracy performance SWAGG performs the worst of

our proposed methods, with SWAGI+G performing the best.

There is potential scope for improvement for this score as

we tuned it to work better as a local interpretability method

through the use of the wc and wg values. It is imprac-

tical to perform hyper parameter optimisation using the

ROAR technique. It is interesting to note that despite its

strong local accuracy results, guided-backpropagation per-

forms poorly. This suggests that whilst the gradients can

find regions important to the network, they are overly pre-

cise to achieve good global accuracy.

4.2. Weak­Localisation (Images)

A common experiment explores an explanations ability

to locate a salient object within an image. We used the

well-established method [5, 9, 42] of weakly localising the

bounding boxes found in the ImageNet validation set. Lo-

calisation error is calculated using Intersection over Union
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VGG16 ResNet50

Val Mea Eng Val Mea Eng

Random 57.43 58.96 57.39 57.43 58.96 57.39

Centre 47.57 48.18 47.68 47.57 48.18 47.68

Grad-CAM 52.06 49.76 51.80 45.94 45.89 44.35

Grad-CAM ++ 47.32 47.25 46.08 45.76 45.83 43.85

LIME 54.82 52.40 52.82 53.08 50.77 51.19

RISE 55.01 57.94 49.68 52.73 53.82 50.53

SWAG 55.06 46.10 45.01 56.73 52.50 50.65

SWAGI+G 54.57 46.44 44.95 56.33 52.10 50.70

SWAGG 54.16 45.95 44.86 56.69 52.07 52.02

Guided Backprop 55.28 46.32 49.63 56.44 51.53 52.35

Table 5: Weak-localisation results as % of localisation error.

Lower is better.

(IOU), where an overlap greater than 50% is counted as cor-

rect. Implementation details can be found in the supple-

mental material. While a useful proxy to get insight for the

cohesiveness of an explanation, weak localisation experi-

ments do not directly measure the accuracy or quality of

an explanation [19]. The results for the weak-localisation

experiment are shown in Table 5. For the VGG16 net-

work, we obtain a better overall localisation score than

Grad-CAM based methods. Interestingly for VGG16 our

method performs better than all others when thresholding

using the mean or the energy. However, our method per-

forms poorly when thresholding by pixel value, most likely

due to the uneven distribution of values between superpix-

els. For ResNet50 our method does not perform well when

compared to Grad-CAM and Grad-CAM++. Our method

mirrors, and sometimes beats guided backpropagation. As

it is used to weight, and in some cases define our super-

pixels, it is possible that using an alternative method could

yield better results.

4.3. Effect of Superpixel Count

Varying the number of superpixels alters the perfor-

mance of SWAG (Figure 5). We observe that increasing the

number of superpixels improves the local AUC score. How-

ever, whilst the accuracy improves, we note that the ability

for SWAG to weakly-localise decreases after 200–300 su-

perpixels. The number of superpixels presents a trade-off

between the desired granularity of the explanation and the

spatial accuracy (large superpixels can extend beyond the

object boundaries, whereas small superpixels cause expla-

nations to become less human-interpretable).

4.4. Efficiency

We measure the mean time to compute an explanation

for the first 1,000 images of the ImageNet validation set,

cropped to 224×224. Results were computed using an

NVidia Titan X GPU. Results are shown in Table 6. From

the results we see that there is a wide gap between tech-

niques such as LIME, RISE and XRAI compared to other
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Figure 5: Variation in local accuracy (top row) and weak

localisation (bottom row) over a range of superpixels.

Method VGG16 ResNet50

Grad-CAM 0.03 0.03

Grad-CAM++ 0.03 0.03

LIME 5.80 4.76

RISE 13.19 17.48

XRAI 31.10 30.57

SWAG 0.12 0.18

SWAGI+G 0.12 0.18

SWAGG 0.07 0.10

Table 6: Mean computation time in seconds

gradient based methods. Whilst our technique is marginally

slower than Grad-CAM or Grad-CAM++ we note that a

much higher accuracy is achieved for only a minimal loss

of efficiency.

5. Conclusion

In this paper we have introduced a complementary pair

of novel techniques for weighting superpixels with guided

gradients and for generating superpixels that better match

discriminative regions within an image. We have shown the

technique to be effective for both local and global explana-

tions on a range of image datasets.
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[16] Grégoire Montavon, Sebastian Lapuschkin, Alexander

Binder, Wojciech Samek, and Klaus-Robert Müller. Explain-

ing nonlinear classification decisions with deep Taylor de-

composition. Pattern Recognition, 65:211–222, 2017.
[17] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas

Brox, and Jeff Clune. Synthesizing the preferred inputs for

neurons in neural networks via deep generator networks. In

D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R.

Garnett, editors, Advances in Neural Information Process-

ing Systems 29, pages 3387–3395. Curran Associates, Inc.,

2016.
[18] Maria-Elena Nilsback and Andrew Zisserman. Automated

flower classification over a large number of classes. In

Proceedings of the 2008 Sixth Indian Conference on Com-

puter Vision, Graphics and Image Processing, pages 722–

729, 2008.
[19] Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: random-

ized input sampling for explanation of black-box models. In

British Machine Vision Conference 2018, BMVC, 2018.
[20] Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: random-

ized input sampling for explanation of black-box models.

https://github.com/eclique/RISE, 2018.
[21] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.

“Why should I trust you?”: Explaining the predictions of

any classifier. In 22nd ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages

1135–1144, 2016.
[22] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.

“Why should I trust you?”: Explaining the predictions of any

classifier. https://github.com/marcotcr/lime,

2016.
[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015.
[24] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek

Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-

tra. Grad-CAM: Visual explanations from deep networks

via gradient-based localization. In The IEEE International

Conference on Computer Vision (ICCV), pages 618–626, Oct

431



2017.
[25] D. Seo, K. Oh, and I. Oh. Regional multi-scale approach

for visually pleasing explanations of deep neural networks.

IEEE Access, 8:8572–8582, 2020.
[26] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje.

Learning important features through propagating activation

differences. In 34th International Conference on Machine

Learning (ICML), volume 70 of Proceedings of Machine

Learning Research, pages 3145–3153. PMLR, 06–11 Aug

2017.
[27] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.

Deep inside convolutional networks: Visualising image clas-

sification models and saliency maps. In 2nd International

Conference on Learning Representations, ICLR 2014, Work-

shop Track Proceedings, 2014.
[28] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations (ICLR), 2015.
[29] Irwin Sobel and G. Feldman. A 33 isotropic gradient oper-

ator for image processing. Pattern Classification and Scene

Analysis, pages 271–272, 01 1973.
[30] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas

Brox, and Martin A. Riedmiller. Striving for simplicity: The

all convolutional net. In 3rd International Conference on

Learning Representations, ICLR 2015, Workshop Track Pro-

ceedings, 2015.
[31] David Stutz, Alexander Hermans, and Bastian Leibe. Su-

perpixels: An evaluation of the state-of-the-art. Computer

Vision and Image Understanding, 166:1–27, 2018.
[32] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai.

One pixel attack for fooling deep neural networks. IEEE

Transactions on Evolutionary Computation, 23(5):828–841,

2019.
[33] Richard Tomsett, Dan Harborne, Supriyo Chakraborty, Prud-

hvi Gurram, and Alun Preece. Sanity checks for saliency

metrics. In Thirty-Fourth AAAI Conference on Artificial In-

telligence, 2020.
[34] Andrea Vedaldi and Stefano Soatto. Quick shift and kernel

methods for mode seeking. In European conference on com-

puter vision, pages 705–718. Springer, 2008.
[35] Jorg Wagner, Jan Mathias Kohler, Tobias Gindele, Leon Het-

zel, Jakob Thaddaus Wiedemer, and Sven Behnke. Inter-

pretable and fine-grained visual explanations for convolu-

tional neural networks. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 9089–

9099, June 2019.
[36] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-

longie, and P. Perona. Caltech-UCSD Birds 200. Technical

Report CNS-TR-2010-001, California Institute of Technol-

ogy, 2010.
[37] Nan Wu, Krzysztof J. Geras, Yiqiu Shen, Jingyi Su, S. Gene

Kim, Eric Kim, Stacey Wolfson, Linda Moy, and Kyunghyun

Cho. Breast density classification with deep convolutional

neural networks. In ICASSP, pages 6682–6686, 2018.
[38] Dan Xu, Yan Yan, Elisa Ricci, and Nicu Sebe. Detecting

anomalous events in videos by learning deep representations

of appearance and motion. Computer Vision and Image Un-

derstanding, 156:117–127, 2017.
[39] Mengjiao Yang and Been Kim. Benchmarking Attribu-

tion Methods with Relative Feature Importance. CoRR,

abs/1907.09701, 2019.
[40] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and

Hod Lipson. Understanding neural networks through deep

visualization. arXiv preprint arXiv:1506.06579, 2015.
[41] Matthew D Zeiler and Rob Fergus. Visualizing and under-

standing convolutional networks. In European Conference

on Computer Vision, pages 818–833. Springer, 2014.
[42] Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan

Brandt, Xiaohui Shen, and Stan Sclaroff. Top-down neu-

ral attention by excitation backprop. International Journal

of Computer Vision, 126(10):1084–1102, 2018.
[43] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,

and Antonio Torralba. Learning deep features for discrim-

inative localization. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2921–2929,

June 2016.

432


