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Abstract

Recently there has been an interest in the potential of

learning generative models from a single image, as opposed

to from a large dataset. This task is of significance, as it

means that generative models can be used in domains where

collecting a large dataset is not feasible. However, training

a model capable of generating realistic images from only a

single sample is a difficult problem. In this work, we conduct

a number of experiments to understand the challenges of

training these methods and propose some best practices that

we found allowed us to generate improved results over previ-

ous work. One key piece is that, unlike prior single image

generation methods, we concurrently train several stages in

a sequential multi-stage manner, allowing us to learn models

with fewer stages of increasing image resolution. Compared

to a recent state of the art baseline, our model is up to six

times faster to train, has fewer parameters, and can better

capture the global structure of images.

1. Introduction

Generative Adversarial Networks (GANs) [12] are ca-

pable of generating realistic images [6] that are often in-

distinguishable from real ones [24]. The resulting models

can be used for different tasks, such as unconditional and

conditional image synthesis [23, 17], image inpainting [9],

and image-to-image translation [19, 46]. However, most

GANs are trained on large datasets, typically consisting of

tens of thousands of images which can be time-consuming

and expensive. In some cases, it might be preferable to train

a generative model on a small number of images or, in the

limit, on a single image. This is useful if we want to obtain

variations of a given image, work with a very specific im-

age or style, or only have access to little training data. The

recently proposed SinGAN [33] introduces a GAN that is

trained on a single image for tasks such as unconditional

image generation and harmonization.

SinGAN is trained in a multi-stage and multi-resolution

approach, where the training starts at a very low resolution

(e.g. 25×25 pixels) at the first stage. The training progresses

through several “stages”, at each of which more layers are

added to the generator and the image resolution is increased.

At each stage all previously trained stages (i.e. the gener-

ator’s lower layers) are frozen and only the newly added

layers are trained. We find that exactly how multi-stage and

multi-resolution training is handled is critical. In particular,

training only one stage at a given time limits interactions

between different stages, and propagating images instead

of feature maps from one generator stage to the next neg-

atively affects the learning process. Conversely, training

all stages end-to-end causes overfitting in the single image

scenario, where the network collapses to generating only the

input image. We experiment with this balance, and find a

promising compromise, training multiple stages in parallel

with decreased learning rates, and find that this improves the

learning process, leading to more realistic images with less

training time. Furthermore, we show how it is possible to

directly trade-off image quality for image variance, where

training more stages in parallel means a higher global image

consistency at the price of less variation.

We also conduct experiments over the choice of rescaling

parameters, i.e. how we decide at which image resolution to

train at each stage. We observe that the quality of the gen-

erated images, especially the overall image layout, quickly

degrades when there are not enough training stages with

small resolution. Our experiments show that lower stages

with smaller resolutions are important for the overall image

layout, while higher stages with larger resolution are impor-

tant for the final image texture and color. We find that we

only need relatively few training stages with high-resolution

images in order to still generate images with the correct tex-

ture. As a consequence, we put a higher weight on smaller

resolution images during training while using fewer of the

stages to train on high-resolution images.

Finally, since our model trains several stages in parallel,

we can introduce a task-specific fine-tuning stage which can

be performed on any trained model. For several tasks we

show how to fine-tune the trained model on a given specific

image to further improve results. This shows benefits with

as few as 500 additional training iterations and is, therefore,

very fast (less than two minutes on our hardware).
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Figure 1. Overview of our model (ConSinGAN). We start training at ‘Stage 0’ with a small generator and small image resolution. With

increasing number of stages both the generator capacity and image resolution increase.

Combining these proposed architecture and training mod-

ifications enables us to generate realistic images with fewer

stages and significantly reduced overall training time (20-25

minutes versus 120-150 minutes in the original SinGAN

work). To summarize, our main contributions are:

1. We train several stages in parallel with different learn-

ing rates and can trade-off the variance in generated

images vs. their conformity to the original training

image.

2. We do not generate images at intermediate stages but

propagate features directly from one stage to the next.

3. We improve the rescaling approach for multi-stage train-

ing, which enables us to train on fewer stages.

4. We introduce a fine-tuning phase which can be used on

pre-trained models to obtain optimal results for specific

images and tasks.

2. Related Work

Learning the statistics and distribution of patches of a

single image has been known to provide a powerful prior

since the empirical entropy of patches inside a single image

is smaller than the empirical entropy of patches inside a dis-

tribution of images [48]. By using this prior, many tasks such

as inpainting [38, 42], denoising [49], deblurring [32], retar-

geting [29, 30], and segmentation [10] can be solved with

only a single image. In particular, image super-resolution

[40, 18, 11, 35, 3] and editing [7, 8, 14, 31, 37, 28] from a

single image have been shown to be successful and a large

body of work focuses specifically on this task. Recent work

also shows that training a model on a single image with self-

supervision and data augmentation can be enough to learn

powerful feature extraction layers [1].

Approaches that train GAN models on single images are

still relatively rare and are usually based on a bidirectional

similarity measure for image summarization [36]. Some

approaches do not use natural images, but instead train only

on texture images [20, 45, 5, 25]. At this time, only few

models are capable of being trained on a single ‘natural’ im-

age [33, 34, 39]. Other novel approaches target applications

such as image-to-image translation with only two images as

training data [26, 4].

The work most relevant to our approach is SinGAN [33]

which is the only model that can perform unconditional im-

age generation after being trained on a single natural image.

SinGAN trains both the generator and the discriminator over

multiple stages of different image resolutions as it is useful

to learn statistics of image patches across different image

scales [2]. The output at each stage is an image which is

used as input to the next stage and each stage is trained

individually while the previous stages are kept frozen.

3. Methodology

We now describe our findings in more detail, starting

with the training of a multi-stage architecture, followed by

best practices we found for scaling learning rate and image

resolutions at different stages during training.

Multi-stage Training Multi-scale image generation is of

critical importance [33], however, there are many ways in

which this can be realized. SinGAN only trains the current

(highest) stage of its generator and freezes the parameters

of all previous stages. ProGAN [22] presents a progressive

growing scheme that adds levels with all weights unfrozen,

and more recently [21, 23] train the entire pyramid jointly.

In this work, we investigate whether the model can be

trained end-to-end, rather than with training being fixed at

intermediate stages, even in the single image task. However,
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Figure 2. Example of unconditionally generated images showing complex global structure generated by ConSinGAN.

Number of Concurrently Trained Stages Number of Concurrently Trained Stages

1 2 3 4 5 6 1 2 3 4 5 6

δ = 0.1 δ = 0.5

Figure 3. Effect of learning rate scale δ and concurrently trained stages for a model with six stages. Images are randomly selected.

we find that training all stages leads to overfitting (see Fig-

ure 3), i.e. the generator only generates the original training

image without any variation. We develop a novel progressive

growing technique that trains multiple, but not all, stages con-

currently while simultaneously using progressively smaller

learning rates at lower stages. Since we train several stages

of our model concurrently for a single image we refer to our

model as ‘Concurrent-Single-Image-GAN’ (ConSinGAN).

Training ConSinGAN starts on a coarse resolution for

a number of iterations, learning a mapping from a random

noise vector z to a low-resolution image (see “Generator:

Stage 0” in Figure 1). Once training of stage n has con-

verged, we increase the size of our generator by adding three

additional convolutional layers. In contrast to SinGAN, each

stage gets the raw features from the previous stage as input,

and previous layers are not fixed. We add a residual con-

nection [15] from the original features to the output of the

newly added convolutional layers (see “Generator: Stage 1”

in Figure 1). We repeat this process N times until we reach

our desired output resolution. We add additional noise to

the features at each stage [19, 47] to improve diversity. In

our default setting, we jointly train the last three stages of a

generator (see “Generator: Stage N” in Figure 1). While it is

possible to train more than three stages concurrently, we ob-

served that this rapidly leads to severe overfitting (Figure 3).

We use the same patch discriminator [19] architecture and

loss function as the original SinGAN. This means that the

receptive field in relation to the size of the generated image

gets smaller as the number of stages increases, meaning that

the discriminator focuses more on global layout at lower

resolutions and more on texture at higher resolutions. In

contrast to SinGAN we do not increase the capacity of the

discriminator at higher stages, but use the same number of

parameters at every stage. We initialize the discriminator for

a given stage n with the weights of the discriminator of the

previous stage n − 1 at all stages. At a given stage n, we

optimize the sum of an adversarial and a reconstruction loss:

min
Gn

max
Dn

Ladv(Gn, Dn) + αLrec(Gn). (1)
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Figure 4. Effect of the learning rate scale δ during training of ConSinGAN.

Ladv(Gn, Dn) is the WGAN-GP adversarial loss [13], while

the reconstruction loss is used to improve training stability

(α = 10 for all our experiments). For the reconstruction loss

the generator Gn gets as input a downsampled version (x0)

of the original image (xN ) and is trained to reconstruct the

image at the given resolution of stage n:

Lrec(Gn) = ||Gn(x0)− xn||
2
2. (2)

The discriminator is always trained in the same way, i.e. it

gets as input either a generated or a real image and is trained

to maximise Ladv. Our generator, however, is trained slightly

differently depending on the final task.

Task Specific Generator Training For each task we use

the original image xn for the reconstruction loss Lrec. The

input for the adversarial loss Ladv, however, depends on the

task. For unconditional image generation the input to the

generator is simply a randomly sampled noise vector for

Ladv. However, we found that if the desired task is known

beforehand, better results can be achieved by training with

a different input format. For example, for image harmo-

nization, we can instead train using the original image with

augmentation transformations applied as input. The intuition

for this is that a model that is used for image harmoniza-

tion does not need to learn how to generate realistic images

from random noise, but rather should learn how to harmo-

nize different objects and color distributions. To simulate

this task, we apply random combinations of augmentation

techniques such as additive noise and color transforms to the

original image xN at each iteration. The generator gets the

augmented image as input and needs to transform it back to

an image that should resemble the original distribution.

Learning Rate Scaling The space of all learning rates

for each stage is large and has a big impact on the final

image quality. At any given stage n, we found that instead

of training all stages (n, n − 1, n − 2, ...) with the same

learning rate, using a lower learning rate on earlier stages

(n−1, n−2, ...) helps reduce overfitting. If the learning rate

at lower stages is too large (or too many stages are trained

concurrently), the model generator quickly collapses and

only generates the training image (Figure 3). Therefore, we

propose to scale the learning rate η with a factor δ. This

means that for generator Gn stage n is trained with learning

rate δ0η, stage n−1 is trained with a learning rate δ1η, stage

n−2 with δ2η, etc. In our experiments, we found that setting

δ = 0.1 gives a good trade-off between image fidelity and

diversity (see Figure 3 and Figure 4).

Improved Image Rescaling Another critical design

choice is around what kind of multiscale pyramid to use.

SinGAN originally proposes to downsample the image x by

a factor of rN−n for each stage n where r is a scalar with

default value 0.75. As a result, SinGAN is usually trained

on eight to ten stages for a resolution of 250 width or height.

When the images are downsampled more aggressively (e.g.

r = 0.5) fewer stages are needed, but the generated images

lose much of their global coherence.

We observe that this is the case when there are not enough

stages at low resolution (roughly fewer than 60 pixels at the

longer side). When training on images with a high resolu-

tion, the global layout is already “decided” and only texture

information is important since the discriminator’s receptive

field is always 11 × 11. To achieve a certain global image

layout we need a certain number of stages (usually at least

three) at low resolution, but we do not need many stages

a high resolution. We adapt the rescaling to not be strictly

geometric (i.e. xn = x0 × rN−n), but instead to keep the

density of low-resolution stages higher than the density of

high-resolution stages:

xn = xN×r((N−1)/log(N))∗log(N−n)+1 for n = 0, ..., N−1
(3)

For example, with a rescaling scalar r = 0.55 we get six

stages with the following resolutions and we observe that

our new rescaling approach (second line) has more stages
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Figure 5. Comparison of SinGAN and ConSinGAN.

with smaller resolutions compared to the original rescaling

approach (first line):

25×34, 38×50, 57×75, 84×112, 126×167, 188×250,

25×34, 32×42, 42×56, 63×84, 126×167, 188×250.

To summarize our main findings, we produce feature maps

rather than images at each stage, we train multiple stages

concurrently, we propose a modified rescaling pyramid, and

we present a task-specific training variation.

4. Results

We evaluate ConSinGAN on unconditional image gener-

ation and image harmonization in detail.1 For space reasons

we focus on these two applications but note that other ap-

plications are also possible with ConSinGAN. We show

examples of other tasks such as image retargeting, editing,

and animation in the supplementary material.

4.1. Unconditional Image Generation

Since our architecture is completely convolutional we

can change the size of the input noise vector to generate

images of various resolutions at test time. Figure 2 shows an

overview of results from our method on a set of challenging

images that require the generation of global structures for

the images to seem realistic. We observe that ConSinGAN

is successfully able to capture these global structures, even if

we modify the image resolution at test time. For example, in

the Stonehenge example, we can see how “stones” are added

when the image width is increased and “layers” are added to

the aqueduct image when the image height is increased.

1Code: https://github.com/tohinz/ConSinGAN

Ablation We further examine the interplay between the

learning rate scaling and the number of concurrently trained

stages (Figure 3) and evaluate how varying the learning

rate scaling δ (section 3) affects training (Figure 4). As

we can see in Figure 3, training with a δ = 0.1 leads to

diverse images for most settings, with the diversity slightly

decreasing with a larger number of concurrently trained

stages. When training with δ = 0.5 we observe a large

decrease in image diversity even when only training two

stages concurrently. As such, the number of concurrently

trained stages and the learning rate scaling δ offer a trade-off

between diversity and fidelity of the generated images.

Figure 4 visualizes how the variance in the generated

images increases with decreasing δ for a model with three

concurrently trained stages. For example, when we look

at the top left example (Marina Bay Sands), we observe

that for a δ = 0.5 the overall layout of the image stays

the same, with minor variations in, e.g., the appearance of

the towers. However, with a δ = 0.1, the appearance of

the towers changes more drastically and sometimes even

additional towers are added to the generated image. Unless

otherwise mentioned, all illustrated examples and all images

used for the user study where generated by models for which

we trained three stages concurrently with δ = 0.1.

Baseline comparisons We compare our model to the

SinGAN [33] model in Figure 5. For SinGAN, we show the

results of both the default rescaling method (8-10 stages) and

our rescaling method (5-6 stages). In the first example we

observe that SinGAN struggles to model recurring structures

(faces) in the generated images. In the second example we

observe a loss of global structure independent of the number

of stages trained. Our multi-stage training helps ensure a

more consistent global structure.

Figure 6 further highlights the advantages of our approach

by showing a detailed comparison of the images each model

generates after being trained with the new or old rescaling

technique. Each column depicts three randomly sampled

images from each model. We can see the positive effect of

the rescaling technique for both models, regardless of the

number of trained stages. Furthermore, we can see that our

model retains better global coherence in both cases.

Quantitative evaluation The Fréchet Inception Distance

(FID) [16] compares the distribution of a pre-trained net-

work’s activations between a sets of generated and real im-

ages. The Single Image FID (SIFID) is an adaptation of the

FID to the single image domain and compares the statistics

of the network’s activations between two individual images

(generated and real). In our experiments, we found that

SIFID exhibits very high variance across different images

(scores range from 1e− 06 to 1e01) without a clear distinc-

tion of which was “better” or “worse”. In this work, we

focus mostly on qualitative analyses and user studies for our
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Figure 6. Comparison of the effect of the number of trained stages and rescaling method during training. Images are randomly selected.

Model Confusion ↑ SIFID ↓ Train Time # Stages # Paramers

ConSinGAN 16.0%± 1.4% 0.06± 0.03 24 min 5.9 ∼660,000

SinGAN 17.0%± 1.5% 0.09± 0.07 152 min 9.7 ∼1,340,000

Table 1. Results of our user study and SIFID on images from the Places dataset.

evaluation but also report SIFID for comparison.

We performed quantitative evaluations on two datasets.

The first dataset is the same as the one used by SinGAN, con-

sisting of 50 images from several categories of the ‘Places’

dataset [44]. However, many of these images do not exhibit

a global layout or structure. Therefore, we also construct

a second dataset, where we take five random samples from

each of the ten classes of the LSUN dataset [41]. This dataset

contains classes such as “church” and “bridge” which exhibit

more global structures. We train both the SinGAN model

and our model for each of the 50 images in both datasets and

use the results for our evaluation.

Image Diversity We evaluate the diversity in our images

compared to the original SinGAN model using the same

measure as SinGAN: for a given training image we calculate

the average of the standard deviation of all pixel values along

the channel axis of 100 generated images. Then, we normal-

ize this value by the standard deviation of the pixel values

in the training image. On the data from the ‘Places’ dataset,

SinGAN obtains a diversity score of 0.52, while our model’s

diversity is similar with a score of 0.50. When we increase

the learning rate on lower stages by setting δ = 0.5 instead

of the default δ = 0.1 we observe a lower diversity score

of 0.43 as the model learns a more precise representation of

the training image (Figure 4). On the LSUN data, SinGAN

obtains a much higher diversity score of 0.64. This is due

to the fact that it often fails to model the global structure

and the resulting generated images differ greatly from the

training image. Our model, on the other hand, obtains a

diversity score of 0.54 which is similar to the score on the

‘Places’ dataset and indicates that our model can indeed learn

the global structure of complex images.

User Study: ‘Places’ We follow the same evaluation pro-

cedure as previous work [19, 33, 43] to compare our model

with SinGAN on the same training images that were used

previously in [33]. Users were shown our generated image

and its respective training image for one second each and

were asked to identify the real image. We reproduced the

user study from the SinGAN paper with our own trained Sin-

GAN and ConSinGAN models. As we can see in Table 1 our

model achieves results similar to the SinGAN model. How-

ever, our model is trained on fewer stages and with fewer

parameters and obtains a better SIFID score of 0.06, com-

pared to SinGAN’s 0.09. Furthermore, the images generated

by ConSinGAN often still exhibit a better global structure,

but one second is not enough time for users to identify this.

User Study: ‘LSUN’ Since the images from the LSUN

dataset are much more challenging than the images from the

‘Places’ dataset we do not compare the generated images

against the real images, but instead compare the images

generated by SinGAN to the ones generated by ConSinGAN.
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Figure 7. Image harmonization with SinGAN and ConSinGAN

Model Random ↑ Paired ↑ SIFID ↓ Train Time # Stages # Parameters

ConSinGAN 56.7%± 1.9% 63.1%± 1.8% 0.11± 0.06 20 min 5.9 ∼660K

SinGAN 43.3%± 1.9% 36.9%± 1.8% 0.23± 0.15 135 min 9.1 ∼1.0M

Table 2. Results of our user studies and SIFID on images from the LSUN dataset.

We generate 10 images per training image, resulting in 500

generated images each from SinGAN and ConSinGAN, and

use these to compare the models in two different user studies.

In both versions, the participants see the two images gen-

erated by the two models next to each other and need to

judge which image is better. We do not enforce a time limit,

so participants can look at both images for as long as they

choose. The difference between the two versions of the user

study is how we sample the generated images. In the first

version (“random”) we randomly sample one image from

the set of generated images of SinGAN and ConSinGAN

each. This means that the two images likely come from

different classes (e.g. ‘church’ vs. ‘conference room’). In

the second version (“paired”) we sample two images that

were generated from the same training image. We perform

both user studies using Amazon Mechanical Turk, with 50

participants comparing 60 pairs of images for each study.

Table 2 shows how often users picked images generated

by a given model for each of the two settings. We see that

users prefer the images generated by ConSinGAN in both

settings and that, again, our model achieves a better SIFID.

This is the case even though our model only trains on six

stages, has fewer parameters than SinGAN, and takes less

time to train. The images from LSUN vary in difficulty and

global structure. This might explain why our model performs

even better in the paired setting since this setting guarantees

that we always compare the two models on images of the

same difficulty. Overall, our experiments show that ConSin-

GAN allows for the generation of more believable images,

especially when they exhibit some degree of global structure,

with less training time and a smaller model than SinGAN.

4.2. Image Harmonization

We now show results on image harmonization examples

and compare our model to SinGAN and Deep Painterly

Harmonization [27] for high-resolution images.

Training Details We train ConSinGAN with the same

hyperparameters for all images without any fine-tuning of

hyperparameters for the different images. The general archi-

tecture is the same as for unconditional image generation,

however, we only train the model for exactly three stages per

image. We train for 1,000 iterations per stage and randomly

sample from different data augmentation techniques to ob-

tain a “new” training image at each iteration as described in

section 3. When we fine-tune a model on a given specific

image we use a model trained on the general style image and

use the target image directly as input (instead of the style

image with random augmentation transformations) to train

the model for an additional 500 iterations.

Comparison with SinGAN Figure 7 shows comparisons

between SinGAN and ConSinGAN. The first two columns

show the original images we trained on and the naive cut-

and-paste images that are the input to our trained model at

test time. The next three images show the results of a trained

SinGAN model, where the first two are the results of a fully

trained model. We insert the naive image at all stages of the

model and choose the two best results, while the third image

is the result when we train SinGAN on only three stages.

The final two columns show the results of the ConSinGAN.

Training ConSinGAN takes less than 10 minutes for a given

image when the coarse side of the image has a resolution of

250 pixels. Fine-tuning a model on a specific image takes
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Figure 8. Image harmonization comparison with Deep Painterly Harmonization (DPH) and ConSinGAN on high resolution images

roughly 2-3 minutes. Training SinGAN takes roughly 120

minutes as before, since we need to train the full model, even

if only some of the later stages are used at test time.

We see that ConSinGAN performs similar to or better

than SinGAN, even though we only train ConSinGAN for 3

stages. ConSinGAN also generally introduces fewer artifacts

into the harmonized image, while SinGAN often changes the

surface structure of the added objects. See for example the

first row in Figure 7, where SinGAN adds artifacts onto the

car, while ConSinGAN keeps the original objects consistent.

When we fine-tune the ConSinGAN model on specific im-

ages we can get even more interesting results, as, e.g., the car

gets absorbed much more into the colors of the overall back-

ground. The bottom two rows of Figure 7 show results when

we add colorful objects to black-and-white paintings. When

training SinGAN on only three stages like ConSinGAN it

usually fails completely to harmonize the objects at test time.

Even the images harmonized after training SinGAN on 8-

10 stages often contain some of the original colors, while

ConSinGAN manages to completely transfer the objects to

black-and-white versions. Again, further fine-tuning Con-

SinGAN on the specific images leads to an even stronger

“absorption” of the objects.

Comparison with DPH Figure 8 shows comparisons

between ConSinGAN, adapted to harmonize high-resolution

images, and Deep Painterly Harmonization (DPH) [27]. The

images have a resolution of roughly 700 pixels on the longer

side, as opposed to the 250 pixels used by the SinGAN

examples. In order to produce these high-resolution images,

we add another stage to our ConSinGAN architecture, i.e. we

now train four stages, and training time increases to roughly

30-40 minutes per image. This is in contrast to many style-

transfer approaches and also DPH, which have additional

hyperparameters such as the style and content weight which

need to be fine-tuned for a specific style image.

We can see that the outputs of ConSinGAN usually differ

from the outputs of DPH, but are still realistic and visually

pleasing. This is even the case when our model has never

seen the naive copy-and-paste image at train time, but only

uses it at test time. In contrast to this, DPH requires as input

the style input, the naive copy-and-past input, and the mask

which specifies the location of the copied object in the image.

Again, fine-tuning our model sometimes leads to even better

results, but even the model trained only with random image

augmentations performs well. While our training time is

quite long, we only need to train our model once for a given

image and can then add different objects at different locations

at test time. This is not possible with DPH, which needs to

be retrained whenever the copied object changes.

5. Conclusion

We introduced ConSinGAN, a GAN inspired by a number

of best practices discovered for training single-image GANs.

Our model is trained on sequentially increasing image reso-

lutions, to first learn the global structure of the image, before

learning texture and stylistic details later. Compared to other

models, our approach allows for control over how closely the

internal patch distribution of the training image is learned

by adjusting the number of concurrently trained stages and

the learning rate scaling at lower stages. Through this, we

can decide how much diversity we want in the generated

images. We also introduce a new image rescaling approach

that allows training on fewer image scales than before. We

show that our approach can be trained on a single image and

can be used for tasks such as unconditional image generation,

harmonization, editing, and animation while being smaller

and more efficient to train than previous models.
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