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Abstract

National Basketball Association (NBA) players are

highly motivated and skilled experts that solve complex de-

cision making problems at every time point during a game.

As a step towards understanding how players make their

decisions, we focus on their movement trajectories during

games. We propose a method that captures the multi-modal

behavior of players, where they might consider multiple tra-

jectories and select the most advantageous one. The method

is built on an LSTM-based architecture predicting multi-

ple trajectories and their probabilities, trained by a multi-

modal loss function that updates the best trajectories. Ex-

periments on large, fine-grained NBA tracking data show

that the proposed method outperforms the state-of-the-art.

In addition, the results indicate that the approach generates

more realistic trajectories and that it can learn individual

playing styles of specific players.

1. Introduction

In recent years, advances in artificial intelligence and

computer vision started revolutionizing how athletic per-

formance and results are being analyzed and understood,

which includes the use of fine-grained player tracking data

during sporting events. In our research we focus on devel-

oping new methods aimed at deeper understanding of the

behavior of athletes in team sports, with a particular fo-

cus on their motion prediction. This is a particularly im-

portant task in invasion sports, such as soccer, football, or

basketball, where knowledge of how and where the play-

ers will move, especially when it comes to those from the

opposing team, is of critical importance for gaining a tacti-

cal advantage during the game [20]. Beyond this use case

the benefits of accurate motion prediction extend to other

applications, such as postgame analysis [12] or improving

TV broadcasting of games by optimizing camera movement

[4, 17]. Prediction of human trajectories can also be used to

improve tracking accuracy [18], and has recently become a

vibrant topic of research in the computer vision community

[1, 8, 9, 14].

Using mathematics, statistics, and artificial intelligence

to analyze sports performance is not a novel idea. It has

been famously explored in baseball [23] and applied with

great success to soccer [19], with authors uncovering use-

ful patterns that have been used to move the needle in this

highly competitive field. As these advanced tools have been

proven successful in practice, statistical analysis has been

adopted by top-performing teams regardless of the sport

they play. Today, elite teams from across the globe, such

as Golden State Warriors, New York Yankees, and Manch-

ester United, have analytics departments focusing on de-

riving knowledge from large amounts of data these teams

generate. Beyond the sports professionals, even the general

public is becoming more accepting of these complex statis-

tical tools, as exemplified by the introduction of the concept

of expected goals [26] in some postgame summaries in the

Premier League, the English top soccer division. This trend

is also exemplified by a number of research publications, as

well as high-profile conferences and workshops organized

on the topic, such as MIT Sloan SAC or KDD Sports Ana-

lytics [3]. These are attended by both the scientific commu-

nity, world-class athletes and management of professional

sports teams, indicating the value that the artificial intelli-

gence is bringing to this multi-billion dollar industry.

In this paper we focus on movement prediction of NBA

players during offensive possessions and we assume that at

any moment players have freedom to consider several op-

tions for their movement. The trajectories depend on the

state of a possession, which includes positions and current

trajectories of the players and the ball, as well as on indi-

vidual player preferences. To predict the trajectories, we

propose an uncertainty-aware, multi-modal deep learning

model. The model is trained to predict multiple player tra-

jectories and probabilities that they will be selected. Figure

1 shows an example of such trajectories and their probabil-

ities, compared to baseline models. We provide an in-depth

discussion of Figure 1 in the Results section, and evaluate

the proposed method using player tracking data collected

during several months of an NBA season. We showcase that

with our proposed training regime, the model has the ability

of recreating distinct playing styles of individual players.
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(a) location-LSTM (b) CNN (c) MBT1

(d) MACRO VRNN1 (e) SocialGAN4 (f) MBT4l

Figure 1: Visualization of predicted trajectories with H = 40 using several state-of-the-art methods: a) location-LSTM, b) CNN, c) MBT1,

d) MACRO VRNN1, e) SocialGAN4, f) MBT4l (ours), red: attackers, blue: defenders, orange: ball, grey: input history of predicted player,

yellow: prediction, green: ground truth; a video animation is included in the Supplementary Material

2. Related Work

Modeling and predicting human trajectories is an impor-

tant challenge in a number of scientific areas. Researchers

have worked on this problem to develop realistic crowd sim-

ulations [24], or to improve vehicle collision avoidance sys-

tems [16] through predicting future pedestrian movement.

When it comes to traffic applications, pedestrian behavior

was usually modeled using attracting and repulsive forces

to guide them towards a goal, while simultaneously avoid-

ing obstacles. Human pedestrian prediction was also used to

improve accuracy of tracking systems [6, 25, 31] or to study

intentions of individuals or groups of people [5, 21, 30].

The advances in deep learning led to data-driven methods,

such as Long Short-Term Memory (LSTM) networks [15]

with shared hidden states [1], multi-modal Generative Ad-

versarial Networks (GANs) [13], or inverse reinforcement

learning [18], outperforming the traditional methods. The

work by [13] is particularly related to our study, through its

use of a multi-modal loss function and by showing practical

benefits of multi-modal trajectory prediction as compared to

single trajectory predictions. Beyond pedestrian movement,

recent research on predictive modeling of vehicular trajec-

tories for self-driving car applications also contains ideas of

relevance for the current study. In particular, [7] showed

that multi-modal trajectory predictions for vehicles gener-

ate realistic real-world traffic trajectories. The multi-modal

loss function in our approach is inspired by this work, where

we adapt ideas from the self-driving domain to modeling of

movement of basketball players.

The ubiquitous use of tracking systems in professional

sports leagues like the NBA or the English Premier League

inspired researchers to analyze and model trajectories of

athletes during matches. For example, [9] used Variational

Autoencoders (VAEs) to model real-world basketball data

and showed for NBA data that the offensive player trajec-

tories are less predictable than the defense. The authors of

[22] and [28] used LSTM to predict near-optimal defensive

positions for soccer and basketball, respectively. [29] simi-

larly used variants of VAEs to generate trajectories for NBA
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players. NBA player trajectory predictions are also stud-

ied by [32] and [33], where a deep generative model based

on VAE and LSTM and trained with weak supervision was

proposed to predict trajectories for an entire team. Macro-

intents for each player were inferred, where the players tar-

get a spot on the court they want to move to. The authors

evaluate the model mostly by human expert preference stud-

ies and show they can outperform the baselines, indicating

that RNNs can capture information from observational data

in sports. However, their trajectories are usually not smooth

and no restrictions are set on the position of a player on con-

secutive time steps, such that the model may output physi-

cally unrealistic trajectories. We consider this state-of-the-

art approach in our experiments, and show that it is outper-

formed by the proposed multi-modal method.

3. Methodology

3.1. Problem Setting

Recent advancements in optical tracking have made it

possible to track the players and the ball during an NBA

game with good enough accuracy and temporal resolution

to recreate the trajectories of all ten players and the ball

during an entire basketball game. This allows us to extract

2-D location ℓ
p
t = [xp

t , y
p
t ] of player p at time step t, with

p ∈ {1, . . . , 10}, as well as 2-D location of the ball at time

t, ℓbt = [xb
t , y

b
t ], where x-coordinate represents the length

of the field while the y-coordinate represents the width,

with the origin at the upper left corner (see Figure 1 for

illustration). Using an ordered sequence of previous L + 1
time steps we can generate historical trajectory of the p-th

player as h
p
t = [ℓpt−L, . . . , ℓ

p
t ], where time steps are equally

spaced at an interval of ∆t. Similarly, we can generate a

historical trajectory of the ball as hb
t = [ℓbt−L, . . . , ℓ

b
t ]. As

a convention, we will assume that the first 5 players rep-

resent the team on the offense and the last 5 players the

team on the defense. We are interested in predicting future

trajectory of p-th offensive player, represented as a vector

τ
p
t = [ℓpt+1, . . . , ℓ

p
t+H ], where H is the number of future

time steps (or horizon) for which we predict the trajectory.

We will assume that the player of interest (i.e., the offen-

sive player for which we are predicting future trajectory) is

denoted by player index P .

In this paper, we processed the raw tracking data to cre-

ate labeled data set D = {(uP
t , τ

P
t ), t = 1, . . . , T, P =

1, . . . , 5}, where one data point is defined for each time

step and each offensive player (as indicated by the range

P = 1, . . . , 5). Here T is the total number of time steps,

input vector uP
t = {hP

t ,h
−P
t ,hb

t , st} is a set of historical

player and ball trajectories, where h
P
t indicates history of

the player of interest, h−P
t indicates histories of all other

9 players, and st is the shot clock defined as the time in

seconds remaining until the shot clock expires. Note that

in the input vector the history of the player of interest P
always comes first, followed by histories of their 4 team-

mates and then by 5 opposing players, ordered by a distance

to the player of interest. Output vector τP
t is a future tra-

jectory of the player of interest P computed at time step

t, and objective is to build a predictor that accurately pre-

dicts their trajectory given inputs u
P
t . We emphasize that,

in addition to the given inputs, there are other features that

potentially might influence the observed trajectories, such

as game clock, home vs. away, foul calling, previous plays,

or player mismatch. As we demonstrate with the shot clock

feature, our approach allows for a straightforward use of

any additional feature that a modeller may deem important.

However, an in-depth feature analysis is out of scope of this

paper, and instead we focus on showing viability of the pro-

posed multi-modal predictive model. In fact, it could be

argued that a number of such features are implicitly present

in the input representation already. For example, if a team

has a large point lead with little game time remaining, they

may slow down on the offense and the observed movement

history could capture that information.

Lastly, note that an alternative to predicting a sequence

of H future locations of the offensive player is predict-

ing a sequence of their velocities. As we know the cur-

rent location at time t, we can convert trajectory τ
P
t to

a velocity vector ν
P
t = [vP

t+1, . . . ,v
P
t+H ] using a direct

mapping of velocities to locations, computed for horizon

h ∈ {1, . . . , H} as

v
P
t+h =[vPx,t+h, v

P
y,t+h] =

[
xP
t+h − xP

t+h−1

∆t

,
yPt+h − yPt+h−1

∆t

].
(1)

Although trajectories and velocity vectors are mathemati-

cally interchangeable, a particular choice might have a sig-

nificant impact on model training. As we will demonstrate

experimentally, predicting the next location is more chal-

lenging due to the issue in normalization of coordinates.

3.2. Proposed Approach

As noted previously [32], movement of basketball play-

ers is inherently multi-modal as the players can decide be-

tween multiple plausible trajectories at any given time (e.g.,

to move towards the basket for a layup or towards a corner

for a three-point attempt). In order to account for this multi-

modality we train a predictive model that generates output

o
P
t = [ν̂P

t,1, . . . , ν̂
P
t,M , p̂Pt,1, . . . , p̂

P
t,M ], which consists of

M predicted trajectories ν̂
P
t,m representing M modes, as

well as M scalars p̂Pt,m representing probabilities that a cor-

responding mode is selected by a player. This results in

(2H +1)M output values, since output for each mode con-

sists of a trajectory comprising H 2-D locations and an ad-

ditional mode probability.
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3.2.1 Loss function

Given a ground-truth trajectory ν and predicted trajectory

ν̂, we first define the trajectory loss as

LMSE(ν, ν̂) =
1

2H
‖ν − ν̂‖22, (2)

defined as a mean squared error (MSE) of the predicted

velocity vector. Then, in order to train a model to predict

multiple trajectories and their probabilities, we base our ap-

proach on an adaptation of the multi-modal loss function

presented in [7]. A similar loss function is used by [13] to

generate multi-modal pedestrian trajectories within a GAN

framework. In particular, we define the Multiple-Trajectory

Prediction (MTP) loss for time step t and player P , com-

prising a linear combination of classification loss log p̂m
and trajectory loss (2),

LMTP =

M
∑

m=1

δǫ(m = m∗)
(

log p̂m+αLMSE(νP
t , ν̂

P
t,m)

)

,

(3)

where p̂m is an output of a softmax, α is a hyper-parameter

used to trade-off the classification and trajectory losses, and

m∗ is the index of the winning mode that produced the tra-

jectory closest to the ground truth, computed according to a

distance function dist() defined in the next subsection,

m∗ = argmin
m∈{1,...,M}

dist(νP
t , ν̂

P
t,m). (4)

Moreover, δǫ is a relaxed Kronecker delta [27] giving the

most weight to the best matching trajectory, but also a small

weight to the remaining ones,

δǫ(cond) =

{

1− ǫ, if condition cond is true,
ǫ

M−1
, otherwise.

(5)

Intuitively, the classification loss in (3) forces the probabil-

ity of the winning mode to 1 (thus pushing probabilities of

other modes towards zero due to the softmax), and trajec-

tory loss penalizes prediction error of the winning mode.

We note that [7] used the unrelaxed Kronecker delta (i.e.,

ǫ was set to 0), which only updates the closest trajectory. In

practice, this leads to problems where a randomly initialized

path is much worse than the remaining paths. Such poorly

initialized modes never get selected through (4) and do not

get a chance to improve during training. To prevent this is-

sue we use the relaxed Kronecker delta, where we start from

some small value of ǫ that is gradually reduced towards 0 as

the training progresses. This phenomenon is well known in

generative models and is commonly referred to as mode col-

lapse in GANs or posterior collapse in VAEs. Comparable

annealing remedies have been proposed in VAEs [2], but are

generally not sufficient to achieve good performance [11].

Our approach was more stable than VAE or GAN training,

and we will empirically show that we can outperform state-

of-the-art models based on each of those two methods.

3.2.2 Distance functions

As mentioned previously, m∗ denotes a trajectory closest

to the ground truth, however there are different closeness

measures that can be considered. For example, in [13] the

closest mode is defined simply as a path with the lowest

trajectory loss, computed as

distMSE(ν, ν̂m) = LMSE(ν, ν̂m). (6)

We also considered other distance functions, as [7] con-

cluded that its choice has a large impact on the model per-

formance. Thus, we considered distance function with the

smallest overall displacement error, defined as a location er-

ror at the last time step and computed as

distl(ν, ν̂m) = ‖

H
∑

h=1

(νt+h − ν̂t+h,m)‖2. (7)

Lastly, we considered using the error of final player velocity

(which can be interpreted as player’s “heading”), shown in

earlier work [7] to be beneficial,

distv(νt, ν̂t,m) = ‖νt+H − ν̂t+H,m‖
2
. (8)

3.2.3 Model architecture

While [7] use the multi-modal loss function to train a CNN

model, we will show that on the NBA data LSTM network

is more effective. We use a two-layer LSTM architecture,

each with a width of 128, to encode the time-series input

of recently observed data u
P
t . The encoder is a fully con-

nected layer and the prediction consists of M trajectories

of a single player given as x- and y-velocities for H future

time steps, as well as M probabilities that the player will

follow the respective trajectory.

Because players differ in their positions, skills, heights,

and weights, we would expect them to run at different

speeds and along different paths. To take these differences

into account, we consider a two-stage training approach to

learn specific per-player models. To this end we first train

the proposed model on data taken from all players to learn

the average behavior of all NBA players. In the second

training phase these pre-trained networks can be used to

initialize a specialized per-player network fine-tuned on a

subset containing only that player’s data, so that individual

behavior of the player can be learned. In the experiments

we evaluate both global and per-player models.

We refer to the proposed multi-modal approach as Multi-

modal Basketball Trajectories (MBT). We evaluate differ-

ent number of modes M and investigate different distance

functions in (4), indicating these choices in the subscript.

In particular, we denote model variants as MBTMd, with

d ∈ {MSE, l, v}, corresponding to (6), (7), and (8), re-

spectively. For example, MBT4l generates 4 paths and uses

distance function (7) during training. When using a single

mode the distance measure is not used, and we refer to the

uni-modal model as MBT1.
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4. Experiments

4.1. Experimental setting

4.1.1 Data set

We used publicly available movement data collected from

632 NBA games during the 2015-2016 season1, from which

we extracted 114,294 offensive possessions. An offensive

possession starts when all players from one team cross into

the opponent’s half court, and ends when the first offensive

player leaves the half court or the game clock is paused.

Possessions shorter than 3s were discarded, resulting in

113,760 possessions. This amounts to 1.1 million seconds

of gameplay where player location is captured every 0.04s.

We downsampled the data by a factor of 3 to obtain sam-

pling rate of ∆t = 0.12s, corresponding to a lower bound

on human reaction time [10] during which velocity is con-

sidered constant. Furthermore, we randomly split the data

into train and test sets using 90/10 split. All inputs and out-

puts were normalized to the [−1, 1] range. To train the spe-

cialized networks that predict specific player’s movement

we extracted possessions featuring that player. The amount

of data for each player is in the order of several thousands

(e.g., for Stephen Curry there were 2,767 possessions).

4.1.2 Model training

As discussed previously, we used a 2-layer LSTM with 128

channels in each layer. To learn the general model for all

NBA players we trained LSTM in batches of 1,024 samples.

The learning rate in Adam optimizer was set to 5 · 10−4.

We set hyper-parameter α in equation (3) to 1, such that the

amplitude of the two losses are about equal, and ǫ in (5) to

0.25 which was reduced by a factor of 0.05 per epoch until

ǫ = 0. We used ℓ2 regularization with the weight of λ =
0.001 and an early stopping mechanism to further prevent

overfitting. To specialize the neural network for a specific

player we fine-tune the base model on data from that player

and adjust the hyper-parameters as follows. We start with

ǫ = 0.75 which is reduced by a factor of 0.01 per epoch

to make sure that all modes benefit from the information

contained in this smaller training set. The initial learning

rate in this case was reduced to 10−5.

All training was done on a single computer with Nvidia

GeForce GTX 1080 card. It took approximately 60 minutes

to train the base model, while specializing the network on a

specific player took less than 5 minutes.

4.1.3 Accuracy measures

We report common measures used in pedestrian trajectory

prediction, final displacement error (FDE) and average dis-

1https://github.com/sealneaward/nba-movement-data, last accessed

November 2020; we are not associated with the data creator in any way.

placement error (ADE) [1, 13], defined as

FDE =
1

5T

T
∑

t=1

5
∑

P=1

∥

∥

∥
ℓ
P
t+H − ℓ̂

P

t+H

∥

∥

∥

2

ADE =
1

5HT

T
∑

t=1

5
∑

P=1

H
∑

h=1

∥

∥

∥
ℓ
P
t+h − ℓ̂

P

t+h

∥

∥

∥

2
.

(9)

In other words, FDE considers the location error at the end

of the prediction horizon H , while ADE averages location

errors over the entire trajectory. We also report MSE error,

defined as in equation (2). Unlike FDE and ADE that mea-

sure trajectory prediction errors, MSE is a measure of how

accurately are the velocities predicted.

To evaluate multi-modal approaches we calculate the

metrics for each output trajectory and only choose the path

that has the smallest FDE, which is consistent with evalua-

tion procedure commonly used in the literature [13, 27].

4.1.4 Baselines

To establish an upper bound for the proposed error measures

we compared our method to a straw-man baseline. Constant

velocity (CV) baseline assumes that the player keeps mov-

ing in the last observed direction with constant speed.

Baseline CNN refers to an approach that transforms the

input to a rasterized trace image and uses a CNN encoder

(instead of LSTM) before predicting the future velocities

[7]. For the encoder, we used 5 layers with depths [64, 128,

128, 64, 32], 5×5 mask, ”same” padding, and 2×2 max

pooling. The decoder consisted of 2 densely connected lay-

ers with sizes 128 and 64.

To compare different output alternatives we trained the

same LSTM architecture used for our model to directly pre-

dict player locations, as opposed to predicting velocities.

We refer to this model as location-LSTM. We also consid-

ered SocialGAN [13], the state-of-the-art in human trajec-

tory prediction. This approach uses an LSTM-based gen-

erator, coupled with a social pooling layer to account for

nearby actors. We trained this model using the code made

available by its authors2, using the same NBA data set ex-

cept that SocialGAN can not use extra information such as

ball location or shot clock, therefore only the players trajec-

tories are used. GANs are notoriously hard to train, which

resulted in a training time of 28 hours for 50 epochs of train-

ing. In addition, we considered the state-of-the-art MACRO

VRNN [32], which uses programmatic weak supervision to

first predict a location that the player wants to reach and

then uses a Variational RNN (VRNN) to predict a trajec-

tory that the player will take to reach it. MACRO VRNN

also accounts for the multi-modality of the problem, with

the number of generated paths denoted in the subscript. We

2https://github.com/agrimgupta92/sgan, last accessed November 2020.
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Table 1: Comparison of various models, input steps L, and modes M in terms of error metrics ADE and FDE (in feet) and MSE (in ft2/s2)

H = 10 H = 20 H = 40

Method L M ADE FDE MSE ADE FDE MSE ADE FDE MSE

CV 1 1 1.72 3.92 9.09 4.64 10.97 16.01 11.59 26.14 20.59

CNN 10 1 2.76 5.25 15.80 5.28 9.99 17.48 8.15 13.23 21.95

location-LSTM 10 1 1.61 2.98 10.21 3.43 6.91 15.94 6.79 12.11 29.80

MBT1 10 1 1.43 2.98 7.26 3.32 6.92 12.36 6.59 11.97 16.93

MBT1 20 1 1.40 2.93 7.25 3.30 6.91 12.41 6.59 11.97 16.74

MBT1 30 1 1.39 2.92 7.46 3.33 6.91 12.32 6.58 11.92 16.87

SocialGAN1 10 1 1.25 2.75 8.18 3.09 6.67 13.32 6.47 12.35 17.54

MACRO VRNN1 10 1 1.70 3.43 13.17 4.46 8.66 19.85 8.48 14.98 25.03

SocialGAN4 10 4 1.19 2.61 7.36 2.95 6.33 11.91 6.19 11.54 15.76

MACRO VRNN4 10 4 1.07 1.98 5.90 3.14 5.07 11.93 6.40 8.54 19.29

MTP4l 10 4 1.44 2.87 7.91 3.08 6.14 11.36 5.78 10.06 13.52

MBT4MSE 10 4 1.01 1.91 3.82 2.33 4.00 6.35 5.25 6.92 12.46

MBT4v 10 4 1.05 1.93 4.00 2.66 4.31 7.75 6.71 8.74 14.72

MBT4l 10 4 1.01 1.90 3.82 2.33 4.04 6.35 4.89 6.39 11.56

used models provided in [32] trained on roughly the same

amount of data. Note that training takes up to 20 hours,

as opposed to only 1 hour for our proposed method. Fi-

nally, we compare to Multiple-Trajectory Prediction (MTP)

[7] which resembles our approach, but instead uses an unre-

laxed Kronecker delta (i.e., ǫ was set to 0) and the distance

measure from equation (7).

4.2. Results

We first compare the performance of models trained on

data containing all possessions, with results across different

error measures and time horizons presented in Table 1.

The CV model, which assumes the player will keep mov-

ing with the last observed velocity, gives relatively small

errors for short time horizons, but deteriorates quickly for

longer time horizons. The CNN model outperforms this

simple baseline at longer horizons, while the performance is

suboptimal at short horizons. Location-LSTM is compara-

ble to MBT1 model in terms of ADE and FDE metrics, with

much worse MSE metric. As we will demonstrate later in

qualitative results, this difference in MSE can be explained

by the fact that location-LSTM produces trajectories that

are not physically achievable by the players.

Next we experiment with the uni-modal MBT1 model

and evaluate the influence of different lengths of histori-

cal inputs L. Based on the results we confirm that the

MBT1 models only marginally improve with longer input

sequences. As a result, in the remainder of the experiments

we use a value of L = 10, consistent with [32].

In the following experiment we compare different dis-

tance functions used for training MBT methods, where we

keep M fixed at 4. We see that the choice of distance func-

tion has limited effect on accuracy measures at a shorter

horizon of 1.2s. However, as the horizon increases, MBT4l

starts outperforming the competing approaches by a con-

siderable margin. Taking this result into account, in further

experiments we use the distance function defined in (8).

When we compare the proposed method to the state-of-

the-art models MACRO VRNN and SocialGAN, we sepa-

rate the analysis by comparing the same number of modes.

When evaluating a single trajectory, SocialGAN outper-

forms both our approach and MACRO VRNN in ADE and

FDE. However, MBT1 reaches better MSE than those ap-

proaches. When comparing multiple modes, we see that

MBT4l, MBT4v and MBT4MSE performance is roughly

comparable at shorter horizons, but MBT4l outperforms

all other methods across all accuracy measures at longer

horizons. Quite notably, MBT4l outperforms the base-

lines with a large margin in terms of MSE velocity mea-

sure. For example, for horizon H = 40, our MBT4l model

achieves ADE 24% and 21% smaller than MACRO VRNN4

and SocialGAN4, respectively. The comparison to MTP4l

shows problems arising from using an unrelaxed Kronecker

delta during the training process. Observations of the gener-

ated paths reveals that some modes are collapsed or not all

have a non-zero probability, as the poorly initialized paths

are not trained at all.

In Figure 1 we illustrate predicted trajectories for a ran-

domly picked player. Trajectories are generated using a

single-path model that predicts locations (location-LSTM,

Figure 1a), two single-path models that predicts veloci-

ties, one based on a CNN architecture (Figure 1b) and

one based on an LSTM architecture (MBT1, Figure 1c),

one sample path of MACRO VRNN (Figure 1d), 4 sam-

pled paths of SocialGAN (Figure 1e), and our proposed

method using 4 modes MBT4l (Figure 1f). We can see that

location-LSTM output is noisy and does not represent re-

alistic player movements. Player trajectories predicted by

the CNN and MBT1 model are smoother and more realis-

tic, showing the advantage of predicting velocities instead
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Figure 2: Evaluation of predicted mode probabilities for MBT4l

of locations. While CNN and MBT1 generate qualitatively

similar results, MBT1 outperforms CNN in the quantitative

measures. MACRO VRNN generally produces paths that

are less smooth than competing models, explaining the high

error in MSE as discussed above. The multiple paths pre-

dicted by SocialGAN are smooth and look plausible, but

lack the diversity of movement that we would expect in bas-

ketball trajectories. MBT4l predicts 4 paths that are very

distinct from each other. The highest-probability path ends

up very close to the observed final player location, while ac-

curately following the ground-truth trajectory. Other paths

produced by the multi-modal model allow for diverse move-

ments, such as an aggressive drive to the basket or support-

ing the ball-handling teammate near the center of the court.

We also evaluate the quality of inferred mode probabili-

ties produced by the MBT4l model. To this end we compare

predicted mode probabilities to empirical ones, computed as

a frequency of how often a mode of certain probability had

the lowest FDE. We bucketed inferred probabilities in 5%

bins and for each computed the empirical probability, with

the average per-bucket results presented in Figure 2. We can

see that the plot closely follows the identity line, indicating

that the predicted mode probabilities are well-calibrated.

To evaluate the hypothesis that the MBT trajectories are

more physically realistic, we calculate acceleration of pre-

dicted trajectories on the test set. The maximum accelera-

tion of MBT4l is 12.2m/s2. We note that the ground truth

contains noisy outliers, with accelerations of up to 600m/s2

(the 99.9th percentile is 14.5m/s2). In contrast, when con-

sidering MACRO VRNN we observe accelerations of more

than 500m/s2 (the 99.9th percentile is 54.86m/s2). This

indicates that in many cases the baseline trajectories are

far from being physically achievable, while the proposed

method yielded more realistic outputs.

Table 2: Prediction of specific players with and without fine-tuning

for H = 40 (4.8 seconds) using the MBT4l model

Player Fine-tuned? ADE FDE MSE

LeBron James No 4.78 6.63 9.97

LeBron James Yes 4.67 6.24 9.91

Stephen Curry No 6.32 7.80 17.35

Stephen Curry Yes 6.09 7.51 16.62

Russell Westbrook No 5.49 7.15 12.43

Russell Westbrook Yes 5.36 6.90 12.23

DeAndre Jordan No 4.36 6.01 12.20

DeAndre Jordan Yes 3.93 4.94 12.56

Andrew Bogut No 4.54 6.12 9.34

Andrew Bogut Yes 4.29 5.40 9.03

4.2.1 Evaluation of per-player models

In this section we compare per-player models to the base

model trained on all players, as well as the per-player mod-

els fine-tuned on players that are playing in the same posi-

tion, but are known to have distinct playing styles. We first

compare the performance of the base and per-player models

for several example players, with results presented in Table

2. The per-player models result in improved performance

across the board, as they are better capturing playing styles

of individual players.

Let us consider a specific game situation where center

DeAndre Jordan just set up a pick and roll, shown in Fig-

ure 3 and in the animated video in the Supplementary Ma-

terial. The model trained on all players predicts that the

so-called roll man will now move either towards the basket

or towards the wide open space on the right-hand side of

the court, shown in the first row of Figure 3a. Jordan is a

very dynamic and fast center who executes many successful

pick and rolls, so our model trained on his data predicts he

will drive to the basket faster and with a higher probabil-

ity than an average player in the same situation, as shown

in Figure 3b. We also compare to a model trained on data

of Andrew Bogut, a defense specialist who is not as fast as

Jordan. According to stats.nba.com3, Bogut only attempts

0.5 pick and rolls per game, while Jordan attempts 2.4. Our

model correctly predicts Bogut’s paths to be less dynamic

and gives a 25% probability that he would turn around and

focus on defending a counter attack, entirely relying on his

team mate to capitalize on the pick, as shown in Figure 3c.

The following experiment involves a situation where

Stephen Curry has possession of the ball at the top of the

circle with a defender to his right, as illustrated in Figure 4

(and in the Supplementary Material). This example shows

some limitations of our approach because in actuality Curry

first acts like he wants to drive inside, but decides to stop

and shoot the ball for a 2-pointer before starting to move

backwards. The predicted trajectories are much simpler, but

still capture some interesting options that the player may

3https://on.nba.com/2ulXVau, last accessed November 2020.
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(a) (b) (c)

Figure 3: Visualization of predicted trajectories for DeAndre Jordan with H = 20 (2.4s) using 3 different networks MBT4l: a) trained on

all players, b) retrained with the data of DeAndre Jordan and c) retrained with the data of Andrew Bogut

(a) (b) (c)

Figure 4: Visualization of predicted trajectories for Stephen Curry with H = 20 (2.4s) using 3 different networks MBT4l: a) trained on all

players; b) retrained with the data of Stephen Curry; c) retrained with the data of Russel Westbrook

choose. The model that was trained on all players predicts

that the player may move towards the basket with about

40% probability as seen in Figure 4a, with other lower-

probability options to move along the arc, stay at the top

of the arc, or try to circle around the defender. The model

that was retrained on data of Stephen Curry shown in Fig-

ure 4b slightly adjusts the path along the arc, because Curry

often tries to shoot 3-pointers (more specifically, he had the

second-most 3-point attempts in the 2015/16 season). As a

result the model also gives him a lower probability to drive

towards the basket. We evaluate the same situation with a

network fine-tuned on data of Russell Westbrook, shown in

Figure 4c. Westbrook attempts much fewer 3-pointers than

Curry, and instead has more 2-point attempts. He is also a

very dynamic player that is excellent at driving to the bas-

ket, such that when he makes an attempt he usually gets

closer to the basket than an average player would. Thus,

when he moves along the arc our model predicts that he

will not stay behind the 3-point line, but will instead try to

get closer to the basket. We can see the model successfully

managed to capture characteristics of individual players, ad-

justing the predictions to their own playing styles.

5. Conclusion

In this paper we proposed an LSTM-based model trained

using multi-modal loss that can generate multiple paths

which accurately predict movement of NBA players. In ad-

dition, we showed that per-player fine-tuning can capture

interesting and specific behavior of different players. The

proposed approach outperformed the state-of-the-art by a

large margin, both in terms of standard prediction metrics

and velocity error that better captures trajectory realism. As

future work, we are exploring ideas to model the multi-

modal behavior of the entire team, as well as opponent’s

strategies that can counter such trajectories.
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