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Abstract

Being able to anticipate and describe what may happen

in the future is a fundamental ability for humans. Given

a short clip of a scene about “a person is sitting behind a

piano”, humans can describe what will happen afterward,

i.e. “the person is playing the piano”. In this paper, we

consider the task of captioning future events to assess the

performance of intelligent models on anticipation and video

description generation tasks simultaneously. More specifi-

cally, given only the frames relating to an occurring event

(activity), the goal is to generate a sentence describing the

most likely next event in the video. We tackle the problem

by first predicting the next event in the semantic space of

convolutional features, then fusing contextual information

into those features, and feeding them to a captioning mod-

ule. Departing from using recurrent units allows us to train

the network in parallel. We compare the proposed method

with a baseline and an oracle method on the ActivityNet-

Captions dataset. Experimental results demonstrate that

the proposed method outperforms the baseline and is com-

parable to the oracle method. We perform additional abla-

tion study to further analyze our approach.

1. Introduction

In this paper, we consider the problem of generating cap-

tions for future frames in a video. This problem is related

to video captioning. But there are important differences as

well. In standard video captioning, all frames in the entire

video are observed. But in our problem setting, we consider

an online setting where we only have access to the frames

observed so far. Our goal is to generate captions for future

frames that are not observed yet.

Humans have the amazing ability to anticipate the future

based on current events (see Fig. 1). Given a short clip of

an event happening now, humans can easily anticipate and

describe what will most likely happen next. For example,

after observing that “a coach is advising a weight lifting

athlete”, it is easy for us to anticipate that later on “the ath-

lete will lift the weight again after the advice” (Fig. 1). The

goal of this paper is to enable intelligent agents to have sim-

ilar capabilities. Generating captions of future frames also

has many important real-world applications. For example,

consider the application of assisting visually impaired peo-

ple. If we can have a system that can automatically gener-

ate captions of future events based on the observed visual

scenes, the person will be able to anticipate possibly dan-

gerous events in the future and take action appropriately.

Generating captions for future frames is a challenging

problem. Since the algorithm does not have access to future

frames, it needs to understand the semantic information of

the current scene and accurately predict the future. Inspired

by recent work on future semantic segmentation [20], we

develop our approach by predicting the feature maps of fu-

ture frames based on observed frames. Then we can use a

standard captioning module to generate the captions based

on the predicted feature maps of the future frames. we

demonstrate superior performance over the baselines on the

challenging ActivityNet-Captions dataset [14].

The contributions of the paper are manifold. First, we

take tackle the problem of video captioning for upcoming

future frames in a video in two different settings: general,

and conditional captioning. Compared with standard video

captioning, this new problem setting is closer to many real-

world applications such as assistive technologies for the vi-

sually impaired. Second, we propose a novel approach to

this problem. Our approach is based on predicting the fea-

ture maps of future frames, rather than directly generating

pixel values. Finally, our experimental results demonstrate

the effectiveness of the proposed approach compared with

other baselines.

2. Related Work

Future frame captioning is related to several lines of

research in computer vision, including image/video cap-

tioning, future prediction, and moment/event detection in

videos. In image captioning, the goal is to generate a sen-

tence describing an input image. Existing image captioning

models often use recurrent neural networks (RNNs), specif-

ically the long-short term memory (LSTM) variant [10].

Karpathy et al. [12] tackle the problem using a combina-
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Figure 1. Given a sequence of frames of what is happening (Et),

the task is to anticipate what will happen in the next event (future)

and describe it using a sentence. First row: the general version

of the problem in which the task is to generate all the words in

the caption for the next event. Second row: conditional future

captioning where the task is to take the current event as well as a

noun phrase defining the actor of the next event (e.g. the athlete in

this case) and describe what the actor will do in the next event.

tion of CNNs for extracting features from the image and an

RNN for generating the caption. Some works [32, 2, 18] use

an attention mechanism to focus on visual features from dif-

ferent parts of the input image when generating each word.

There has also been lots of work on captioning in the

video domain video [14, 29, 28, 33, 34]. The method in

[28] utilizes LSTM units in an encoder-decoder fashion

for the video captioning task. It extracts both appearance

and optical flow features of frames, then feds them through

their proposed model to generate captions. Inspired by

the success of self-attention [26] and transformer networks,

[38, 39] propose end-to-end video dense captioning systems

by establishing a more explicit relationship between visual

and textual modalities. Another attempt to densely describe

a video is made by [7]. It uses a cycle-consistency scheme

to train the network without the corresponding temporal an-

notations of events in the video. Zhang et al. [36] further

utilize the syntax of the sentence to generate more plausible

captions for videos. All of these approaches assume that we

have access to the entire video. In contrast, we consider the

case where the future frames are not available.

Our work is also related to future prediction tasks in

computer vision. Felsen et al. [8] study the problem of

predicting the players’ next moves in water polo and bas-

ketball videos. However, their approach is constrained to

the special case of those sports and a limited set of moves.

Additionally, there have been proposed approaches that aim

to predict the future in a pixel-level space. Using genera-

tive adversarial networks, [1] has established a framework

to predict the next frame(s) directly in RGB space based

on what has been the sequence of frames so far. Other

works [19, 20] have considered predicting future semantic

or instance segmentation of future frames.

Another line of related work is on detecting important

moments/events in a video. Buch et al. develop the SST

method [5] which uses sliding windows over the input video

through a Gated Recurrent Unit (GRU). The computational

complexity is reduced in their model by avoiding overlap-

ping windows. In recent work, Li et al. [15] propose a

method to detect the moments and caption them using a

cross-module loss function. Xiong et al. [31] propose a

progressive video description generator which sequentially

takes frames for processing, and produces a caption as it

moves forward along the temporal dimension. After pro-

cessing all the frames, the produced captions are further re-

fined by another module to add more coherency. Recent

work in [24] uses a proposal-free approach that eliminates

the need for costly region proposal operations.

3. Problem Statement

Anticipation is the ability to inference across space, time,

causality, etc. [23]. It is considered to be a fundamental ca-

pability for an intelligent entity [9]. It allows humans to

partially observe a scene and describe what may happen af-

terward. For instance, given a short clip of “she opened

the hood of the car”, we can describe the next possible

scene (event) which could be “she then examined the en-

gine” [35].

We define an event in a video as a number of consecu-

tive frames in a video clip that capture an action being per-

formed. This notion of an “event” is consistent with the

definition in [14] as well. Our goal is to generate captions

for future events that are not observed yet. We consider two

problem settings for future frame captioning. In the first

problem setting (which we call the general case), we are

given a sequence of frames {f t
i }

v
i=1

representing an event

in the video at time-stamp t, where f t
i denotes the i-th frame

within the t-th event in a video. Note that the number of

frames v of an event can be variable for different events.

The goal is to generate a sentence {wt′

i }
m
i=1

describing what

is happening in the next important event in the video at time-

stamp t′ (where t < t′). Here m represents the number of

words in the sentence and wt′

i is a word in the sentence.

In this setup, the model should solely rely on what is hap-

pening at the current moment in the video. It needs to infer

what is the subject of the upcoming event and describe what

the subject would do next.

However, due to the uncertainty of the future, the cur-
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Figure 2. After training TFP, it is plugged into the main pipeline for the next stage of training. To train the main pipeline, a pre-trained

C3D network computes the convolution features for each event (yellow box). Extracted features are then fed into the TFP to obtain the

predicted features for the next event (green box). After temporal pooling, the predicted features are combined with the contextual features

coming from the current event (⊕) and are input to the captioning module using a projection layer. The captioning module adds the visual

features to the word embedding features for each input word, applies n layers of mask convolution to effectively increase the receptive

field for each word. The next word is generated by using softmax on top of the classification layer in the captioning module (blue box).

rent event could logically be followed by several different

events with different subjects. For example, consider the

case where the current event is “the person blows the leaves

from a grass area using the blower”. Potentially, both “the

blower is seen up close.” and “the person then walks away

from the camera.” make sense even to humans to be the next

possible event in the video.

To take into consideration this uncertainty, we take in-

spiration from some work in the NLP community [35] and

propose the second problem setting. In this problem set-

ting (which we call the conditional case), we have access

to the visual information for the current event in the video

as well as the actor (subject) for the next event. Our goal

is to generate the caption for the next time-stamp, given the

current visual information and the noun phrase representing

the actor of interest for the next event.

4. Proposed Approach

One possible way of future frame prediction is to first

predict future frames themselves, then apply a captioning

model on the predicted frames. However, directly predict-

ing the pixel values of future frames is challenging. Some

recent work in semantic segmentation [19, 20] suggests that

predicting convolutional features of future frames is a bet-

ter choice than predicting raw pixel values. Following these

previous works, we also focus on forecasting the convo-

lutional features for the next event and generate captions

based on the predicted features. Our proposed method con-

sists of three major modules: a 3D convolution network as

a backbone, a feature predictor, and a captioning module

(Fig. 2).

Temporal Feature Extractor. 3D convolutional net-

works [14, 7] have been popular in video understanding

tasks. In this work, we use the 3D convolutional model

proposed by [11] as our feature extractor backbone. Given

a sequence of raw frames for the current event {f t
i }

v
i=1

, this

network processes the sequence and outputs a Ft ∈ R
v×d

feature map where v is the number of frames and d is the

feature dimension. These features are used as input to the

following modules.

Temporal Feature Predictor. Given the feature map Ft

from the t-th event, the goal of this module is to predict

the feature map Ft′ of the next event t′ (t < t′). We first

describe this module during the training stage. Each train-

ing instance consists of a pair of feature maps (Ft, Ft′)
extracted by the temporal feature extractor for two adja-

cent events (t, t′) from a training video. Note that the

temporal dimensions of Ft and Ft′ can be different, i.e.

Ft ∈ R
v×d, Ft′ ∈ R

v′
×d where v 6= v′. The goal of the

temporal feature predictor (TFP) module is to predict Ft′

given Ft.

This module uses a temporal convolution on Ft to pro-

duce a new feature map. During training, we learn the pa-

rameters of this temporal convolution layer, so that the pre-

dicted new feature map matches Ft′ . In order to handle the

case where Ft and Ft′ have different temporal dimensions

(i.e. v 6= v′), we use a dynamic adaptive pooling (DAP)

layer at the beginning of the TFP pipeline (see Fig. 3) which

shrinks or enlarges the temporal dimension, depending on

the length of the next event. In other words, this module

can be written as:

Gt′ = Conv(DAP (Ft)),where G ∈ R
v′
×d (1)

Here DAP (·) is the dynamic adaptive pooling operation

that maps the temporal dimension of the input to t′, while
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Figure 3. Training of TFP module on a pair of consecutive events at t and t
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′). For each event, 3D convolution features are computed

using a pre-trained C3D network Ft and Ft′ . A dynamic adaptive pooling layer (DAP) takes the first event’s features, Ft and the temporal

length of the next event, v′, and resizes the first event temporally to match the temporal dimension of the next event. The features are

fed into a network consisting of several temporal convolution layers (grey blocks) to obtain the predicted features for the next event. The

temporal feature predictor network maintains the temporal dimension throughout the layers. Grey dashed arrows indicate weight sharing.

Conv(·) is the temporal convolution operation. Note that

DAP only operates during the training process. During

testing, v′ is unknown and thus we remove DAP from the

pipeline. As a result, the generated features during testing

have a temporal length of v. Note that DAP does not have

any weights to learn, omitting it from the testing pipeline

does not harm the performance of the trained module.

Captioning Module. While it is possible to directly feed

the captioning module with the predicted feature vector Gt′

of the next event, this vector does not carry any informa-

tion about the context in which the next event should be

described by the captioning module. Having the context

added to the visual information vector enables this module

to describe the next event more accurately. The feature map

of the current event can be considered a source of context,

so we propose to combine it with the predicted feature map

of the next event as follows:

Gfinal
t′ = λ · AVG(Ft)⊕ (1− λ) · AVG(Gt′) (2)

where ⊕ is the element-wise summation, AVG(·) is the

average pooling along the temporal dimension, and 0 ≤
λ ≤ 1 is a hyper-parameter of the model which controlls

the amount of context to be fused into the next event’s fea-

tures. Gfinal
t′ is considered as the visual information going

through the captioning module.

Although LSTM-based models have been widely used in

tasks relating to joint vision and natural language process-

ing [33, 22, 37, 4, 30], they fall short in two aspects. First, it

is a common issue among the LSTM-based models that as

the length of the sentence becomes longer, the performance

of these models drops significantly [26, 2]. Second, LSTMs

(and other recurrent units) are not easily parallelizable since

the input for each time step needs to be calculated before

the unit can move on to the next one. Lately, a number

of approaches have been proposed to address these short-

comings by either using only self-attention layers [26, 38]

or convolution layers [2] for sequence to sequence tasks in-

volving natural language processing. Using either of these

approaches can make the training easily parallelizable.

For the captioning module, we take advantage of the

convolutional captioning module proposed by [2] because

of its great performance on the image captioning task. Note

that the proposed method is not limited by any specific

captioning architecture. This module used in this work can

be easily substituted with any existing alternative. We adopt

a similar architecture that has been used in [2] with some

modifications. In [2], the visual input to the captioning

module is a vector of 4096 features coming from the FC7

layer of a VGG-16 network [25]. But in our case, we

take the feature G from the temporal feature predictor and

perform an average pooling over the dimension to obtain

an d-dimensional feature vector. This feature vector is then

used as the input to the captioning module.

Training and Inference. To train our model, we first ex-

tract convolution features for each event in a training video

offline using a pre-trained 3D model. This results in a
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v × d feature representation for each event where we use

v = T/16, d = 500 in the experiments. Here T is the num-

ber of frames in the video clip corresponding to the event.

Then the feature extractor model is trained using the

offline-computed features from the 3D network. As men-

tioned earlier, this network receives a v × d representation

of the current event. It temporally resizes it to v′ × d on the

fly and generates the predicted features of the next event,

Gt′ ∈ v′ × d. To train this network we use a L1 loss func-

tion between the predicted features of the next event and the

pre-extracted ones:

LTFP =

v′∑

i=1

d∑

j=1

|Gt′(i, j)− Ft′(i, j)| (3)

Once this module is trained, it is plugged into the pro-

posed network and the entire network is trained solely us-

ing a standard cross-entropy captioning loss. Note that

when adding the temporal feature predictor module into the

pipeline, the dynamic adaptive pooling layer (DAP) is de-

tached and is no longer used.

The captioning module is first trained on the MSCOCO

[17] dataset which has a total number of 9.2K words in its

vocabulary. The weights of the pre-trained model are then

used to initialize the weights of the captioning module in

our case. Since the vocabulary size is 6K in our problem,

we have to replace the first and last layers of the caption-

ing module, i.e. the word embedding and word outputting

layers in Fig. 2. Therefore for the new outputting layer

(of size 6K), weights are initialized with a normal distribu-

tion where the mean and standard deviation are calculated

based on the learned weights on MSCOCO. For the em-

bedding layer, on the other hand, the weights are initialized

randomly sampled from a normal distribution with mean=0

and std=0.1.

Putting everything together, now the entire network is

trained using a cross-entropy loss defined on the probability

of predicted words in the sentence. At each position i in

the sentence and for each word w, the probability is defined

as p(w̃i|w < i, I) where y < i are the ground truth (GT)

words in positions before i and I is the projected visual fea-

tures.

Since during training we have access to the GT word at

each position, it is feasible to train the network in paral-

lel. Nonetheless, inference happens sequentially since the

prediction of each word depends on the previous predicted

words, p(w̃i|w̃ < i, I). Sentence generation starts with

feeding a special token < S > indicating the beginning

of the sentence and is continued until the end-of-sentence

token < EOS > is generated (or reaching the maximum

number of generated words).

4.1. Implementation Details

The feature extractor module consists of 7 temporal di-

lated convolution layers (except the first one ), where each

convolution layer is followed by a ReLU layer. The first

3 layers convert the feature depth to 1024 while preserving

the temporal length. The next 4 layers return the feature

depth to 500 again while retaining the temporal dimension

of input (Fig. 3). Feature extractor is trained with an SGD

optimizer with an initial learning rate of 0.001. The cap-

tioning module uses 3 layers of masked convolution with

a kernel size of 5. Word projection and image projection

layers map their input into a 300-d and 512-d space, respec-

tively. RSMProp optimizer has been used with an initial

learning rate of 5× 10−5, while the feature predictor mod-

ule learns with LR = 10−6 after plugging into the main

pipeline. We experiment with the proposed approach with

different λ and the results are reported in Table 3.

5. Experiments and Results

In this section, we first introduce the datasets in Sec. 5.1

and the evaluation metrics in Sec. 5.2. We then introduce

methods used for comparison in Sec. 5.3. We present the

experimental results in Sec. 5.4. Finally, We then more pre-

cisely examine our approach through ablation study. Fi-

nally, we perform ablation studies in Sec. 5.5.

5.1. Datasets

We use the ActivityNet-Captions dataset [14] and the

SWAG-AF dataset [35] in the experiments. The Activ-

ityNet dataset [6] is a large-scale benchmark for video

understanding. Krishna et al. [14] have expanded the

dataset by providing temporal annotations and descriptions

for the events in the video to form the ActivityNet-Captions

dataset. There are about 20K Youtube videos in the dataset

with an average of 3.65 events per video. Videos cover

a broad spectrum of human activities. There are about

100,000 events. Each event is temporally annotated and de-

scribed using a sentence. We use the standard train/val split

in [14] for the ActivityNet-Captions dataset.

The SWAG-AF dataset [35] has been recently introduced

for the NLI and entailment task. To test the performance on

future conditional captioning tasks, we use SWAG-AF to

extract the noun phrase representing the actor in the next

event. The noun phrase is used as the initial words for the

caption of the next event. Note that SWAG-AF contains the

samples of the ActivityNet-Caption dataset. Thus, for the

conditional case, we report the results on the intersection

of ActivityNet-Captions and SWAG-AF. Moreover, since

some of the events in the ActivityNet-Captions are highly

overlapped with each other, we use the SWAG-AF dataset

to filter out those events –as such events are not included in

SWAG-AF.
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Method BLEU@2 BLEU@3 BLEU@4 CIDEr METEOR ROUGE-L

Baseline 7.87 3.08 1.32 12.77 7.24 17.76

Proposed method (λ = 0) 8.25 3.33 1.52 13.49 7.80 18.46

Proposed method (λ = 0.5) 8.55 3.56 1.60 15.28 7.82 18.62

oracle 8.70 3.80 1.90 17.05 8.05 18.87

Table 1. Performance of the proposed method compared to the baseline and oracle method on the first problem setting (i.e. general case).

The hyperparameter λ controls the amount of visual contextual information added to the predicted features for the next event. Adding

context substantially boosts the performance of the proposed method, especially CIDEr metric.

Method BLEU@2 BLEU@3 BLEU@4 CIDEr METEOR ROUGE-L

Baseline 9.04 4.23 1.95 20.81 7.17 18.57

proposed method (λ = 0.5) 9.09 5.01 2.76 26.55 7.02 18.16

oracle 9.38 4.6 2.30 27.17 7.45 19.08

Table 2. Performance of the proposed method on the conditional future captioning task compared to the baseline and oracle methods. The

hyperparameter λ controls the amount of visual contextual information added to the predicted features for the next event.

5.2. Evaluation Metrics

We evaluate the performance of our approach using sev-

eral evaluation metrics, including BLEU@N, METEOR,

ROUGE-L, and CIDEr. BLEU@N [21] is a family of meth-

ods that computes the precision of the generated caption

using N -gram matching. METEOR [3] has more focus

on the recall accuracy of the generated caption. ROUGE-

L [16] measures the quality of the generated caption using

the longest common subset between the predicted and the

ground-truth sentence. CIDEr [27] is a newly-introduced

metric and is reported to be very consistent with human

judgments.

5.3. Compared Methods

We set up a baseline and an oracle method to compare the

performance of the proposed method. For the baseline, we

extracted the visual features for the current event using the

feature extracted network (3D network). The features are

then averaged along the temporal dimension and are fed into

the captioning module. In other words, the caption decoder

in this baseline has to caption the next event solely based on

the features of the current event. To train the baseline, each

event is accompanied by the consequent event’s caption as

the ground-truth.

We also set up an oracle method that has access to the

next event and generates captions for future events based

on the corresponding visual features. To do so, the oracle

receives the extracted features for the next events, averages

them across the frames to obtain a 500 − d vector which

is then fed into the captioning module as the visual input.

This oracle represents an upper bound for this task. We

want the performance of our method to be as close as pos-

sible to this oracle. For the sake of fair comparison, we use

the same backbone feature extractor and captioning mod-

ules in all methods (baseline, oracle, and ours). However,

the proposed method is by no means constrained to these

backbones. It can be used in conjunction with any video

feature extractor and/or captioning module available in the

literature.

5.4. Results

We first analyze the performance of our method in the

first problem setting where the model is asked to generate

the caption without having access to information about the

next event’s actor. Table 1 reports the performance on this

task. The second row (λ = 0) is the case where the method

does not take advantage of the context of the video. As seen

in Table 1, the proposed method outperforms the baseline.

But there is still a noticeable gap with the oracle’s perfor-

mance. When adding the visual context information to the

predicted feature vector of the next event (third row in Ta-

ble 1), the performance of the proposed method increases

substantially.

Furthermore, we examine the performance of the pro-

posed method against the baseline and oracle in the condi-

tional future captioning task. In this task, during inference

for each event e, the models have access to a ground-truth

noun phrase for the next event Ne = {wi}
ne

i=1
which indi-

cates the actor in the next event. Although at first glance,

this task seems to be easier than the general case, Table 2

shows that it is still a challenging task. For this task, the

proposed method outperforms the baseline by a large mar-

gin in terms of BLEU@3, BLEU@4, and more significantly

in terms of CIDEr. Using more information about the future

event, i.e. the next event’s actor entity tends to boost almost

every metric in Table 2 (compared with Table 1) except ME-

TEOR. For METEOR, it slightly decreases. We believe this
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Method BLEU@2 BLEU@3 BLEU@4 CIDEr METEOR ROUGE-L

Proposed method (λ = 0) 8.25 3.33 1.52 13.49 7.80 18.46

Proposed method (λ = 0.35) 8.47 3.51 1.57 14.80 7.93 18.62

Proposed method (λ = 0.50) 8.55 3.56 1.60 15.28 7.82 18.62

Proposed method (λ = 0.65) 8.51 3.50 1.53 15.05 7.96 18.83

Table 3. Performance of the proposed method in the first problem setting (i.e. general case) using different values of λ. By increasing λ

and therefore injecting more contextual information, we obtain better results. However when λ becomes bigger than 0.50, the performance

starts to drop.
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CIDEr score per activity class

Figure 4. CIDEr score for different activity classes. While our proposed method works generally well, we found that it works best in

the events relating to the sports and has moderate performance in more complex environments such as ”building & repairing furniture”,

”exterior repair, improvements, & decoration”, and ”exterior maintenance, repair, & decoration”.

is due to the nature of the METEOR score that sometimes

fails to capture the similarity between two sentences as it

is not originally introduced for captioning tasks [13]. The

CIDEr score, on the other hand, is specifically designed to

evaluate the captioning-related tasks and one can see a sig-

nificant boost on the CIDEr score in Table 1 compared with

Table 2. Fig. 5 provides some qualitative examples of our

method on the ActivityNet-Caption validation set. The pro-

posed method works well on the sport-related events and

works moderately in complex scenes as it does in the third

example.

5.5. Ablation Study

The hyperparameter λ in our method controls the rela-

tive contribution of the context information from the current

event and the predicted features of the next event. We ana-

lyze the importance of λ and find the most suitable value for

it through an ablation study. We split the original training

set of ActivityNet-Captions dataset into two new disjoint

sets of training and evaluation. The new training set has

80% of the original training samples and the new evalua-

tion set inherits the remaining 20% samples. We then run

our method on the new training set and measure the per-

formance using the new evaluation set. Once we found the

λ value that works best on the evaluation set (in this case

λ = 0.50), the proposed method is trained again on the en-

tire original training set and tested on the original validation

set to obtain the results in Table 1 and Table 3.

Setting λ to 0.50 means that half of the visual informa-

tion is coming from the current event while the other half is

from the predicted features using the TFP module. In other

words, we equally rely on our TFP module and the infor-

mation that we have at hand about the current event. Table

3 clearly shows that this strategy yields the most appealing

results. Interestingly adding more context information (e.g.

λ = 0.65) is detrimental to the general performance of the

method. Having λ = 0.65 causes the model to lose to the

case where the λ is set to 0.50 in 5 out of 7 metrics, namely

in BLEU@{2,3,4}, CIDEr, and METEOR metrics.

To further analyze the proposed method when captioning

different activity types, we present the CIDEr score for each

class of activity. In total there are 200 unique activity labels
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                           Current event                                                                                                        Next event  

 
 

 

 A woman in a red outfit jumps on top of a 
balance beam 

 

 she does her routine on the balance beam 

 

 she does a flip routine on the beam 

 

 
 

 

A woman is seen speaking to the camera in 
front of a countertop with various ingredients 
laid out 
 

 

she mixes several ingredients into a bowl and 
spreads it around with a spoon 

 

she then pours the ingredients into a glass bowl 

 

 

 

 

Two people are seen pulling an object out of a 
truck with one man standing behind them 
 

 

one person then jumps off the side and is seen 
again being pulled up on the rope 

 

the man continues to speak to the camera while the 
camera pans around 

 
 

 

Figure 5. Qualitative examples. GT and PR are the ground-truth and predicted caption for the next event. In the first and second examples,

the proposed method accurately captions the next event. But it fails to describe properly in the third example.

available on the ActivityNet V1.3 dataset. Based on their

semantics, these activities are merged together to form 53

super activity groups. Following this taxonomy, we merge

the event in the validation set according to their supergroup

labels as well. We then use the best version of our method,

i.e. λ = 0.5, for each of those groups. Finally, we compute

the CIDEr score for each supergroup individually. Fig. 4

depicts the obtained result for this analysis.

We have found that our method is most effective for ac-

tivities related to sports. The top 5 most accurately activity

types are ”weightlifting”, ”participating in rodeo competi-

tions”, ”doing gymnastics”, ”playing racquet”, and ”play-

ing volleyball”. On the other hand, the least accurately ac-

tivity types are ”building & repairing furniture”, ”fishing”,

”exterior repair, improvements, & decoration”, and ”exte-

rior maintenance, repair, & decoration”. We believe this is

due to the fact that these activities tend to have large varia-

tions in their environment and scene.

6. Conclusion

The ability to anticipate and describe what might happen

next is a fundamental capability of human beings. In this

paper, we have tackled the problem of captioning future

frames in a video given the currently observed frames.

We have proposed an architecture that first predicts the

convolutional features for the next event, then fuses the

features with the context features coming from the current

event. Finally, it uses the fused feature to generate the

caption. Our experimental results demonstrate that the

proposed approach outperforms the baseline.
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