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George Mason University, Fairfax, USA

{ahosain, psanthal, phpathak, rangwala, kosecka}@gmu.edu

Abstract

Gestures in American Sign Language (ASL) are charac-

terized by fast, highly articulate motion of upper body, in-

cluding arm movements with complex hand shapes and fa-

cial expressions. In this work, we propose a new method

for word-level sign recognition from American Sign Lan-

guage (ASL) using video. Our method uses both motion and

hand shape cues while being robust to variations of execu-

tion. We exploit the knowledge of the body pose, estimated

from an off-the-shelf pose estimator. Using the pose as a

guide, we pool spatio-temporal feature maps from differ-

ent layers of a 3D convolutional neural network. We train

separate classifiers using pose guided pooled features from

different resolutions and fuse their prediction scores during

test time. This leads to a significant improvement in per-

formance on the WLASL benchmark dataset [25]. The pro-

posed approach achieves 10%, 12%, 9.5% and 6.5% per-

formance gain on WLASL100, WLASL300, WLASL1000,

WLASL2000 subsets respectively. To demonstrate the ro-

bustness of the pose guided pooling and proposed fusion

mechanism, we also evaluate our method by fine tuning the

model on another dataset. This yields 10% performance im-

provement for the proposed method using only 0.4% train-

ing data during fine tuning stage.

1. Introduction

Sign language is the primary form of communication

among the Deaf and Hard-of-Hearing (DHH) persons.

There are 70 million DHH people around the world and

there exists more than 300 sign languages [17]. This large

section of population suffers from communication barrier

in many ways. Sign language is a complete independent

language from its counterpart of spoken language. The

most commonly considered sign language recognition tasks

tackled by computer vision techniques are finger spelling

recognition, sentence parsing and world-level sign gesture

recognition. In this paper we focus on the word-level sign

language recognition problem. The basic components of

a sign gesture are complex arm movements with articulated

Figure 1: Demonstration of pose in feature map space. Top

images show the variation in hand position in three differ-

ent samples from a sign gesture of city class. Bottom im-

ages shows how the hand poses are mapped (for the middle

sample) to corresponding activation maps for four randomly

selected channels from a certain layer of a 3D ConvNet.

hand shapes, and facial expression. Both the motion and the

shape of the hands are the most discriminative components

of individual gestures. From a computer vision perspec-

tive, the word-level gesture recognition requires learning

strong spatio-temporal representations from videos, captur-

ing both the appearance of the hand as determined by its

shape and pose, as well as motion of arms and hands. Sev-

eral deep learning based approaches were found effective

in capturing spatio-temporal representations of the data for

action recognition or action localization tasks on commonly

used action recognition benchmarks [40, 5]. The common

building blocks of these models use a combination of Deep

Convolutional Neural Networks (ConvNet) for extracting

the spatial feature and Recurrent Neural Network (RNN)

for modelling the temporal aspect [8, 57], or use combina-

tion of 2D and 3D convolutional networks for fusing spatio-

temporal cues [20, 57, 50, 46]. These methods take ac-

tion videos as input and compute class prediction proba-

bilities over the available classes or occasionally action lo-

calization depending on the labels available in the train-

ing set. Alternative approaches for action recognition ex-

ploit the existing techniques for human pose estimation [4]
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in individual frames and learn models on the top of these

representations [26, 6]. Large motions, motion blur and

limited resolution make the body pose estimation brittle.

The same factors affect the estimation of hand finger joints,

making these methods ineffective for capturing hand shape

and pose. For both action recognition and word-level sign

language recognition 3D ConvNets are currently one of the

best performing models [5, 25] enabling end-to-end train-

ing of spatio-temporal component. For word-level gesture

recognition, previous methods that shown the effectiveness

of hand shape for gesture recognition required training sep-

arate models for hand shape classification, in a supervised

or weakly-supervised way [15, 23].

Motivated by the effectiveness of hand shape for ges-

ture recognition, we propose to augment a 3D ConvNet

model by pose guided pooling from 3D convolutional fea-

tures maps at different layers and levels of resolution. We

propose to use the spatial locations of hands in the feature

maps to guide the pooling. Location of hands on RGB video

frames can be reliably estimated by any state-of-the-art of

pose estimation method [4]. Figure 1 shows an example

of body poses mapped to corresponding locations in dif-

ferent feature layers of a 3D ConvNet. We learn to pre-

dict the word-level gestures by training additional classifiers

using pose guided pooling of 3D ConvNet features maps

with different spatial support. During test time, we fuse the

class probability scores from classifiers learned using these

pooled multi scale features. In summary, our contributions

can be listed as follow:

• We propose a novel pose guided pooling mechanism

for word-level ASL recognition;

• We investigate the idea of pooling localized features

from multiple feature map levels of 3D convolutional

network;

• We evaluate the proposed architectures improving the

state of the art results on word-level action recognition;

• We validate the feature transferability of our proposed

method by evaluating on a different dataset, using only

0.4% training samples.

2. Related Work

In the following section we will review some related

works for action recognition in video, gesture recognition

as well as more specific sign language recognition. The

approaches differ in the representation of appearance and

motion and the datasets used to benchmark the models.

2.1. Gesture and Action Recognition

Commonly used approaches for action recognition from

video extract various features from RGB data or use body

poses (skeletal) data or a combination of both. For cer-

tain actions, the appearance information in a single frame

can unambiguously determine the actions, for others the

motion is the discriminant cues. While the history of the

modeling approaches is rich, we focus the review on more

recent methods. To capture both the spatial and temporal

signals in the video, Simonyan et al. [41] explore different

ways to fuse spatial and temporal information from a two

stream appearance and flow convolutional network. Simi-

lar multi-stream architectures were introduced in [33] for

gesture recognition. The architecture is based on 2D con-

volution and sparse fusion of scores from different chan-

nels of input stream where some of the channels are fo-

cused on hands. Later approaches explored the idea of 3D

convolution for joint learning of the spatial and temporal

features [48, 5]. Inflated 3D ConvNet (I3D) [5] network

extended pre-trained 2D convolutional kernels to tempo-

ral dimension to bootstrap learning 3D convolutional filters.

Some approaches focused on temporal modeling by either

learning sparse frame sampling [53], learning hierarchical

features [29] or generating temporal candidate proposals

[56]. Using unsupervised techniques are also well studied

in gesture or activity recognition. These methods typically

try to capture the temporal order similarities of full or sub-

activities of similar kinds [10, 32], bypassing the need for

more detailed labeling.

Activity recognition using body pose (or skeletal) data

is also a well studied problem [39, 27, 9]. Shahroudy et

al. released a large scale dataset for human activity recog-

nition [39] and proposed an extension of long short term

memory (LSTM) model which leverages group motion of

several body joints to recognize human activity from skele-

tal data. A different adaptation of the LSTM model was pro-

posed by Liu et al. where spatial interactions among joints

was considered in addition to the temporal dynamics [27].

Veeriah et al. [51] proposed to capture derivative of mo-

tion states among different body joints, meanwhile Du et

al. [9] exploited the hierarchical arrangement of different

body parts. Several attention based models were proposed

for human activity analysis [42, 28]. Some approaches use

skeletal sequences of body joints to develop new representa-

tions which captures the spatio-temporal cues in the videos

[22, 26]. Often, the goal of these method is to generate an

image like representation of a video pose sequence, to facil-

itate the use of pre-trained image models.

The aforementioned methods used either RGB video in-

put (possibly with optical flow) or pose data separately or

together to model sign or activity video samples. However,

using pose guided feature extraction from a ConvNet is also

well studied in video action recognition [52, 3]. These ap-

proaches deviate from the traditional use of poses of mod-

eling sign videos. Instead, these methods use pose to local-

ize a position in a feature map to extract from. The feature
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map is usually generated from an RGB input video. Our ap-

proach follows a similar mechanism. However, to the best

of our knowledge, we are the first to try this in a sign lan-

guage recognition setting.

2.2. Sign Language Recognition

From recognition perspective, sign languages can be cat-

egorized into world level signs (WLSLR), continuous sign

sentences (CSLR) and finger spelling. Early approaches

for WLSLR used hand crafted features from either RGB

or skeletal sequences with Hidden Markov Model (HMM)

for parsing simple multi-word phrases [60, 58, 43]. More

recent efforts used deep learning techniques to bypass the

feature engineering [18, 21, 44]. These models are ei-

ther based on 3D ConvNets [18] or Support Vector Machine

classifiers using extracted features from ConvNets [21, 44].

Lionel et al. [35] used ConvNet to model Italian sign ges-

tures in a similar manner.

For sentence level parsing CSLR tasks, most of the

state-of-the-art methods are built upon RWTH-PHOENIX-

Weather corpus [11]. The corpus contains weather fore-

casts simultaneously interpreted into sign language which

were recorded from German public TV and manually an-

notated using glosses on the sentence level. Koller et

al. [23] trained a 22 layer deep convolutional neural net-

work (CNN) with more than 1 million images from videos

of Danish and New Zealand sign language. The data is

weakly labeled with only video level annotation. The Con-

vNet model for estimating the likelihood of hand shapes, is

trained using EM algorithm, jointly with Hidden Markov

Model (HMM) for parsing sign gestures. Several later

approaches focused on temporal modeling of sign sen-

tences with the help of Connectionist Temporal Classifica-

tion (CTC) loss [7, 37, 14, 13]. For example, Cui et al. [7]

proposed a method of staged optimization where first align-

ment proposal is learned for sign sequences and those used

as stronger supervision in final task. Pu et al. [37] proposed

dilated convolutional kernels, also followed a pseudo label

based training, for capturing temporal dynamics. Guo et al.

[13] also followed as similar pardigm with 2d convolutional

pyramid features. Recently, Pu et al. [38] proposed a com-

bination of 3D ConvNet and RNN encoder-decoder, with

alternative iterative training technique, to model continuous

sign sentences.

ASL Recognition There are several works that directly

relate to world-level recognition problem in American Sign

Language (ASL) that we study here. Early works pro-

posed for the WLSLR for ASL relied on linguistic prop-

erties [2, 31, 30, 47]. Although, these works focused on

the inherent part of the language, computer vision tech-

niques were not properly exploited. Later approaches fea-

ture small datasets or restricted laboratory environment set-

tings [18, 24, 59, 60, 58]. More recently Hosain et al. [16]

introduced a medium scale dataset with 11k word sign sam-

ples and proposed skeletal based RNN models for recog-

nition. Although, not small in size, the dataset was col-

lected in a laboratory environment. The size of the dataset

is an important contributing factor when it comes to training

large deep ConvNets. Most recently, two large scale word-

level datasets were introduced to the community [49, 25].

Both datasets used online wild video resources for retriev-

ing sign samples. These datasets feature adequate variation

to validate evolving deep learning based models for sign

language recognition. For example MS-ASL [49] contains

more than 20k sign samples of almost 1k sign classes, while

WLASL [25] features almost same number of sign samples

with 2k sign classes in total. Both works proposed several

human pose based and RGB based baselines demonstrat-

ing the challenges and usefulness of the models. In both

cases, 3D ConvNet based model was the best performing

model. In our work, we show how to enhance this model

by body pose guided pooling of spatio-temporal features

maps, where the location of the hand is estimated by the

state-of-the-art human body pose estimator.

3. Our Approach

Given, a dataset of N training examples {Vi,Wi}, where

Vi is an RGB video ∈ ℜT×H×W×3 and Wi is a word level

label; H,W, 3 is the dimension of a single frame of a video

and T is its length. We seek to train a machine learning

model to predict the word-level sign from videos. Figure 1

shows example gestures for the sign city, performed by

three different signers. Specifically, our proposed method

leverages motion and hand shape cues by being robust to

variations while signing. We use the estimated body pose

as a guide for pooling spatio-temporal feature maps at dif-

ferent layers of a 3D ConvNet. We train independent classi-

fiers using pose guided pooled feature maps from different

resolutions and fuse their prediction scores during test time.

In this section, we first describe the baseline 3D ConvNet

model, followed by our pose guided pooling and fusion ap-

proach.

3.1. Inflated 3D ConvNet

Deep convolutional neural networks (ConvNet) for im-

age classification proceed by learning layers of shared fil-

ter parameters that are used obtain spatial features maps by

means of convolution. To model sequential nature of video

data, convolution can be extended to 3D where weights

of 3D filters can learned directly from spatio-temporal

data [20]. However, training these models form scratch is

quite challenging, due to large number parameters added

by the temporal dimension of convolutional filters. To miti-

gate this issue, I3D network [5] was proposed to use already

trained 2D convolutional filters and inflate them into 3D to
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Figure 2: I3D Inception-v1 based sign video recognition pipeline. All inception blocks (Inc) are numbered for the conve-

nience of description. Volume of output is labeled as “temporal,height,width” after any layer where it is being changed by

the previous layer’s sampling and convolution filters. Number of feature maps are not shown for simplicity in any output

volume. Pose pooled classifier is shown for three output locations (PPC-5, PPC-7 & PPC-8), while it can be done from any

output points in the network.

initialize the training of 3D convolutional network. Inflating

pre-trained 2D filters into 3D allowed the network to learn

seamless spatio-temporal features and has become the state-

of-the-art method in action recognition and world-level sign

gesture recognition [5, 25]. GoogleNet was proposed to find

the optimal sparse local structure in data using readily avail-

able dense convolutional fiters [45]. The idea was motivated

by the fact that, not every neuron, at each layer is equally

responsible for the learning process of a ConvNet and op-

timal network structure can be approximated using the cor-

relation statistics of highly activated neurons layer by layer

[1]. The authors of I3D [5] inflated a version of GoogleNet

and initialized 3D filters using 2D versions trained on im-

age recognition task. This architecture is titled as Inflated

Inception-V1 and we use at as one of our baselines as well

as starting point in our proposed model. Figure 2 shows

the inception module as Inc. Details can be found in the

original paper [5].

3.2. Pose Estimation

Pose estimation is the process of estimating 2D or 3D

body joint locations (e.g. wrist, elbow) in single image.

Typically it is done by first detecting human subjects in an

image frame and then parsing body joint location [34, 12] or

directly inferring the body parts without first detecting the

person [55, 54, 4, 19, 36]. For this work, to extract 2D body

poses, we have chosen the state-of-the-art human body pose

estimation approach OpenPose [4].

3.3. Proposed Method

In our approach we propose to augment sign video

recognition using 3D ConvNet along with body pose. We

assume that the body pose estimates are available for each

frame using an off-the-shelve pose estimation approach [4].

The video is passed through the layers of 3D ConvNet gen-

erating spatio-temporal features maps with multiple chan-

nels at different levels of resolution. We then use the es-

timates of body joint locations to guide the pooling of the

spatio-temporal feature maps to generate additional predic-

tions. Details of our architecture is presented in this section.

We denote a sign gesture video input by V T×H×W

where T is the video length in number of frames and H,

W are the spatial dimensions. For a person performing a

sign gesture in the video, the estimated body pose tensor

of the person can be represented as PT×J×2 where T is the

number of frames, J is the count of body locations and 2 for

the (x, y) image coordinates for the pose of each body lo-

cation. Even though the consecutive levels of 3D ConvNet
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change the spatial and temporal dimensions of the feature

maps due to stride and pooling operation, we can compute

corresponding spatial coordinates of joint locations for re-

spective feature maps. Suppose we have a feature map at

level k with dimensions FT ′
×H′

×W ′

. The spatial joint co-

ordinates can be scaled down based on the ratios of heights

and widths between the input video and the 3D feature map.

For the temporal dimension we uniformly sample T ′ frames

from initial T , to match the temporal dimension of the fea-

ture maps. More specifically, we convert an input tensor

index (tv, xv, yv) to feature map index (tf , xf , yf ) using

following equation:

sx =
H ′

H
sy =

W ′

W
st =

T ′

T

xf = sx × xv, yf = sy × yv

tf = TemporalSample(T, T ′)[st × tv]

(1)

where sx and sy are the scaling factors for height and width

change of resolution. The function TemporalSample di-

vides the T temporal dimension into T ′ equal length win-

dows, picks the middle index from each window and returns

a list of temporal indices. To get the corresponding tempo-

ral index of pose data to the feature map, (st×tv)
th number

from the sampled indices is selected. Given the computed

joint locations in the feature maps we use these to guide the

pooling to generate the new feature vector at that layer.

3.3.1 Pose Guided Pooling Classifier (PPC)

We pool features around each joint location and stack all

joints’ feature. Pooling from a feature map of [f×t×h×w]
using j joint locations leads to a feature representation of

size [f × t × j]. Using these features we train a sepa-

rate linear softmax classifier described in more detail in

experiments section. The architecture learns several clas-

sifiers separately and during test time we fuse their pre-

diction scores by summing. Since different classifiers use

features from different scales of 3D ConvNet, they carry

complementary information. This fact is reflected in over-

all performance improvement using our pose pooling and

score fusion mechanism. Figure 2 shows the overall archi-

tecture, comprised of I3D backbone network with labelled

inception modules. This figure shows, PP Classifer

7 (PPC-7) gets pose pooled features from the inception

layer labeled 7, and PPC-8 & PPC-5 from levels 8 and 5

respectively. We can extract features from any 3D feature

map level and train a separate classifier. For the rest of the

discussion, we refer to classifier from nth inception module

as PPC-n. We also consider the final prediction of baseline

I3D network, termed as I3DLogits and experiment with

different fusion strategies described in experiments section.

Datasets #Gloss #Videos #Mean #Signers

WLASL100 100 2,038 20.4 97

WLASL300 300 5,117 17.1 109

WLASL1000 1,000 13,168 13.2 116

WLASL2000 2,000 21,083 10.5 119

Table 1: Summary of the different subsets of WLASL

dataset where mean is the average number of video samples

per gloss. More details can be found in the paper [25].

4. Experiments

4.1. Dataset

We evaluate our method using recently introduced

WLASL dataset [25]. The dataset is curated from on-

line ASL videos, primarily created for teaching purposes.

Being collected from different sources, the dataset con-

tains unrestricted varieties in signing styles and back-

ground. The authors went through several manual and

automated pre-processing steps to create four subsets of

data, named WLASL100, WLASL300, WLASL1000 and

WLASL2000, respectively. Table 1 shows the statistics of

the dataset.

4.2. Preprocessing

We downloaded the data following the instructions come

with the dataset release. We obtain estimates of poses for

each frame the videos through OpenPose [4] and store the

poses. Using the pose information on the image frame, we

calculate a bounding box for each frame, making sure that

both hands and whole body are visible over the video and

crop the frames. After cropping the videos, we adjust the

poses according to the cropped region. Finally each cropped

video and corresponding adjusted pose form an input to our

network.

4.3. Implementation Details

For our pose pooling methods, we used only 2 joints to

extract features from the intermediate feature maps of I3D

network. These 2 joints are calculated using mean joint lo-

cation of all 21 finger and palm poses, produced by Open-

Pose, for each hand. Hence, a feature map of [f×t×h×w]
is converted to [f × t × 2]. We empirically verified that,

adding more joints, such as elbow or shoulder, in pooling

does not improve results significantly. This is expected due

to the fact that, most the variance explaining the data comes

from the hand regions. We used maximum pooling using

3 × 3 × 3 kernel around each hand pose location. We also

noticed, adding fully connected layer afterwards does not

improve or deteriorate the performance. Hence, we decided

not to use it. Once we extract pose localized features, train-
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Method WLASL100 WLASL300 WLASL1000 WLASL2000

top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

I3D[25] 65.89 84.11 89.92 56.14 79.94 86.98 47.33 76.44 84.33 32.48 57.31 66.31

PPC-7 67.79 76.91 80.75 57.12 70.80 74.44 44.17 63.33 69.76 29.46 52.95 60.25

PPC-8 67.79 78.16 82.50 59.91 75.78 78.39 44.57 61.11 66.20 29.26 50.35 56.57

I3DLogits 68.70 86.66 89.58 57.62 78.63 82.46 48.29 68.25 73.17 33.18 60.04 68.87

Fusion-1 71.74 81.75 84.66 64.41 78.67 82.39 51.01 70.95 75.80 34.68 60.39 67.27

Fusion-2 74.16 86.83 90.91 67.79 84.19 87.06 55.71 77.90 83.77 38.57 68.17 75.71

Fusion-3 75.67 86.00 90.16 68.30 83.19 86.22 56.68 79.85 84.71 38.84 67.58 75.71

Table 2: Top-1, Top-5, top-10 accuracy (%) achieved by each model (by row) on the four WLASL subsets. First row shows

the results reported in [25]. Next two rows (PPC 7 & PPC 8) shows performance from two classifiers of our pose localized

pooling. The I3D Logits result is the basic I3D classifier without any pose pooling mechanism. Here, Fusion-1 = PPC-7

+ PPC-8, Fusion-2 = PPC-7 + PPC-8 + I3DLogits and Fusion-3 = PPC-5 + PPC-7 + PPC-8 + I3DLogits.

ing mechanism follows the original I3D [5]. We initial-

ize the I3D network using pre-trained weights on Charades

[40] activity dataset. Each video is resized into 256 × 256
and the poses are adjusted accordingly. We used two video

level data augmentation techniques : random cropping us-

ing 224 × 224 spatial support and random horizontal flip-

ping. Input video length is set to 64, with possible tempo-

ral augmentation in case of longer videos. We padded the

videos less than 64 frames either in the beginning or end.

Poses are adjusted appropriately in case of any augmenta-

tion of video data. We used Adam optimizer with initial

learning rate of 0.001, with 4 or 6 (for different subsets of

data) mini-batch sizes. After fixing the hyper-parameters of

a model, we train the model using the training and the val-

idation split and report the results on the test split for each

subset of the dataset. Micro average accuracy was used as

metric due to the imbalance in number of test samples of

different classes.

4.4. Evaluation

Table 2 shows the experimental results. The results in-

dicate that our pose localized classifiers (PPCs) perform

competitively with the base I3D network. It should be

mentioned that, we have a performance gain (68.70% vs

65.89%) using base I3D, shown as I3DLogits, over the

same baseline’s reported in [25]. Although both of these

are the same implementation, we believe, the performance

increase is due to the cropping preprocessing step. The re-

sults indicate that any single PPC classifiers perform com-

petitively with the I3D baseline. This shows improvement

on memory footprint of the model and computation time,

e.g. single PPC-7 classifier uses smaller number of model

parameters than the whole I3D. The results also shows that,

fusing prediction score from different branches boost the

performance significantly. The best accuracy is achieved

by combining four sets of prediction scores from PPC-5,

PPC-7, PPC-8 and I3D Logits. Overall, our best perform-

ing fusion model (Fusion-3) outperforms I3D implementa-

tion in [25] by 10%, 12%, 9.5% and 6.5% on WLASL100,

WLASL300, WLASL1000, WLASL2000 subsets respec-

tively.

Complementary Feature Learning We wanted to verify

that, improvement from fusing the prediction scores is not

just an effect of model ensemble. In this regard, we calcu-

lated the accuracy fusing scores from same branch but from

separately trained model. For example if we fuse the scores

from PPC-7 of two separately trained models, the top-1 ac-

curacy the fusion achieves is 68.05% on WLASL100 sub-

set. Fusing three models from PPC-7 gets 68.17%. Al-

though, these are little better than result from a single PPC-

7 (67.79%), they are far worse than the fusion of PPC-7

& PPC-8 (Fusion-1, 71.74%). Similarly, fusing scores

from two PPC-8 layers from two separately trained mod-

els gives 68.15%. This suggests that performance improve-

ment is not merely coming from using multiple models at

test time. Rather, different pose localized branches pick on

different class specific features and complement each other

to obtain better performance.

4.5. Representation Transfer

We conducted this experiment to validate the effective-

ness of pose pooled feature on unseen data samples from

a different distribution than WLASL. We choose 12 over-

lapping classes from WLASL300 subset and another pri-

vate dataset1 we collected in a laboratory setting. The sign

video samples from this dataset and WLASL dataset vary

in appearance, lighting condition, distance from camera,

hand motion, styles and in many other factors. Figure 3

1This dataset will be provided upon request for reproducing the results.
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Figure 3: Examples of gesture samples from four classes. Each pair of sample shows one example (label is shown on the left)

from WLASL dataset (bottom in a pair) and other different dataset (top in a pair) used in representation transfer experiments

in the section 4.5.

Method
Accuracy

top-1 top-5 top-10

I3DLogits 55.63 75.67 82.25

PPC-8 59.21 89.48 88.63

Fusion-3 66.70 91.80 98.11

Table 3: Fine tuned results using only 0.4% of data in train-

ing. Method names have same meaning as in Table 2.

shows some examples of from the both datasets. There are

total 2976 samples from the other dataset for overlapping

12 classes. We fine tune our models using only a single

sample from each of the 12 classes. Rest of the 2964 sam-

ples were used for evaluation. Table 3 shows the results of

this experiment. The result demonstrates an approximate

10% increase in the top-1 recognition accuracy compared

to baseline I3D network. Even without any fusion, our pro-

posed pose pooling method, such as PPC-8, outperforms

I3D by 3.58%. This demonstrates that the features learned

by the proposed pose pooling methods are more invariant

to domain changes than baseline I3D. This is not surprising

because, pose guided pooling helps the network to extract

features relevant to sign gesture dynamics and also helps to

ignore nonessential appearance and motion cues.

4.6. Qualitative Findings

Our approach is built on the hypothesis that pooling

features from different layers contributes differently to for

overall performance. We also found this in our experiments.

Experimental findings reveal that, the classes having less

motion get best predictions using features from intermedi-

ate layer while the sign gestures with relatively heavy mo-

tion benefit from final layer representations of the I3D net-

work. To corroborate this intuition, we first pick top per-

forming classes that have higher fraction of samples cor-

rectly classified by PPC-7 branch. We calculate the hand

motion using pose locations of both hands for those selected

classes. We repeat the same for top performing classes from

the final level logits (I3DLogits in Table 2) of the net-

work. Figure 4 (a) shows the plot of hand motion where

horizontal axis is the number of top classes we pick. We

observe that, calculated average motion of best perform-

ing classes for PPC-7 is always lower. This suggests that,

the classes having smaller motion get better features from

PPC-7 than I3DLogits. We believe, due to slower mo-

tion, hand shapes of these classes are more perceivable to

the network and the pose localized pooling helps to extract

those informative shapes. Figure 4 (b) shows similar phe-

nomenon, except we calculate average motion of a certain

sized window. We calculate distance of the first and the last

frame of each window and the window slides over the video
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Figure 4: Hand motion of top performing classes from PPC-7 branch and I3D logits.

Method
WLASL300

Without Pose Pooling With Pose Pooling

top-1 top-5 top-10 top-1 top-5 top-10

PPC-7 57.37 76.33 82.05 57.12 70.80 74.44

PPC-8 55.59 73.08 77.55 59.91 75.78 78.39

I3DLogits 57.62 78.63 82.46 57.62 78.63 82.46

Fusion-1 60.12 80.05 85.25 64.41 78.67 82.39

Fusion-2 63.83 83.39 87.69 67.79 84.19 87.06

Fusion-3 64.45 83.86 87.58 68.30 83.19 86.22

Table 4: Ablation studies of using pose as indexes while

pooling activation from feature maps. Fusion methods have

similar meaning as Table 2, i.e. Fusion-1 = PPC-7 + PPC-

8, Fusion-2 = PPC-7 + PPC-8 + I3DLogits and Fusion-3 =

PPC-5 + PPC-7 + PPC-8 + I3DLogits.

with stride 1. This is proportional to the average velocity of

hands in a sign sample and we observe the similar results as

the motion.

4.7. Ablation Studies

To validate the effectiveness of pose localized features,

we implement similar fusion experiment as we described in

the result section, but without pose localized pooling. In-

stead, we use basic maximum pooling sub-sampling. In de-

tail, after extracting a feature map from any point of the

network in Figure 2, we using maximum pooling over that

feature map to produce a representation of the video. Table

4 shows the results from this experiment. The result indi-

cates, when single layer features are used, pose pooling fea-

tures perform equally. However, when scores from several

layers are combined (fusion cases in Table 4), pose pooling

features provide around 4% performance gain in top-1 ac-

curacy. This suggests predictions made using pose pooled

representations exploit alternative information across differ-

ent layers of the network.

5. Conclusion

In this work, we propose a novel pose guided pooling
strategy for extraction of additional features from 3D Con-
vNet in the context of world level sign language recogni-
tion. Our experiments show that, combining features from
different levels of the network can improve overall recogni-
tion accuracy. For future direction, our goal is to consider
phrase level sign language modeling. We plan to use this
work to localize sign words in phrase level sign language
recognition tasks.
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