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Abstract

We propose a cross-domain latent modulation mecha-

nism within a variational autoencoders (VAE) framework

to enable improved transfer learning. Our key idea is to

procure deep representations from one data domain and use

it as perturbation to the reparameterization of the latent

variable in another domain. Specifically, deep representa-

tions of the source and target domains are first extracted

by a unified inference model and aligned by employing gra-

dient reversal. Second, the learned deep representations

are cross-modulated to the latent encoding of the alternate

domain. The consistency between the reconstruction from

the modulated latent encoding and the generation using

deep representation samples is then enforced in order to

produce inter-class alignment in the latent space. We apply

the proposed model to a number of transfer learning tasks

including unsupervised domain adaptation and image-to-

image translation. Experimental results show that our model

gives competitive performance.

1. Introduction

In machine learning, one can rarely directly apply a pre-

trained model to a new dataset or a new task, as the perfor-

mance of a learned model often plunges significantly for the

new data which may have significant sampling bias or even

belong to different distributions. Transfer learning can help

us utilize the learned knowledge from a previous domain

(the ‘source’) to improve performance on a related domain

or task (the ‘target’) [31, 35, 41].

From the perspective of probabilistic modeling [23, 39,

34], the key challenge in achieving cross-domain transfer

is to learn a joint distribution of data from different do-

mains. Once the joint distribution is learned, it can be used

to generate the marginal distribution of the individual do-

mains [14, 23]. Under the variational inference scenario,

an inferred joint distribution is often applied to the latent

space. Due to the coupling theory, inferring the joint distri-

bution from the marginal distributions of different domains

is a highly ill-posed problem [21]. To address this problem,

UNIT [23] makes an assumption that there is a shared latent

space for the two domains. Usually, this can be achieved

by applying the adversarial strategy to the domains’ latent

spaces. Another line of research focuses on the use of a

complex prior to improve the representation performance

for the input data [28, 36, 12]. However, the previous works

neglect the role of the generation process for the latent space

which could be helpful for cross-domain transfer scenarios.

In this paper, we propose a novel latent space reparameter-

ization method, and employ a generative process to cater for

the cross-domain transferability. Specifically, we incorporate

a cross-domain component into the reparameterization trans-

formation, which builds the connection between the varia-

tional representations and domain features in a cross-domain

manner. The generated transfer latent space is further tuned

by domain-level adversarial alignment and domain consis-

tency between images obtained through reconstruction and

generations. We apply our model to the homogeneous trans-

fer scenarios, such as unsupervised domain adaptation and

image-to-image translation. The experimental results show

the efficiency of our model.

The rest of the paper is organized as follows. In Section 2,

some related work is briefly reviewed. In Section 3, we out-

line the overall structure of our proposed model and develop

the learning metrics with defined losses. The experiments

are presented and discussed in Section 4. We conclude our

work in Section 5, indicating our plan of future work.

2. Related Work

Latent space manipulation: As discussed above, for a

joint distribution, manipulation of the latent space is com-

mon [17, 23, 22] for the cross-domain adaptation situations.

One approach focuses on a shared latent space, where the

latent encodings are regarded as common representations for

inputs across domains. Some adversarial strategy is usually

used to pool them together so that the representations are

less domain-dependent. For the variational approach, works

in [28, 48, 15] adopt complex priors for multi-modal latent

representations, while other works [23, 34, 22] still assume
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a standard Gaussian prior. Another aproach is to use dis-

entangled latent representations where the latent encoding

is divided into some defined parts (e.g. style and content

parts), then the model learns separated representations and

swaps them for the transfer [9, 46, 6, 20]. Our method is

different from these approaches. In our model, learned aux-

iliary deep representation is used to generate perturbations

to the latent space through a modified reparameterization us-

ing variational information from the counterpart domain. It

helps generate cross-domain image translation. The transfer

is carried out by a reparameterization transformation, using

statistical moments retaining specific information for one

domain, and deep representation providing information from

another domain.

Varied Homogeneous transfer tasks: The manipula-

tion on the latent space is often interwoven with the homoge-

neous image transfer together, such as unsupervised domain

adaptation and image translation [29, 30, 5]. In the domain

separation networks [4], separate encoding modules are em-

ployed to extract the invariant representation and domain-

specific representations from the domains respectively, with

the domain-invariant representations being used for the do-

main adaptation. References [3, 33, 11] transfer the target

images into source-like images for domain adaptation. Ref-

erences [23, 47, 13] map the inputs of different domains to a

single shared latent space, but cycle consistency is required

for the completeness of the latent space. The UFDN [22]

utilizes a unified encoder to extract the multi-domain images

to a shared latent space, and the latent domain-invariant cod-

ing is manipulated for image translation between different

domains.

In contrast, we adopt the pixel-level adaptation between

domains from the cross-domain generation, but the proposed

model can also be used at the feature-level due to the latent

space alignment. Our model also has a unified inference

model, but the consistency is imposed in a straightforward

way, with reduced computational complexity.

3. Proposed Model

3.1. Problem setting

Let X ⊂ R
d be a d-dimensional data space, and X =

{x1,x2, . . . ,xn} ∈ X the sample set with marginal dis-

tribution p(X). The source domain is denoted by a tuple

(Xs, p(Xs)), and the target domain by (Xt, p(Xt)). In our

paper, we consider the homogeneous transfer with domain

shift, i.e. Xs ≈ Xt, but p(Xs) 6= p(Xt). For the unsuper-

vised pixel-level domain adaptation scenario, the label set is

Y = {y1, y2, . . . yn} ∈ Y (Y is the label space), and a task

T = p(Y |X) is considered too. However, only the source

domain’s label set Ys is available during transfer learning.

3.2. Transfer Latent Space

As any given marginal distribution can be yielded by

an infinite number of joint distributions, we need to build

an inference framework with some constraints. Under the

variational autoencoder (VAE) framework, the latent space

is one of the manipulation targets. We propose the transfer

latent space as follows.

Definition 1. Transfer Latent Space Z̈. Let xs ∈ Xs,

xt ∈ Xt be the domain samples. Let us have a map f that

extracts domain information Ω and a feature representation

h given an input x:

f : x −→ (Ω,h),x ∈Xs ∪Xt.

Suppose we construct a transfer map G that generates a latent

variable z̈ from Ω and h with domain crossovers:

z̈st = G(Ωs,ht),

z̈ts = G(Ωt,hs).

The joint space formed by z̈st and z̈ts samples is defined as

a transfer latent space, denoted by Z̈.

The transfer latent space is intended to become a “mixer”

for the two domains, as the resulted latent variables are under

cross-domain influences. Hence the transfer latent space can

be regarded as a generalization of the latent space.

3.3. Framework

Our framework is shown in Fig. 1. In our framework,

we build the cross-domain generation by a unified inference

model Eφ(·) (as an implementation of the map f ) and a

generative model for the desired domain Dθ(·), e.g., the

source domain in our model. A discriminator Ξ is utilized

for the adversarial training. We use the terms “inference

model” and “encoder” for Eφ(·), and “generative model”

and “decoder” for Dθ(·) interchangeably.

As discussed in section 3.2, under the variational frame-

work, the domain information Ω (here we remove the do-

main subscript for simplicity) is usually the pair (µ,σ). Let

h′ be the flattened activations of the last convolution layer in

Eu. Then, following the treatment in [16], µ and σ can be

obtained by µ = Wµh
′ + bµ and σ = Wσh

′ + bσ , where

Wµ,Wσ, bµ, bσ are the weights and biases for µ and σ.

From our observations, both shallow (e.g. PCA features)

and deep representations can be used to obtain domain in-

formation h, in our end-to-end model we use the latter. We

choose the high-level activation of the last convolutional

layer, i.e., h = sigmoid(Whh
′ + bh) as the deep represen-

tation [44], where Wh, bh are the weights and biases for the

deep abstractions.

Having obtained the domain information Ω and deep

representation h, a natural choice for the transfer map G
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Figure 1: Architectural view of the proposed model. It encourages an image from target domain (blue hexagon) to be transformed to a

corresponding image in the source domain (black hexagon). The transfer latent distributions p(z̈ts|xt,hs) and p(z̈st|xs,ht) are learned

which are used to generate corresponding images by the desired decoder. The deep representations are integrated into the reparameterization

transformation with standard Gaussian auxiliary noise. Blue lines are for the target domain and black ones are for the source domain.

is through reparameterization. Here we propose a modi-

fied reparameterization trick to give the sampling from the

transfer latent space as follows:

z̈st = G((µs,σs),ht) = µs + σs ⊙ (γ1ht + γ2ǫ), (1)

and

z̈ts = G((µt,σt),hs) = µt + σt ⊙ (γ1hs + γ2ǫ), (2)

where hs (ht) is the sample of the deep representation space

Hs (Ht); µs and σs (µt and σt) are the mean and standard

deviation of the approximate posterior for the source (target)

domain; γ1, γ2 > 0 are trade-off hyperparameter to balance

the deep feature modulation and the standard Gaussian noise

ǫ; and ⊙ stands for the element-wise product of vectors.

Therefore, the auxiliary noise in VAE resampling is now

a weighted sum of a deep representation from the other

domain and Gaussian noise, different from the standard VAE

framework. Because the modified reparameterization allows

a domain’s deep representation to get modulated into another

domain’s latent representation, we call our model “Cross-

Domain Latent Modulation”, or CDLM for short.

Now we have obtained the transfer encodings by a unified

encoder. Following the probabilistic encoder analysis [16],

a shared inference model confines the latent variables into

the same latent space. But this cannot guarantee them to be

aligned. To pull the domains close, an adversarial strategy [7,

37] should be used for the alignment. The gradient reversal

layer [7] is used in our model, by which adversarial learning

is introduced to learn transferable features that are robust to

domain shift. The adversarial alignment betweenHs andHt

is for domain-level.

Furthermore, for better interpretation of the modulated

reparameterization, let ht ∼ p(Ht) = N (µht
,σht

). Then

for z̈st, we have z̈st ∼ N (z̈st;µst,σ
2
stI). For the i-th

element of the distribution moments are given as follows:

µi
st = E{µi

s + σi
s(γ1h

i
t + γ2ǫ

i)}

= µi
s + γ1σ

i
sµ

i
ht
.

(3)

Var(z̈ist) = E{(σi
s(γ1h

i
t + γ2ǫ

i)− γ1σ
i
sµ

i
ht
)2}

= (σi
s)

2[γ2
1(σ

i
ht
)2 + γ2

2 ].
(4)

Therefore, the µi
st and σi

st are

µi
st = µi

s + γ1σ
i
sµ

i
ht

σi
st = σi

s

√
γ2
1(σ

i
ht
)2 + γ2

2 .
(5)

Here, it is reasonable to assume µht
≈ µt and σht

≈ σt

when the training is finished. With a practical setting of

γ1 ≫ γ2, and in effect σi
s = 1, Eq. (5) can be further simpli-

fied to µi
st = µi

s + γ1µ
i
t, and σi

st = γ1σ
i
sσ

i
t. Then we can

see that µst can be regarded as a location shift of µs under

the influence of µt, which helps reduce the domain gap; σst

can be taken as a recoloring of σs under the influence from

the target. The formulation of z̈ts can be similarly inter-

preted. These modulated encodings are hence constructed in

a cross-domain manner.

Next, we apply the consistency constraint to the transfer

latent space with modulation for further inter-class align-

ment. It has been found that consistency constraints preserve

class-discriminative information [34, 13, 8]. For our model,

the consistency is applied to the reconstructions from mod-

ulated encodings and the corresponding generations from

deep representations. Let Dθ(·) be the generative model for

domain image generation from the transfer latent space. The

consistency requirements are

Dθ(z̈st) = Dθ(γ1hs + γ2ǫ)

Dθ(z̈ts) = Dθ(γ1ht + γ2ǫ),
(6)
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where Dθ(z̈st) is the reconstruction of the source (x̂st),

Dθ(z̈ts) is for the target (x̂ts). Dθ(·) can also function as

a generative model, generating x̃s = Dθ(γ1hs + γ2ǫ) and

x̃t = Dθ(γ1ht + γ2ǫ) for the source and target domain

respectively. Also, the consistencies can guide the encoder

to learn the representations from both domains.

Finally, a desired marginalized decoder, e.g. the source

decoder, is trained to map the target images to be source-

like. We render the target’s structured generation x̃ts for

the test mode. For this end, we do not need the source to

be taken into account for the test. That means a test image

from the target domain xi
t first passes through the inference

model and obtains its deep feature hi
t. Then it is fed into the

generation model to generate an image with source style but

keep its own class. That is to make the marginal distribution

p(x̃i
ts) ≈ p(xj

s), but keep its class yit.

3.4. Learning

Our goal is to update the variational parameters to learn

a joint distribution and the generation parameters for the

desired marginal distribution. Since the latent variables are

generated with inputs from both domains, we have a modi-

fied formulation adapted from the plain VAE:

log p(xs,xt)−KL(qφ(z̈|xs,xt)‖p(z̈|xs,xt)) = E[log p(xs,xt|z̈)]

−KL(qφ(z̈|xs,xt)‖p(z̈)),

(7)

where KL(·) is the Kullback-Leibler divergence, and the

transfer latent variable z̈ can be either z̈st or z̈ts. Mini-

mizing KL(qφ(z̈|xs,xt)‖p(z̈|xs,xt)) is equivalent to max-

imizing the variational evidence lower bound (ELBO)

L(xs,xt,θ,φ):

L(xs,xt,θ,φ) = Eqφ [log pθ(xs,xt|z̈)]−KL(qφ(z̈|xs,xt)‖p(z̈)),

(8)

where the first term corresponds to the reconstruction cost

(LRec), and the second term is the K-L divergence between

the learned latent probability and the prior (specified as

N (0, I)) (LKL). Considering the reconstruction of xs, and

the K-L divergence for both z̈st and z̈ts, we have

L(xs,xt,θ,φ) = Ez̈∼q(z̈st|xs,xt)[log pθ(xs|z̈st)]

−KL(log qφ(z̈st|xs,xt)‖p(z))

−KL(log qφ(z̈ts|xt,xs)‖p(z)).

(9)

To align the deep representations of the source and target

domains, an adversarial strategy is employed to regularize

the model. The loss function is given by

Ladv = Ehs∼p(hs|xs)[log Ξ(hs)] + Eht∼p(ht|xt)[log(1− Ξ(ht))],

(10)

where Ξ(·) is the discriminator to predict from which domain

the deep representation feature is.

From the analysis in Section 3.2, we can introduce a pair-

wise consistency between the reconstruction and the genera-

tion for the source and the target in an unsupervised manner

respectively. The consistencies regularization improve the

inter-class alignment. For the consistency loss Lc, both the

l1 and l2-norm penalty can be used to regularize the decoder.

Here we simply use MSE. Let Ls
c and Lt

c be the consistency

for the domains respectively. Lc is given as a combination

of these two components, weighted by two coefficients β1

and β2, respectively:

Lc = β1L
s
c + β2L

t
c

= β1(Ez̈∼q(z̈|xs,xt)[log p(x̂s|z̈st)]− Ehs∼p(hs|xs)[log p(x̃s|hs)])
2

+ β2(Ez̈∼q(z̈|xs,xt)[log p(x̂ts|z̈ts)]− Eht∼p(ht|xt)[log p(x̃ts|ht)])
2.

(11)

Then, the variational parameters φ and generation param-

eters θ are updated by the following rules:

φ← φ− η1∇(Ladv + λ1LKL + λ2LRec)

θ ← θ − η2∇(LRec + Lc),
(12)

where η1, η2 are the learning rates. Note, that only data

from the desired domain (the source) are used to train the

reconstruction loss. The KL items approximate the transfer

latent space to their prior. Hyperparameters λ1, λ2 are used

to balance the discriminator loss and reconstruction loss.

4. Experiments

We conducted extensive evaluations of CDLM in two

homogeneous transfer scenarios including unsupervised do-

main adaptation and image-to-image translation. During

the experiments, our model was implemented using Tensor-

Flow [1]. The structures of the encoder and the decoder

adopt those of UNIT [23] which perform well for image

translation tasks. A two-layer fully connected MLP was

used for the discriminator. SGD with momentum was used

for updating the variational parameters, and Adam for up-

dating generation parameters. The batch size was set to

64. During the experiments, we set γ1 = 1.0, γ2 = 0.1,

λ1 = λ2 = 0.0001, β1 = 0.1 and β2 = 0.01. For

the datasets, we considered a few popular benchmarks, in-

cluding MNIST [19], MNSITM [7], USPS [18], Fashion-

MNIST [43], Linemod [10, 42], Zap50K-shoes [45] and

CelebA [25, 24].

4.1. Datasets

We have evaluated our model on a variety of benchmark

datasets. They are described as follows.

MNIST: MNIST handwritten dataset [19] is a very popular

machine learning dataset. It has a training set of 60,000

binary images, and a test set of 10,000. There are 10 classes

in the dataset. In our experiments, we use the standard split

of the dataset. MNISTM [7] is a modified version for the

MNIST, with random RGB background cropped from the

Berkeley Segmentation Dataset1.

1URL https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Table 1: Mean classification accuracy comparison. The “source only" row is the accuracy for target without domain adaptation training only

on the source. The “target only" is the accuracy of the full adaptation training on the target. For each source-target task the best performance

is in bold

Source MNIST USPS MNIST MNISTM Fashion Fashion-M Linemod 3D

Target USPS MNIST MNISTM MNIST Fashion-M Fashion Linemod Real

Source Only 0.634 0.625 0.561 0.633 0.527 0.612 0.632

DANN [7] 0.774 0.833 0.766 0.851 0.765 0.822 0.832

CyCADA [11] 0.956 0.965 0.921 0.943 0.874 0.915 0.960

GtA [33] 0.953 0.908 0.917 0.932 0.855 0.893 0.930

CDAN [27] 0.956 0.980 0.862 0.902 0.875 0.891 0.936

PixelDA [3] 0.959 0.942 0.982 0.922 0.805 0.762 0.998

UNIT [23] 0.960 0.951 0.920 0.932 0.796 0.805 0.964

CDLM (x̃ts) 0.961 0.983 0.987 0.962 0.913 0.922 0.984

Target Only 0.980 0.985 0.983 0.985 0.920 0.942 0.998

USPS: USPS is a handwritten zip digits datasets [18]. It

contains 9298 binary images (16× 16), 7291 of which are

used as the training set, while the remaining 2007 are used

as the test set. The USPS samples are resized to 28× 28, the

same as MNIST.

Fashion: Fashion [43] contains 60,000 images for training,

and 10,000 for testing. All the images are grayscale, 28× 28
in size space. In addition, following the protocol in [7], we

add random noise to the Fashion images to generate the

FashionM dataset, with random RGB background cropped

from the Berkeley Segmentation Dataset.

Linemod 3D images Following the protocol of [3], we ren-

der the LineMod [10, 42] for the adaptation between syn-

thetic 3D images (source) and real images (target). The

objects with different poses are located at the center of the

images. The synthetic 3D images render a black background

and a variety of complex indoor environments for real im-

ages. We use the RGB images only, not the depth images.

CelebA: CelebA [25] is a large celebrities face image

dataset. It contains more than 200k images annotated with 40

facial attributes. We select 50K images randomly, then trans-

form them to sketch images followed the protocol of [24].

The original and sketched images are used for translation.

UT-Zap50K-shoes: This dataset [45] contains 50K shoes

images with 4 different classes. During the translation, we

get the edges produced by canny detector.

4.2. Unsupervised Domain Adaptation

We applied our model to unsupervised domain adapta-

tion, adapting a classifier trained using labelled samples in

the source domain to classify samples in the target domain.

For this scenario, only the labels of the source images were

available during training. We chose DANN [7] as the base-

line, but also compared our model with the state-of-the-art

domain adaptation methods: Conditional Domain Adapta-

tion Network (CDAN) [27], Pixel-level Domain Adaptation

(PixelDA) [3], Unsupervised Image-to-Image translation

(UNIT) [23], Cycle-Consistent Adversarial Domain Adap-

tion (CyCADA) [11], and Generate to Adapt (GtA) [33]. We

also used source- and target-only training as the lower and

upper bound respectively, following the practice in [3, 7].

4.2.1 Quantitative Results

The performance of domain adaptation for the different tasks

is shown in Table 1. There are 4 scenarios and 7 tasks.

Each scenario has bidirectional tasks for adaptation except

LineMod. For LineMod, it is adapted from synthetic 3D

image to real objects. For the same adaptation task, we

cite the accuracy from the corresponding references, other-

wise the accuracies for some tasks are obtained by training

the open-source code provided by authors with suggested

optimal parameters, for fair comparison.

From Table 1 we can see that the our method has a

higher advantage compared with the baseline and the source-

only accuracy, a little lower than the target-only accuracy

from both adaptation directions. In comparison with other

models, our model has a better performance for most of

tasks. The CDLM has a higher adaptation accuracy for

the scenarios with seemingly larger domain gap, such as

MNIST→MNISTM and Fashion→FashionM. For the 3D

scenario, the performance of our model is a little lower than

PixelDA [3], but outperforms all the other compared meth-

ods. In PixelDA, the input is not only source image but

also depth image pairs. It might be helpful for the genera-

tion. Besides, we visualize the t-SNE [38] for latent encod-

ings (z̈st, z̈ts) w.r.t the source and the target, respectively.

Fig. 4 is the visualization for task MNISTM→MNIST and

MNIST→USPS, and it shows that both are aligned well.

4.2.2 Qualitative Results

Our model can give the visualization of the adaptation. Fig. 2

is the visualization for the digits and Fashion adaptation re-

spectively. For the scenario of MNIST and USPS, the gener-
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(a) USPS→MNIST

(b) MNIST→USPS

(c) MNIST→MNISTM

(d) MNISTM→MNIST

(e) Fashion→Fashionm

(f) Fashionm→Fashion

Figure 2: Visualization for the adaptations. 6 different tasks

are illustrated. For each task, the first row shows target

images and the second row shows the adapted images with

source-like style.

ation for the task USPS→MNIST is shown in Fig. 2a. The

target MNIST is transferred to the source USPS style well,

meanwhile it keeps the correspondent content (label). For

example, the digit ‘1’ in MNIST become more leaned and ‘9’

more flatten. Also in Fig. 2b, the target USPS becomes the

MNIST style. For the scenario of MNIST→MNISTM, our

proposed model can remove and add the noise background

well for adaptation.

For the scenario of Fashion, the fashion items have more

complicated texture and content. In addition, the noisy back-

grounds pollute the items randomly, for example, different

parts of a cloth are filled with various colors. For visu-

alizations, specifically, Fig. 2e is for the task Fashion →
FashionM. The proposed model can remove the noisy back-

ground and maintain the content. On the other hand, Fig. 2f

shows that the original Fashion images are added with simi-

lar noisy background as the source. This is promising for a

Figure 3: Linemod 3D Synthetic→Real. For a query image

(on the left), different adaptation images (to the right) with

various poses can be generated.

(a) Task MNISTM→MNIST (b) Task MNIST→USPS.

Figure 4: t-SNE visualization of cross-domain latent encod-

ings z̈st, z̈ts. The z̈st are in blue, and the z̈ts in red.

better adaptation performance.

For Linemod3D, the real objects images with different

backgrounds are transferred to the synthetic 3D images with

black background. Due to the 3D style, the generation of the

target gives different poses. For example in Fig.3, different

poses of the iron object are obtained for different trials.

4.3. CrossDomain Image Mapping

The proposed model also can be used for the cross-

domain image mapping.

Fig. 5 gives a demonstration of the image style translation.

Specifically, for “shoes” and “edges” in Fig. 5a and 5c, we

can see that the proposed model can translate “edges” to

its counterpart quite well. The translation is stochastic – an

“edge” pattern can be used to generate “shoes” in different

colors with different trials. For the more challenging “face”

and “sketch” translations, the proposed model also performs

well. The generations have some variations compared with

the original images. In general, our method can generate

realistic translated images. However, we find that compared

with the translation from sketches to real images, the reverse

task seems harder. For example, when a face image is given,

the generated sketch loses some details. The reason may be

the low-level feature is neglected when the deep feature acts

as the condition.

For further evaluation, quantitative performance is evalu-
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(a) “edge” to “shoes” (b) “sketch” to “face”

(c) “shoes” to “edge” (d) “face” to “sketch”

Figure 5: Visualization of cross-domain image mapping.

ated for image mapping. SSIM [40], MSE, and PSNR are

used for the evaluation. The results are shown in Table 2. We

can see that our model outperforms E-CDRD [24], which

learns a disentangled latent encoding for the source and the

target for domain adaptation. Meanwhile, it matches the

performance of StarGAN [5], which is designed for multi-

domain image translation. The result shows that our model

can map cross-domain images well compared to these prior

works.

Table 2: Performance for image mapping.

Models
“Sketch” to “Face”

SSIM MSE PSNR

E-CDRD [24] 0.6229 0.0207 16.86

StarGAN [5] 0.8026 0.0142 19.04

CDLM 0.7961 0.0140 19.89

In addition, we also conduct the classification to evaluate

the translation performance. We take shoes as an example

which are labeled to 4 different classes. The recognition

accuracy of our proposed model for task shoes→edge is

0.953, which is higher than the results of PixelDA (0.921)

and UNIT (0.916) respectively.

4.4. Model Analysis

The effect of encoder settings – depth and different

γ1, γ2: In our model, the deep features are utilized to cross-

modulate the transfer latent encoding. Therefore the deep

feature is an important factor in our framework and is influ-

enced by the depth of the encoder. During the experiments,

we use MNIST→ USPS and Fashion→ FashionM as the

evaluation tasks. For the first one, they have different con-

tent, but with the same background. The second task is a

totally different scenario, the images have the same content

but different background. The outputs of different encoder

layers (k > 3) are used for the experiments.

Table 3: Adaptation accuracy with different layer depth for Tasks

MNIST → USPS and Fashion → FashionM.

Tasks/Layers Conv4 Conv5 Convlast

MNIST → USPS 0.954 0.956 0.961

Fashion → FashionM 0.890 0.905 0.913

Table 4: Adaptation accuracy with different (γ1, γ2) for Tasks

MNIST → USPS and Fashion → FashionM.

Tasks / (γ1, γ2) (0.1,1.0) (0.5,0.5) (0.9,0.1) (1.0,0.1) (1.0, 0)

MNIST → USPS 0.320 0.723 0.961 0.961 0.961

Fashion → FashionM 0.226 0.513 0.912 0.913 0.913

As the result (Table 3) shows, a higher accuracy is

achieved when more layers are used to extract the deep

representations. The accuracy gain of the task MNIST→
USPS is lower than that of Fashion→ FashionM. This is ex-

pected as features extracted by higher layers would normally

eliminate lower-level variations between domains, such as

change of background and illumination in the images.

For γ1, γ2, we fixed the last convolutional layer for the

deep representations and evaluate different values. From

Table 4, we can see that the performance drops down signif-

icantly with a smaller γ1 compared with γ2, and increased

with a larger γ1. The performance seems to be stabilized

when γ1 is greater than 0.9 while γ2 remains 0.1. Follow-

ing the standard VAE, we keep the noise ǫ (γ2 6= 0) in the

evaluations. Meanwhile, our model works well even when
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Table 5: Evaluation on the effect of unsupervised consistency metrics. The recognition accuracy is shown for four tasks in the unsupervised

domain adaptation scenario. Our model is on the last row with both the Ls

c and Lt

c, which achieves the best performance.

Model/Tasks MNIST→USPS USPS→MNIST Fashion→FashionM FashionM→Fashion

CDLM w/o Lc 0.635 0.683 0.646 0.672

CDLM+Lt
c 0.689 0.695 0.682 0.691

CDLM+Ls
c 0.951 0.980 0.912 0.915

CDLM+Ls
c+Lt

c 0.961 0.983 0.913 0.922

γ2 = 0. These results suggest the deep representation plays

a crucial role in the cross-domain modulation.

A-Distance: In a theoretical analysis of the domain dis-

crepancy [2], Ben-David et al. suggests that A-distance

can be used as a measure for the domain discrepancy. As

the exact A-distance is intractable, a proxy is defined as

d̂A = 2(1 − 2ǫ), where ǫ is the generalization error of a

binary classifier (e.g. kernel SVM) trained to distinguish the

input’s domain (source or target). Following the protocol

of [26, 32], we calculate the A-distance on four adaptation

tasks under the scenarios of Raw features, DANN features,

and CDLM features respectively. The results are show in

Fig. 6. We observe that both the DANN and CDLM reduce

the domain discrepancy compared with the Raw images

scenario, and the A-distance of CDLM is smaller than the

DANN’s. This demonstrates that it is harder to distinguish

the source and the target by the CDLM generations.

Figure 6: A-distances comparison for four tasks.

Convergence: We also conduct the convergence experiment

with training error on task MNSIT-USPS to evaluate our

model. As shown in the Fig. 7, our model has a better con-

vergence than DANN, thought there are some oscillations at

the beginning of the training. In addition, the error of CDLM

is lower that the DANN, which demonstrate that CDLM has

a better adaptation performance. This is consistent with the

adaptation performance in Table 1.

The effect of unsupervised consistency metrics: In our

model, two unsupervised consistency metrics are added for

generation in good effects. The adaptation accuracy is used

for evaluation. Table 5 is the results for the four different

tasks. The performance w/o Lc is dropped down because the

Figure 7: Convergence of CDLM compared with DANN.

decoder cannot generate realistic cross-domain images. Lt
c

connects outputs generated from the ht and z̈ts only for the

target, which improves the performance slightly. Meanwhile,

we can see that the Ls
c loss boosts the accuracy for adapta-

tion significantly, which connects the two domains with the

generations by the h. Finally, the scenario with both Ls
c and

Lt
c gives the best performance in all four tasks. It bridges

both the h and z̈ between the two domains.

5. Conclusion

In this paper, we have presented a novel variational cross-

domain transfer learning model with cross modulation of

deep representations from different domains. A shared trans-

fer latent space is introduced, and the reparameterization

transformation is modified to enforce the connection be-

tween domains. Evaluations carried out in unsupervised

domain adaptation and image translation tasks demonstrate

our model’s competitive performance. Its effectiveness is

also clearly shown in visual assessment of the adapted im-

ages, as well as in the alignment of the latent information

as revealed by visualization using t-SNE. Overall, competi-

tive performance has been achieved by our model despite its

relative simplicity.

For future work, we intend to further improve our varia-

tional transfer learning framework and use it for heteroge-

neous, multi-domain transfer tasks.
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