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Abstract

We introduce a new class of vision-based sensor and as-

sociated algorithmic processes that combine visual imag-

ing with high-resolution tactile sending, all in a uniform

hardware and computational architecture. We demonstrate

the sensor’s efficacy for both multi-modal object recogni-

tion and metrology. Object recognition is typically formu-

lated as an unimodal task, but by combining two sensor

modalities we show that we can achieve several significant

performance improvements. This sensor, named the See-

Through-your-Skin sensor (STS), is designed to provide rich

multi-modal sensing of contact surfaces. Inspired by recent

developments in optical tactile sensing technology, we ad-

dress a key missing feature of these sensors: the ability to

capture a visual perspective of the region beyond the con-

tact surface. Whereas optical tactile sensors are typically

opaque, we present a sensor with a semitransparent skin

that has the dual capabilities of acting as a tactile sensor

and/or as a visual camera depending on its internal light-

ing conditions. This paper details the design of the sensor,

showcases its dual sensing capabilities, and presents a deep

learning architecture that fuses vision and touch. We vali-

date the ability of the sensor to classify household objects,

recognize fine textures, and infer their physical properties

both through numerical simulations and experiments with a

smart countertop prototype.

1. Introduction

A core task in the development of smart homes and of-

fices is enabling the environment with the ability to recog-

nize and characterize objects placed within it. As an illus-

trative example, Fig. 1 shows a smart countertop that rec-

ognizes objects placed on its surface. This type of device

finds applications in smart kitchens, interactive displays,

and robotics. Central to this task is the well-studied problem

of object recognition. This paper introduces a novel sens-

ing technology that utilizes an integrated tactile-vision sen-

sor to perform object recognition and metrology tasks. The

vast majority of efforts in object recognition are unimodal,

Figure 1. The smart countertop scenario. How can a device rec-

ognize and characterize objects placed on a countertop, based on

their visual appearance, their texture, and their mass?

relying on an individual sensing modality to perform the

task. This can make certain recognition tasks difficult as

some objects can appear very similar in one modality but

are easily distinguished in another (e.g., lemons and limes

have similar textures but different colors). This paper inves-

tigates how to enable and exploit multiple sensing modali-

ties to optimize object recognition within the household do-

main.

Humans and non-human primates are known to fuse tac-

tile and visual information at a fundamental level [1]. It

is intuitive for a human to mix visual tracking with touch

sensing during daily living, such as being able to look away

from a bottle while pouring, after initially localizing the tar-

get. In automated perception, fusing vision and touch sig-

nals from distinct sensors has often shown increased perfor-

mance compared with either individual modality [2]. Sim-

ilarly, machine systems that combine vision and tactile in-

formation have shown enhanced performance over systems

that utilize either vision or tactile cues alone [3]. One prob-

lem with integrating high resolution tactile and visual infor-

mation is capturing the information within a common refer-

ence frame.

Recent approaches to tactile sensing (e.g., GelSight [4])

include a camera that captures the deformations of a reflec-
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Figure 2. The two modes of the the STS sensor viewing the same object. Through selective internal illumination, the surface of the gel

can be made to be transparent (right), allowing the camera to view the outside world or opaque (left), where it works much like existing

tactile sensors. When the interior lighting levels are high relative to the outside world (left hand side) the surface becomes opaque where

it delivers only tactile information. When the interior lighting level is low relative to the outside of the sensor (right hand side) the camera

can view through the gel and recover the outside world.

tive soft surface as it contacts the world. This enables high

resolution reasoning about contact geometry as well as slip

and contact forces, but unfortunately light from the external

world does not reach the camera due the sensor’s skin opac-

ity, preventing its use as a traditional vision sensor. Here,

we augment the approach described in [4] by making the

deformable surface semitransparent. This enables the sen-

sor to capture both visual appearance and tactile properties

simultaneously and from the same viewpoint. By equipping

the sensor with programmable internal lighting, this See-

Through-your-Skin (STS) sensor provides a rich viewpoint

of both the tactile and visual properties of the environment

simultaneously.

The basic concept is illustrated in Fig. 2, which shows

the multi-modal sensor nature of the device and Fig. 1

which shows a prototype of the sensor and its components.

In this paper, we present a Deep Learning approach that

exploits the multi-modal nature of the sensor to classify ob-

jects by capturing the intrinsic correlations between both

high-resolution sensory streams. Our experiments show

that this approach can classify objects with high accuracy,

and in particular, that objects whose properties confound

one of the sensor modalities can still be recognized accu-

rately in the joint visuotactile signal.

The main contributions of this paper are:

• Design of a novel visuotactile sensor, the See-

Through-your-Skin (STS) sensor, that combines

vision-based sensing with tactile feedback. By regulat-

ing the internal lighting of the sensor, we can control

the type of feedback collected by the sensor (tactile or

visual).

• Perception of multi-modal sensory streams using a

Deep Learning framework. The network architecture

fuses vision and touch using dual stream convolutional

signals to accomplish object recognition tasks, such as

object classification and weight detection.

• Prototype of a smart countertop, a 15cm × 15cm sur-

face sensorized with the STS sensor providing visuo-

tactile feedback.

We validate the ability of the sensor to recognize house-

hold objects and infer their physical properties both through

in simulation and experimentally with a prototype version

of the sensor.

2. Related Work

This section outlines previous relevant research in the ar-

eas of tactile sensor design, robotic applications, and multi-

modal visual-tactile perception.

Tactile Sensing: Tactile sensors capture fundamental

properties about the physical interaction between two ob-

jects, including the contact shape, texture, stiffness, tem-

perature, vibration, shear and normal forces [5]. We refer

the readers to [6, 7] for a comprehensive review of exist-

ing tactile sensing technologies. Optical tactile sensors [8]

use a combination of a light source and a detector, typically

a camera, to capture the contact interface. Current optical

technologies that support compliant tactile sensing are con-

structed of an opaque interaction surface covering a trans-

parent, typically gel-like or clear elastomer[4]. Deforma-
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(a) STS components (b) STS prototype

Figure 3. See-Through-your-Skin (STS) visuotactile sensor. The sensor is designed to provide simultaneous and high resolution visual and

tactile feedback by using a half-silvered paint coating over a compliant gel. By changing the internal lighting condition of the STS sensor,

the transparency of the reflective paint coating of the sensor can be con- trolled.

tions of the opaque surface are monitored using a camera

mounted underneath the surface while the transparent gel

provides a physical structure to support the surface. In re-

cent years, there have been a number of GelSight inspired

tactile technologies. GelSlim [9] presents a slender and ro-

bust finger designed for robotic manipulation applications.

DIGIT [10] present a miniaturized high-resolution tactile

sensor designed for in-hand robotic manipulation. Omni-

tact [11] is a curved high-resolution tactile sensor that in-

tegrates multi-directional cameras, and is designed to be

used as a robot fingertip. FingerVision [12] integrates an in-

ternal camera facing a stretched transparent elastomer em-

bedded with printed dots. While FingerVision allows for

multi-modal visual tracking feedback and tactile feedback,

its tactile resolution is limited by the number of printed dots

(approximately 30) on the elastomer. In contrast, the STS

design introduced in this paper offers a high resolution a

tactile resolution equivalent to that of the camera (1640 ×

1232) allowing for the recovery of richer feedback about the

contact geometry and texture.

Robot Applications Tactile perception has long been

studied as a method for robot arms and hands to acquire

shape information, as related in a recent survey by Luo et

al. [13]. The geometric information obtained by detecting

contact points can be fused to complete a coherent shape

estimate [14, 15, 16, 17, 18, 19] of the manipulated ob-

ject. Touch has also been used to perceive the environment

at a global level, to recognize objects and understand their

placement within the scene [20]. For touch-enabled robots,

it is often of interest to compute the sequence of arm and

hand motions that will best facilitate geometric understand-

ing [20, 21, 17, 22, 18]. Finally, as robots increasingly

become able to manipulate the world in a dexterous fash-

ion, tactile sensing has been used in an integrated fashion to

guide tasks with persistent contact such as in-hand manipu-

lation [23, 22, 10].

Multi-modal Perception: The senses of touch and vi-

sion are complementary, and have often been combined to

form a multi-modal perception framework for understand-

ing object geometry [14, 24, 25, 26, 27]. Most recently,

deep representation learning has been shown as a power-

ful tool to extract shared geometric knowledge from touch

and vision [28]. These systems boost recognition perfor-

mance when all information is available, and perhaps most

interestingly, by training with both modes, the individual

sensory streams perform better even if only a single infor-

mation channel is available. In robotic manipulation, a co-

ordinated eye-and-hand feedback system permits accurately

tracking the manipulated object and regulating the applied

contact forces [29, 30].

3. Sensor Design

The STS is designed to provide simultaneous and high

resolution visual and tactile feedback. The key features of

the sensor are:

1. Multi-modal perception. The STS sensor provides

both visual and tactile feedback.

2. Controllable transparency. By changing the internal

lighting condition of the STS sensor, the transparency

of the reflective paint coating of the sensor can be con-

trolled. Additionally, the controllable lighting can be

used to assist in the recovery of tactile information.

3. Collocated high-resolution sensing. The sensor

makes use of the same camera as a receptor for both

the tactile and visual feedback. This result is two sens-

ing signals that have the same point of view, frame of

reference, and resolution.
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Figure 4. Multi-modal network architectures. The tactile and vi-

sual images are processed by independent convolutional neural

networks, whose outputs are concatenated and fused into a fully

connected network.

3.1. Background

Optical tactile sensors use a combination of a light

source and a detector, typically a camera, to capture the

contact interface. A property of many existing tactile sen-

sors is that they are opaque and thus obscure the view of

the object just at the critical moment prior to contact. Cur-

rent optical technologies that support compliant tactile sens-

ing are constructed of an opaque interaction surface cover-

ing a transparent, typically gel-like or clear elastomer [4].

Deformations of the opaque surface are monitored using a

camera mounted underneath the surface while the transpar-

ent gel provides physical support. In order to improve the

observability of the membrane deformation occurring dur-

ing contact, the skin of compliant optical based tactile sen-

sors is layered with an opaque layer of reflective material,

which has the side effect of obscuring the view to the ex-

ternal world. Although the GelSight technology has been

described as being able to “see through your hands” [31],

this technology does not actually afford a visual modality

as you cannot see through the sensor.

3.2. SeeThroughyourSkin (STS) Sensor

The See-Through-your-Skin sensor (STS) uses a half-

silvered paint coating to allow for multi-modal sensing that

is dependent on the lighting conditions. This setup, depicted

in Figs. 2 and 1, behaves similarly as a “one-way mirror”,

also known as a “transparent mirror”. When one side of

the membrane is held brighter than the other, the membrane

acts as an opaque mirror in the bright compartment and as a

transparent window in the dark section. This phenomena is

similar to the one used in police interrogation rooms, where

a half-silvered glass window is used to separate the inter-

rogation room from the observation room, both kept under

different lighting conditions. By maintaining the observa-

tion room dark and the interrogation room bright, the same

glass window appears as a mirror from the perspective of

the suspect and as a clear window from the perspective of

the observers.

The sensor, shown in Fig. 1, is composed of two prin-

cipal components: a compliant skin and a rigid body. The

compliant skin of the sensor comprises three components:

a compliant gel, a reflective paint coating, and a protective

gel. The compliant gel ensures that applied forces on the

sensor result in physical deformations that bend the path of

light as shown in Fig. 2. Similarly to [9], we use the P-

595 gel by Silicones Inc. due to its optical clarity and its

desirable stiffness properties. For the reflective paint coat-

ing, we use a reflective and translucent coating (Rust-Oleum

267727), commonly referred to as “mirror spray.” This

product is designed to be sprayed onto a clear glass sheet

to convert it into an opaque mirror by successively applying

5-6 coatings. By limiting the application to 2-3 coatings,

we can apply a thin reflective layer such that it appears as

translucent when the inside of the sensor is maintained dark

relative to the exterior and opaque when maintained bright

relative to the exterior. One challenge with employing re-

flective spray paint is its tendency to rapidly wear during

physical interactions. For protection, we apply a thin layer

of silicone coating on top of the reflective paint coating, by

using a 50/50 silicone/thinner mix, such that the silicone

is liquid enough to be spread evenly over the paint coating.

During curing, the thinner evaporates, leaving a very thin

layer to protect the paint coating without negatively impact-

ing the sensor’s sensitivity.

The sensor’s rigid housing includes a sheet of acrylic to

support the compliant gel. We capture physical interactions

with the gel using the 160◦ Variable Focus Camera Module

for Raspberry Pi by Odeseven, due to its small form factor,

its wild field of view, and its short focal length. To illumi-

nate the sensor, we use the Neopixel LEDs by adafruit, due

to their easily programmable interface. We use a constant il-

lumination pattern from the LEDs (clockwise per side: blue,

red, white, green). Using different colors for the LEDs is

motivated by previous work conducted in reconstructing the

3D contact geometry from RGB images using photometric

stereo [32]. We control the LEDs and stream the sensor’s

images at 90Hz onboard a Raspberry pi 3B+, located within

the 3D printed body.

Figure 2 shows the output of the STS while changing

the internal lighting conditions of the sensor. As the illumi-

nation within the sensor increases, the half-mirrored mem-

brane behaves more like an opaque mirror that renders a

high resolution image of the contact geometry, effectively

acting as a tactile sensor. As the light is decreased within

the sensor, the light rays from outside the sensor can pen-

etrate through the sensor and render a view of the external

world, effectively acting as a visual sensor.
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Figure 5. Real vs. simulated comparison of STS tactile sensor.

The sensor computes surface deformations based on the contact

forces obtained from the physics engine PyBullet.

3.3. Simulation

We present a visuotactile simulator that outputs a high

resolution image of the contact geometry. We leverage the

simulator to test the sensor’s ability to recognize objects,

to explore the best way of encoding data from the sensor,

and gain intuition regarding the importance of visual versus

tactile information for this task. The simulator maps the

geometric information about the object in collision with the

sensor via:

I(x, y) = R(
∂f

∂x
,
∂f

∂y
),

where I(x, y) is the image intensity, z = f(x, y) is the

height map of the sensor surface, and R is the reflectance

function modeling the environment lighting and surface re-

flectance [4].

The surface function f is obtained from the depth buffer

of an OpenGL camera in PyBullet, which we clip to the

thickness of the STS elastomer (5mm). To compute the sur-

face normal at each point, we locate its adjacent points and

calculate their principal axis using covariance analysis. Fol-

lowing [33], we implement the reflectance function R using

Phong’s reflection model, which breaks down the lighting

into three main components of ambient, diffuse, and specu-

lar for each RGB channel:

I(x, y) = kaia+
∑

m∈lights

kd(L̂m · N̂)im,d + ks(R̂m · V̂ )αim,s,

where L̂m is the direction vector from the surface point

to the light source m, N̂ is the surface normal, R̂m is the

reflection vector computed by R̂m = 2(L̂m · N̂)N̂ − L̂m,

and V̂ is the direction vector pointing towards the cam-

era. Through extensive search and taking into account the

suggested parameters in [33], we set the specular reflection

constant ks to 0.5, the diffuse reflection constant kd to 1.0,

the ambient reflection constant ka to 0.8, the shininess con-

stant α to 5, and RGB channel of specular and diffuse in-

tensities (is and id) of each corresponding light source to

1.0.

Tactile imprints are simulated with directional illumina-

tion orthogonal to the surface of the gel, using a constant

illumination pattern from the LEDs (clockwise: blue, red,

white, green). A comparison between the simulated and

real world sensor tactile outputs is shown in Fig. 5.

The simulator uses a simple compliance model, which is

approximated by modelling it with an array of springs (one

per pixel), and solving for static equilibrium at each time

step, given the known contact geometry and reactive forces

from the simulator.

4. Experimental Methods

This section presents experimental methods used for data

collection and evaluation of the results presented in Sec-

tion 5. We study the ability of the STS sensor to perform

diverse object recognition tasks, including identifying i) ob-

jects drawn from the household domain ii) objects with sub-

tle texture differences and iii) object with varying physical

properties (mass).

4.1. Sensor Prototype

We prototype the STS sensor described in Section 3 as a

flat 15 × 15 cm surface, as shown in Fig. 3. This sensor is

used to experimentally validate the sensor’s ability to recog-

nize and infer physical properties of objects. We prototype

the sensor following the fabrication procedure described in

Section 3, where we modulate the internal lights of the sen-

sor at a frequency of 30Hz. We separate the output of the

sensor into visual/tactile data streams with an image resolu-

tion of 1640 × 1232.

4.2. Experiments

We consider 3 recognition scenarios evaluating the abil-

ity of the sensor to recognize diverse household objects and

infer their textural and physical properties.

Household object recognition. To evaluate the ability

of the STS sensor to recognize household objects, we con-

struct a dataset of visuotactile imprints taken with 10 ob-

jects. We perform this analysis both in simulation and us-

ing the real world sensor. In simulation, we draw 10 objects

from the 3D ShapeNet dataset [34]. The visuotactile dataset

is comprised of 12k simulated images (600 visual and 600
tactile per category), from which we use 70% for training

and hold out 30% for validation. For the real world ex-

periments, we construct a dataset consisting of ten objects

with subtle visual, textural, and mass differences (bottles).

Each bottle is placed “bottom down” on the sensor 80 times

in different positions and orientations, where we capture a

snapshot at the moment the bottle contacts the surface. We

use 80 percent of the data for training and the hold the re-

mainder for validation.

Texture recognition. Beyond generic object recogni-

tion, we are interested in evaluating the ability of the STS
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Figure 6. Recall scores for each category of the simulated dataset. The scores are reported on the validation set after training to the 100th

epoch on the training set. Recall scores are reported for vision only, tactile only and visuotactile recognition.

sensor to recognize objects with small scale textural differ-

ences. To this end, we construct a dataset consisting of 3D

printed objects, ranging from coarse textures to fine tex-

tures, as shown in Fig. 9. The objects are printed mate

black, making it very difficult for visual-based classifica-

tion. For each object, we collect a total of 100 imprints for

each object, where we use 80 percent of the data for training

and the hold the remainder for validation.

Metrology assessment. To evaluate the ability of the

sensor to make quantitative disctinctions based on object

physical properties, we consider the task of estimating the

amount of material in a container. We build a dataset that

is collected using a liquor bottle filled with 3 fullness levels

(empty: 446g, half-full: 823g, full: 1133g). Each bottle is

placed “bottom down” on the sensor 120 times in different

positions and orientations, where we capture a snapshot at

the moment the bottle contacts the surface. We use 80 per-

cent of the data for training and the hold the remainder for

validation.

5. Results

This section considers the task of recognizing objects

based on their visual and physical properties, as detailed in

Figure 7. Learning curve for object recognition during training

ResNet-50 with different modalities on the simulated dataset. The

evaluation is measured on the validation set. Combination of both

visual and tactile modalities results in faster training and higher

accuracy.

Section 4. We demonstrate the capability of the STS sensor

to identify: 1) diverse objects drawn from the household

domain, 2) objects with subtle textural differences and 3)

distinctions based on metrology (i.e. differentiating bottles

based on the different amounts of liquids in them).

5.1. Household Object Recognition

Our first experiment involves training our multi-modal

learning framework, shown in Fig. 4, where the task is to

distinguish between objects based on their category labels.

This is a well-known perceptual task, and often the first step

in automation applications. We are particularly interested

in studying the significance of utilizing both the visual and

tactile modalities from our unique sensor. Can a classi-

fier benefit from both inputs? Is the data quality from

the sensor appropriate to obtain high classification accu-

racy? Is our deep architecture suitable for these inputs?

To answer these questions, we trained and validated

learned models in a variety of settings. Each scenario in

our training and validation sets includes all of the possi-

ble modalities, where we sub-select the visual signal, only

the tactile reading, or both modalities combined to create

three separate learning tasks. Using these three tasks, we

compare the classification performance of single-modal and

multi-modal classifier networks, using the network archi-

tectures depicted in Fig. 4. We use ResNet-50 [35], trained

with the Adam [36] optimizer for 100 epochs with a learn-

ing rate of 1e−4 and a batch size of 100. Due to the limited

number of real-world data, we pretrain the ResNet-50 net-

works on the ImageNet dataset.

The simulation results in Fig. 7 show the progress of

learned models evaluated on the validation set for the dif-

ferent modalities. While both modalities achieve relatively

good performance by themselves (visual: 11.25% error, tac-

tile: 16.92% error), the overall accuracy is significantly im-

proved (visuotactile: 3.12% error) by fusing both modal-

ities together using a dual stream convolutional network

architecture as shown in Fig.4. Figure 6 reports the clas-

sification recall scores for each object individually at the

end of the 100th epoch. Interestingly, as visual and tactile

modalities provides independent information, the accuracy

obtained using both modalities can significantly improve

upon that obtained by any single modality. For example,

the wine bottle’s recall score improves from 71% tactile and
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Figure 8. Bottle classification with the STS. The bottom row shows sensor views of the corresponding bottle shown in the top row with

recognition accuracy below each view. The scores are reported on the validation set after training to the 100th epoch on the training set.

Recall scores are reported for vision only, tactile only and visuotactile recognition. The bottom left of each image shows a blownup of the

tactile imprint of each bottle. Note that the sensor does not “see” the actual bottles, these are only included here for ease of exposition.

77% visual, to 97% visuotactile.

While the simulation-based analysis provides support for

the value of our multi-modal sensor, we verify the quality

of information provided by the real device, under realistic

lighting and physical conditions. To this end, we evaluate

the ability of the real-world STS prototype to differentiate

household objects, where the task is to distinguishing differ-

ent instances of object within the same category, in this case

a variety of bottles. Sample sensor input signals are shown

in Fig. 8 (bottom row) for the input bottles shown in Fig. 8

(top row). Note that the sensor does not see these bottles and

classification is based only on the imaging of the bottom of

the bottles as shown in Fig. 8. This problem is of particular

relevance for study with a visuotactile sensor as bottles of-

ten have a common profile and overall shape, differing pri-

marily in fine-grained markings on the bottom surface that

are difficult to detect visually. We trained and validated the

STS on a dataset of real-world sensory readings that capture

ten different representative bottles with similar shapes and

subtle textural differences, as described in Section 4. Fig-

ure 8 shows accuracy scores obtained by our trained models.

Results show that both visual and tactile inputs contain dis-

tinctive information useful to distinguish differen object cat-

egories. However, both tactile and visual individual modal-

ities struggle with specific object instances. With only tac-

tile information, the classifier misclassifies wine bottle 3,

that it often confuses with wine bottle 1 and 5 given their

similar tactile imprints (see supporting documentation for

confusion matrices). With only visual information, the net-

work properly distinguishes between the wine bottles based

on subtle color and shape differences. Conversely, the vi-

sual network has difficulties recognizing the coke can, that

is often mistaken for the beer can, both having similar vi-

sual perspectives from below. Interestingly, the tactile net-

work is able to differentiate between both instances, pre-

sumably due to their different mass. The ability of the STS

sensor to make quantitative assessments is further explored

in Section 5.3. When combining both modalities, the multi-

modal network achieves high recognition rates, with all bot-

tles achieving above 91% accuracy scores, overcoming the

limitations of each modality individual. The multi-modal

information provided by our sensor is significantly help-

ful for the task of recognizing diverse objects.

5.2. Texture Recognition

In this section, we investigate the ability of the STS sen-

sor to recognize textures, by classifying 6 objects with vary-

ing degrees of texture coarseness shown in Fig. 9. For this

task, we ask: can the STS sensor differentiate between

fine texture differences?

In Fig. 9, we show the classification results on a test set

of 6 difference object textures of various levels of difficulty.

We show the results for each mode individually, as well

as combined. Results show that, as expected, visual feed-

back cannot accurately differentiate most object types, as

the textures are too fine to be visually noticeable. The tac-

tile modality, visualized and overlayed in Fig. 9, augments

the ability of the perceptual system to visualize the object

textures, and is able to accurately distinguish between 5 out

of the 6 objects with over 80% accuracy. In the case of the

object on the bottom right, the tactile sensor is unable to

properly identify it due to the downsampling of the image

to the resolution of (224, 224) used by the Resnet-50 ar-

chitecture. Importantly, the combined visuotactile network

achieves equally good performance as the tactile sensor,

showcasing the ability of the tactile sensor to differen-

tiate between objects with fine textural differences.

5.3. Metrology Assessment

Our final experimental validation involves using the STS

to make simple quantitative distinction between objects of

different masses. This task would be useful on a smart
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Figure 9. Texture recognition of 6 objects with varying degrees of texture coarseness. The scores are reported on the validation set after

training to the 100th epoch on the training set. Recall scores are reported for vision only, tactile only and visuotactile recognition. Results

show that tactile feedback is required to accurately differentiate most object types, as the textural differences are too fine to be visually

noticeable.

counter top, for example, to infer the amount of liquid con-

tained in bottles placed on the surface, which is completely

unobservable in visual imagery in some opaque bottles. The

problem of measuring liquid levels is a common problem in

both the household kitchen as well as commercial restau-

rants and bars. Can our multi-modal sensor enable infer-

ence of the fullness level of bottles placed on its surface?

The objective here is not to compete merely with a con-

ventional scale, but to exemplify and evaluate the potential

for quantitative assessment combined with the other modal-

ities of the sensor. Specifically, we varied the “fullness” of

bottles by considering 3 fullness levels (empty: 446g, half-

full: 823g, full: 1133g). The training procedure follows the

details described in Section 5.1 and uses the network archi-

tecture depicted in Fig. 4. Figure 10 summarizes the con-

fusion matrix for this model. As expected the cross-modal

network achieves higher accuracy that a model trained with

pure visual information, with the accuracy results for each

modality is related in Table Interestingly, when the model

incorrectly labelled a bottle, the most likely label was a bot-

tle with the next closest volume. While a traditional scale

would be more accurate, these preliminary results to verify

Figure 10. Confusion matrix for inference of bottle contents. Rows

and columns represent true and predicted classes, respectively.

Figure 11. Bottle weight classification with the STS sensor. The

scores are reported on the validation set after training to the 100th

epoch on the training set. Recall scores are reported for vision

only, tactile only and visuotactile recognition.

our multi-modal sensor enables a reasonable ability to

quantitative assesments of object physical properties.

6. Discussion and Future Work

In this paper, we describe the principles, design, algo-

rithmic foundation and evaluation of a new kind of sensor

that simultaneously provides tactile information and visual

appearance. We sketch how it can be used for both categor-

ical and quantitative assessment of object properties.

Integrating tactile and visual data into a common frame-

work provides an effective signal for object recognition as

well as quantifying physical properties of objects. The

sensor developed and prototyped in this paper provides a

combined visuotactile signal that eliminates the need to in-

stall parallel sensors with the advantage of a common refer-

ence frame. The STS is inexpensive, compliant, and lever-

ages recent advances in vision-based tactile sensors. It pro-

vides a visual signal by replacing the opaque surface of

sensors such as GelSight with a semi-transparent surface

whose transparency nature can be modulated as necessary,

but without which such modulation can obtain a combined

tactile-visual signal. Additionally, as shown in this paper,

the lighting conditions of the sensor can be modulated such

as to obtain a single image that fuses both visual and tac-

tile information and is sufficient to distinguish objects and

to characterize their weight.

In the longer term, we anticipate deploying the STS tech-

nology in larger scale surfaces capable of displaying infor-

mation, as well as acting as an input medium and develop-

ing non-planar surfaces for specific applications (such as a

smart eye-finger hybrid).
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