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Abstract

We introduce a principled approach for synthesizing new

views of a scene given a single source image. Previous

methods for novel view synthesis can be divided into image-

based rendering methods (e.g., flow prediction) or pixel

generation methods. Flow predictions enable the target

view to re-use pixels directly, but can easily lead to dis-

torted results. Directly regressing pixels can produce struc-

turally consistent results but generally suffer from the lack

of low-level details. In this paper, we utilize an encoder–

decoder architecture to regress pixels of a target view. In

order to maintain details, we couple the decoder aligned

feature maps with skip connections, where the alignment

is guided by predicted depth map of the target view. Our

experimental results show that our method does not suffer

from distortions and successfully preserves texture details

with aligned skip connections.

1. Introduction

Novel view synthesis (NVS) is the task of generating

new images of a scene given single or multiple inputs of

the same scene (see, e.g., in Fig. 1: given one image of the

object, we generate a new image of the object from a novel

viewpoint). NVS has various applications. For example, it

can be used in virtual reality applications, where capturing

all possible viewpoints of real-world scenes is impractical.

With NVS one can just capture few images to offer a seam-

less experience. Moreover, NVS enables users to edit im-

ages more freely (e.g., rotating products interactively in 3D

for online shopping).

Generally, to solve the NVS task, comprehensive 3D un-

derstanding of the scene by the model is important. Given

the 3D geometry, we can render target views with 3D

model-based rendering techniques. In that case, some meth-

ods estimate the underlying geometry of the scene with 3D

representations like voxels [7], and mesh [16], but these

methods can be computationally expensive. Unlike tradi-

tional 3D model-based rendering, image-based rendering

(IBR) methods render novel views directly from input im-
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Figure 1: Results of image-based rendering methods suffer

from distortion, while the results of direct pixel generation

methods lack detailed features. Our method has the benefits

from both warping methods and pixel generation methods.

ages. Some IBR methods predict the appearance flow di-

rectly without geometry [14, 37]. Some IBR methods ren-

der with explicit geometry, such as 3D warping with depth

maps, which use a geometric transformation to obtain pixel-

to-pixel correspondences [4]. Since the pixels from input

views can be re-projected to the target view directly, orig-

inal low-level details of the scene like colours and textures

are well-preserved. However, estimating the accurate cor-

respondences can be challenging, especially for single in-

put views in texture-less regions and occlusion regions, and

the failures can easily lead to distorted synthesized results.

On the other hand, some methods attempt to regress pix-

els directly [28, 34]. These pixel generation methods can

generate structurally consistent geometric shapes, but the

visual quality of generated results are worse than methods

that exploit correspondence since the lack of detailed fea-

tures. Fig. 1 shows the limited performance of pixel gener-

ation methods and image-based rendering methods.

In this paper, we aim to combine the advantages of both
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Figure 2: Overview of our architecture. There are three main components: the encoder, the depth decoder, and the pixel

decoder. We apply the given geometric transformation on the latent code from the source view directly to obtain the latent

code for the target view. Given the transformed latent code, we predict the depth map of the target view, and use the predicted

depth to warp feature maps of source view to the target with bilinear sampling. The warped feature maps are then passed to

the decoder as skip connections to assist pixel generation.

image-based rendering methods and direct pixel generation

methods. The main benefit of image-based rendering meth-

ods is that they can exploit the correspondence pixels of

target views in the source view and re-use pixels, so the

predictions will not lose detailed features. Similarly, we de-

cide to utilize the skip connections between the encoder and

the decoder to transfer low-level features. Skip connections

with U-net architectures [23] have proved to be useful for

passing feature information to lower layers in vision tasks

like semantic segmentation, where the output and the input

are well-aligned spatially. However, for novel view syn-

thesis, the skip connections cannot be applied immediately

because of the different shapes of the input view and the

target view. To address the problem, we predict the depth

map of the target map, warping multi-level feature maps be-

fore passing them to the generation decoder. Compared to

warp image pixels directly, the generation decoder can ex-

ploit learned prior knowledge to ‘correct’ distortion.

In conclusion, we propose an image generation pipeline

with transforming auto-encoders which utilize warped skip

connections to transfer low-level features. We compare our

model against both state-of-the-art pixel generation meth-

ods and image-based rendering methods, demonstrating

that our method can alleviate common issues like distortion

and lack of details.

2. Related Work

Geometry-based view synthesis A large body of research

attempts to solve the novel view synthesis problem via ex-

plicitly modelling the underlying 3D geometry. To rep-

resent the 3D structure, common 3D representations like

voxel [7, 19, 30, 21, 15], point cloud [33], mesh [16],

and layered representations [24, 29, 36] are widely applied.

Meshes and point-clouds can suffer from sparsity. Voxel-

based methods are limited with the type of scenes and res-

olutions because of the memory constraints. Layered rep-

resentations rely on a large number of layers to reach good

quality. Apart from discrete representations, recent interests

in continuous 3D-structure-aware representation also show

promising results [20, 26]. In this paper, though we do not

use explicit 3D representation, we predict the depth map

from single view (2.5D) to help understand the 3D geome-

try of the input view and the depth map will be used to guide

aligned skip connections.

Image generation with disentangled representation

Many deep generative networks are capable of generating

photorealistic images, but to solve the novel view synthe-

sis task, networks generally required explicitly disentangled

representations, like decoupling the pose and identity fea-

tures. Cheung et al. [5] utilize an auto-encoder to learn dis-

entangled latent units representing various factors of vari-

ations (poses, illumination conditions, etc.) and generate

novel manipulations of images. Tatarchenko et al. [28]

use separate convolutional layers and fully connected lay-

ers to process the image and the angle independently, then

the separate latent representations are merged before up-

convolutional layers. Casale et al. [2] divide the feature

vector into an object feature and a view feature, and utilize

GP priors to model correlations between views. Inspired

by traditional graphics rendering pipelines, Zhu et al. [38]

build the 3D representation from three independent factors:

shape, viewpoint, and texture. Besides factorizing latent

representations, some methods use equivariant representa-

tions to handle transformations. Hinton et al. [13] proposed

Transforming auto-encoders (TAE) to model both 2D and

3D transformations of simple objects. Generally, directly

generated images may suffer from blurriness, lack of tex-

ture details, or inconsistency of identity.
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Image-based Rendering Image-based rendering re-uses

the pixels from source images to generate target views.

Previous image-based rendering methods can be classified

into three categories according to how much geometric in-

formation is used: rendering without geometry, rendering

with implicit geometry, and rendering with explicit geom-

etry (approximate or accurate geometry) [25]. Some tra-

ditional methods construct a continuous representation of

the plenoptic function from observed discrete samples with

unknown scene geometry, like building lightfield [18] or lu-

migraph [12, 1] with dense input views. Recently, some

learning-based methods predict correspondence without ge-

ometry directly. Zhou et al. [37] use separate encoders for

input images and viewpoint transformation and predict ap-

pearance flow filed directly. Ji et al. [14] used a rectification

network before generating dense correspondences between

two input views, and the view morphing network finally

synthesizes the target middle view via sampling and blend-

ing. When the depth information is available, 3D warping

can be used to render nearby viewpoints. Some methods

estimate depth maps from multi-view inputs [8, 9]. Choi et

al. [6] estimate a depth probability volume that accumulated

from multi inputs rather than a single depth map of the novel

view. Chen et al. [4] use the TAE to predict the depth map

of the target views directly. Our method does not re-use the

pixels from inputs directly; instead, we re-use the feature

maps extracted from the input view.

To combine the advantages of image-based rendering

and image generation, Park et al. [22] used two consecutive

encoder–decoder networks, first predicting a disocclusion-

aware flow and then refining the transformed image with

a completion network. Sun et al. [27] proposed a frame-

work to aggregate flow-based predictions from multiple in-

put views and the pixel generation prediction via confidence

maps. In this paper, we present a different way that can

bring the power of explicit correspondence to image gener-

ation via skip connections.

3. Methods

Our architecture consists of three main parts: the encoder

φ, the depth prediction decoder ψd, and the pixel generation

decoder ψp. Fig. 2 shows the overview of our pipeline. The

encoder extracts feature maps and latent representation for

the source view firstly. To exploit geometric transformation

explicitly, we apply the given transformation matrix on the

latent representation from the source view to obtain the la-

tent representation of the target view, which will be passed

to the depth decoder and the pixel decoder. To take advan-

tage of correspondence pixels in the source view, we predict

the depth map for the target view given the transformed la-

tent code. Then we can use the estimated depth map to find

dense correspondences between target and source views.

Instead of warping the source image into the target view,

we warp the multi-level feature maps extracted from the en-

coder via bilinear sampling and then pass them to the de-

coder as skip connections, transferring low-level details to

assist final pixel regression.

3.1. Transformable Latent Code

Inspired by [4] that applying the transformation matrix

on latent code directly to predict depth map for target view,

we also adopt the idea of using a TAE to learn a com-

pact latent representation that are transformation equivari-

ant. Given the source image Is, the learnt latent code

zs = φ(Is) can be regarded as a set of points zs ∈ R
n×3

extracted by encoder φ. Then the representation is multi-

plied with the given transformation Ts→t = [R | t]s→t to

get the transformed latent code for the target view:

z̃t = Ts→t · żs, (1)

where żs is the homogeneous representation of zs. Intu-

itively, training in this way will encourage the latent code to

encode 3D position information for features.

3.2. Depth­guided Skip Connections

Since [4] is an image-based rendering method, the qual-

ity of prediction results relies on the accuracy of estimated

depth maps. However, the monocular depth estimation with

the TAE architecture (w/o skip connections) is challenging.

In that case, pure image-based rendering methods can lead

to distortion easily because of the unstable depth predic-

tion. Also with a monocular input, image-based rendering

cannot inpainting the missing parts since they do not have

correspondences in source views. In this work, to alleviate

the mentioned limitations, we decide to synthesis the target

view with a pixel generation pipeline, regressing the pixel

value with the pixel decoder ψp.

Rethinking about the TAE architecture used in [4] and

the design of the equivariant latent code z, though z ∈
R

n×3 might be sufficient for encoding position predictions

for features and then be mapped into depth maps, regress-

ing the pixels directly can be difficult. It is mainly be-

cause the downsample and upsample process can lose much

detailed information, especially for the view that includes

many small objects or rich textures. Generally, the skip con-

nections have proved effective in recovering fine-grained

details, but it cannot be used directly with the TAE architec-

ture since the shape of output changed. In that case, there

are two decoders in our framework, one for depth predic-

tion ψd and one for pixel generation ψp. After getting the

depth estimation for target view D̃t = ψd(z̃), we use the

depth map to warp the feature maps F i at different level i.
In order to maintain texture details, we also have a feature

map that maintains image resolution, which we call conv0.

Given the camera intrinsic matrix K, the relative pose Tt→s

and the predicted depth map of the target view D̃t, we can
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find the correspondences in the source view in the following

way [35]:

ps ∼ K Tt→s D̃t(pt)K
−1 pt, (2)

where pt and ps denote the homogeneous coordinates of a

pixel in the target view and source view respectively. Since

the obtained correspondences ps are continuous values, we

use differentiable bilinear sampling that interpolates the val-

ues of the 4-pixel neighbours of ps to approximate Fi(ps).
The warped feature maps can be represented as F̃ i

t , which

will be passed to the pixel decoder ψp for concatenation.

Guided by predicted depth maps, the skip connections

of warped feature maps enable the method to benefit from

establishing explicit correspondences and maintain the low-

level details. Also compared to image-based rendering that

warp pixels directly, using multi-level skip-connections of

warped feature maps helps to exploit learned prior informa-

tion and avoid the loss of information.

3.3. Training Loss Functions

The whole framework can be trained in an end-to-end

manner since all modules in our pipeline are differentiable.

For each input sample, only a single source image and the

target image and their relative transformation are given. We

optimize both the encoder, the depth decoder and the pixel

decoder jointly. For pixel regression, we use multi-scale

L1 reconstruction loss and VGG perceptual loss to encour-

age generating realistic images. To train the depth decoder

in an unsupervised manner, we use the edge-aware smooth-

ness loss and introduce a depth consistent loss to make more

stable predictions.

Multi-scale Reconstruction Loss To integrate learned

prior knowledge and alleviate the negative impacts intro-

duced by wrong depth prediction (e.g., distortion), we make

multi-scale novel view predictions, finalizing the final pre-

diction from coarse to fine-grained. The total reconstruc-

tion loss Lreco is the weighted combination of the individual

losses at different scales in the pixel decoder:

Lreco =
∑

i

wi |Ĩ
i
t − It|, (3)

where Ĩit is the upsampled predicted target images and wi

is the weight for results at different scale i. The weights

decrease according to the resolution of prediction. Intu-

itively, compared to only considering the final prediction,

the multi-scale reconstruction loss should help since it will

produce gradients from larger receptive fields rather than

small neighbourhoods. Also, as it needs to predict correct

results at coarse levels, it can encourage the latent code to

understand the 3D scene without the skip connections and

alleviate the dependence of the skip connections, avoiding

the distortion with inaccurate depth estimation.

VGG Perceptual Loss Similar to [22], besides L1 recon-

struction loss, we adopt the VGG perceptual loss to get

sharper synthesis results. A pretrained VGG16 network

is used for extracted features from generation results and

ground-truth images, and the perceptual loss is the sum of

feature distances (we use L1 distance) computed from a

number of layers.

Depth Consistent Loss To regularize the latent code and

its depth prediction without supervision, we introduce a

depth consistent loss. Intuitively, the depth decoder project

the latent code into depth maps, so it should work for both

extracted latent code z and transformed latent code z̃. Dur-

ing the training, we also extract the latent code zt from

the target view via the encoder. Instead of encouraging the

transformed latent code z̃t to be same with the latent code

extracted target view zt, we encourage the distance of depth

predictions to be small:

Ldepth = |ψd(zt)− ψd(z̃t)|. (4)

Edge-aware Smoothness Loss Similar to [11], we use

an edge-aware smoothness loss that should encourage pre-

dicted depth maps to be locally smooth. The loss is

weighted by an edge-aware term since the depth disconti-

nuities often occur at image edges:

Ledge =
1

N

∑

i,j

|∂xD̃
ij
t |e−‖∂xI

ij
t
‖+|∂yD̃

ij
t |e−‖∂yI

ij
t
‖, (5)

where D̃t is the predicted depth map of the target view and

It is the ground-truth target view.

In conclusion, the final loss function for training the

framework jointly will be

L = λmLreco + λvLvgg + λdLdepth + λeLedge, (6)

where the λm, λv , λd, and λe are weights for different loss

functions.

4. Experiments

To show that our method can combine the advantages

of both image generation and 3D warping methods effec-

tively, we compared our method with three state-of-the-art

methods: one typical image generation method proposed by

Tatarchenko et al. [28], one image-based rendering method

proposed by Chen et al. [4], which also share the simi-

lar TAE architecture with ours; and an explicit aggregation

scheme proposed by Sun et al. [27] that predict confidence

maps for both pixel generation results and flow prediction

results. We replace the discrete one-hot viewpoint repre-

sentation in [28] with cosine and sine values of the view

angles. We jointly train the encoder, the depth decoder, and

the pixel decoder using the Adam [17] solver with β1 = 0.9
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Input Target [28] [27] [4] Ours Input Target [28] [27] [4] Ours

Figure 3: Results on ShapeNet objects. Our methods generate as structure-consistent predictions as pixel generation methods

(for example, it can generate the missing chair legs compared to [4]); on the other hand, our generated images are not blurry

and include rich low-level details as image-based rendering methods (zoom in for better visualization).

and β2 = 0.999, and a learning rate of 10−4. For our

methods, we add skip connection with feature maps conv0,

conv2, conv3, conv4 from the encoder because of the best

performance. To evaluate the predictions, we report num-

bers of mean absolute error L1 that measures per-pixel dif-

ference and the structural similarity (SSIM) index [32] that

indicates perceptual image quality. For L1 metric, smaller

is better; for the SSIM metric, larger is better.

4.1. Datasets

We conduct our experiments on two different types of

datasets: for objects we use ShapeNet synthetic dataset [3]

and for real-world scenes we use KITTI Visual Odometry

[10] dataset. More specifically, we select cars and chairs in

the ShapeNet dataset. Generally, datasets with complicated

structures and camera transformation will challenge the

3D understanding (e.g., depth estimation in our method),

while datasets with rich textures will show if the methods

can preserve the fine-grained details well. Among our se-

lected datasets, the chairs have more complicated shapes

and structures, but for each chair the texture is more sim-

ple. Reversely, the cars have much simpler shapes but there

will be more colorful patterns on each car. For KITTI, the

scene includes more objects, and translations are the main

transformation between frames, unlike ShapeNet where ro-

tation is the key transformation. In that case, the accurate

depth estimation is less necessary ([31] shows that even ap-

proximating the scene as a single plane can give reasonable

results), while the ability to recover the low-level details is

more important for performance.

ShapeNet ShapeNet is a large-scale synthetic dataset of

clean 3D models [3]. For ShapeNet objects, we use ren-

dered images with the dimension of 256 × 256 from 54

viewpoints (the azimuth from 0◦ to 360◦ with 20◦ incre-

ments, and the elevation of 0◦, 10◦, and 20◦) for each

object. The training and test pairs are two views with

the azimuth difference within the range [−40◦, 40◦]. For

ShapeNet chairs, there are 558 chair objects in the training

set and 140 chair objects in the test set; For ShapeNet cars,

there are 5,997 car objects in the training set and 1,500 car

objects in the test set.

KITTI We use the KITTI odometry datasets since the

ground-truth camera poses are provided. There are 11 se-

quences and each sequence contains around 2,000 frames

on average. We restrict the training pairs to be separated by

at most 7 frames.
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Input Target [28] [27] [4] Ours

Figure 4: Qualitative results on KITTI. Our method generate clear and structure consistent predictions, while pixel generation

methods [28] struggle with blurry and image-based rendering methods [4] suffer from distortion (see the house and truck on

row 1, the street light pole on row 2, and the houses on row 3 and row 4).

For all selected datasets, we use the same train/test split

as [27]. Since the evaluation samples in [27] are created

for multi-view inputs, we randomly select the source views

as our input view. In total, for ShapeNet chairs there are

42,834 pairs for testing; for ShapeNet cars there are 42,780

pairs for testing, and for KITTI there are 10,000 pairs for

testing.

4.2. ShapeNet Evaluation

Table 1 shows the comparison results on ShapeNet ob-

jects. Our methods perform the best for both chair and car

objects, showing that it can deal with complicated 3D struc-

tures of chairs as well as rich textures of cars at the same

time. Fig. 3 shows the qualitative results for all methods.

The pixel generation method [28] produces blurry results

and the object identity failed to be preserved because of the

lack of low-level details. Image-based rendering methods

[4] suffer from the distortion. Our method combine the ad-

vantages of the two type of approaches. On the one hand,

our method exploits learned prior knowledge and generate

structure consistent predictions as [28] (e.g., our method can

generate the missing chair leg in the last row and the miss-

ing tires of [4] in row 5 and row 6); on the other hand, our

generated images are not blurry and includes rich low-level

details as [4]. The aggregation method [27] is mainly de-

signed for multi-view inputs, so their modules cannot bene-

fit from the recurrent neural network architecture when the

input is a single source image.

4.3. KITTI Evaluation

We also evaluate all methods on KITTI to show that our

model can capture low-level details well with the aid of

skip connections. Table 2 shows the quantitative results on

the KITTI dataset. We achieve the best SSIM results and

get comparable L1 performance as the aggregation method

[27]. Since [27] uses adversarial loss for their pixel gen-

eration module, it can inpaint missing regions better than

other methods. As a pixel generation method, our method
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Input Target Ours w/o multi w/o LVGG w/o Ledge w/o conv0 w/o Ldepth w/o skip

Figure 5: Ablation study results. We compare the performance of our full model with its variants. Results show that the

multi-scale loss help to generate thin structures (like the chair leg in the 1st and 3rd row of the 4th column). The LVGG makes

the results sharper. The skip connection from conv0 maintains the detailed features (like the pattern for 2nd row). The Ldepth

leads to more stable results.

Table 1: Results on ShapeNet objects. Our methods per-

form the best for both chair and car objects, showing that it

can deal with complicated 3D structures of chairs as well as

rich textures of cars.

METHODS
CHAIR CAR

L1 SSIM L1 SSIM

Tatarchenko [28] 0.1043 0.8851 0.0491 0.9226

Sun [27] 0.0810 0.8993 0.0444 0.9282

Chen [4] 0.0769 0.9099 0.0396 0.9395

Ours 0.0584 0.9256 0.0286 0.9493

is obviously better than [28] in terms of the fine-grained

textures, which shows the effectiveness of aligned skip con-

nections. Compared to image-based rendering method [4],

we still perform better on both L1 error and SSIM. In Fig. 4,

the qualitative results show the same finding. Generally, our

method generates clear predictions, and preserves the struc-

ture better (check the house and truck in row 1, the street

light pole in row 2, the houses in row 3 and row 4).

4.4. Ablation Studies

To understand how different blocks of the framework

play their roles, we conduct ablation studies on the

ShapeNet chairs, since it is the most challenging selected

dataset for 3D structures. Table 3 and Fig. 5 show the per-

Table 2: Results on KITTI. We achieve the best SSIM

results, and the L1 performance is better than both the

pixel generation method [28] and the image-based render-

ing method [4].

METHODS
KITTI

L1 SSIM

Tatarchenko [28] 0.3119 0.6191

Sun [27] 0.1868 0.6582

Chen [4] 0.2354 0.6461

Ours 0.1985 0.7043

formance of different variants. Firstly, we compare the per-

formance of our baseline architecture and the image-based

rendering method [4]. In the baseline architecture, we use

our two-decoders architecture and optimize with the simple

L1 reconstruction loss only, while [4] uses one decoder for

depth estimation. Since our baseline architecture achieves

better performance compared to [4], it shows the effective-

ness of our framework on combining the warping methods

and pixel generation methods. Moreover, we observe that

without the skip connections, our method can be regarded

as a typical pixel generation methods that still suffer the

same issue as [28], which also proves our assumption that

the compact equivariant latent code cannot encode sufficient

information for pixel regression and we need the assistance
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Table 3: Results for ablation studies. All designed modules

and loss functions are both useful for boosting performance.

The baseline arch means using our architecture with L1 re-

construction at the final resolution only, which shows that

the two-decoders architecture helps already.

METHODS L1 SSIM

Chen [4] 0.0769 0.9099

Our baseline architecture 0.0611 0.9228

Our final arch 0.0584 0.9256

w/o skip connections 0.0949 0.8971

w/o conv0 0.0654 0.9166

w/o multi-scale loss 0.0602 0.9231

w/o LVGG 0.0603 0.9236

w/o Ldepth 0.1109 0.8862

w/o Ledge 0.0618 0.9212

from skip connections. Other numbers and qualitative re-

sults show the selected loss functions are both useful for

boosting performance. The multi-scale reconstruction loss

help to generate thin structures better (like the chair leg in

the 1st and 3rd row of the 4th column). The LVGG makes the

results sharper. The skip connection from conv0 maintains

the detailed features (like the patterns for 2nd row). Both

Ledge and Ldepth regularize the depth prediction, especially

the depth consistent loss Ldepth.The qualitative results show

that without Ldepth the synthesis target images will suffer

from distortion because of the unstable quality of predicted

depth maps.

4.5. Depth estimation

For the selected datasets we used for evaluation, since

the accuracy of the predicted depth maps affect the most

on ShapeNet chairs, we evaluate four depth metrics on

ShapeNet chairs. L1-all compute the mean absolute dif-

ference, L1-rel compute the mean absolute relative differ-

ence L1-rel = 1
n

∑
i |gti − predi|/gti, and L1-inv met-

ric is mean absolute difference in inverse depth L1-inv =
1
n

∑
i |gt−1

i − pred−1
i |. Except L1 metrics, we also utilize

sc-inv = ( 1
n

∑
z2i −

1
n2 (

∑
zi)

2)
1

2 , where zi = log(predi)−
log(gti) . L1-rel normalizes the error, L1-inv puts more im-

portance to close-range depth values, and sc-inv metric is

scale-invariant. Table 4 shows that our predicted depth is

more accurate compared to [4], which also explains why

we can achieve better results than their method. Fig. 6 also

visualized the predicted map as point clouds from different

viewing angles, which shows that our predicted depth map

is less distorted.

Table 4: Depth estimation results on ShapeNet chairs. L1-

all compute the mean absolute difference, L1-rel normalizes

the error, L1-inv puts more importance to close-range depth

values, and sc-inv metric is scale-invariant.

L1-ALL L1-REL L1-INV SC-INV

Chen [4] 0.0707 0.0360 0.0189 0.0583

Ours 0.0610 0.0305 0.0161 0.0523

Target

Source

Ours

Chen [4]

Figure 6: Unsupervised depth prediction results that are vi-

sualized as point clouds depicted from different viewing an-

gles. The left col shows the source input and the target view.

The right cols show the comparison of the predicted depth

map of the target view (The upper row shows results from

[4] and the bottom row shows our results).

5. Conclusion and Discussion

In this paper, we propose an image generation pipeline

that can take advantage of explicit correspondences. We

predict the depth map of the target view from a single in-

put view and warp the feature maps of the input view. The

warping enables the skip connections to transfer low-level

details, so our method can produce clear predictions. Ex-

periment results show that our methods perform better than

warping methods and pixel generation methods, alleviating

distortion and blurry issues.

Currently for depth prediction, the TAE architecture can

only provide a coarse depth map without skip connections,

which cannot get correct predictions for thin structures like

the arm of chairs. Investigating how to obtain accurate esti-

mation for thin structures can be the future work to further

improve the performance.

The code for the experiments can be found at https:

//github.com/AaltoVision/warped-skipconnection-nvs.
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zstein. Scene representation networks: Continuous 3d-

structure-aware neural scene representations. In Advances

in Neural Information Processing Systems (NeurIPS), pages

1121–1132, 2019.

[27] Shao-Hua Sun, Minyoung Huh, Yuan-Hong Liao, Ning

Zhang, and Joseph J Lim. Multi-view to novel view: Syn-

thesizing novel views with self-learned confidence. In Euro-

pean Conference on Computer Vision (ECCV), pages 155–

171, 2018.

3127



[28] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.

Multi-view 3d models from single images with a convolu-

tional network. In European Conference on Computer Vision

(ECCV), pages 322–337. Springer, 2016.

[29] Richard Tucker and Noah Snavely. Single-view view syn-

thesis with multiplane images. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 551–

560, 2020.

[30] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Ji-

tendra Malik. Multi-view supervision for single-view recon-

struction via differentiable ray consistency. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 2626–2634, 2017.

[31] Peter Vangorp, Christian Richardt, Emily A Cooper, Gau-

rav Chaurasia, Martin S Banks, and George Drettakis. Per-

ception of perspective distortions in image-based rendering.

ACM Transactions on Graphics (TOG), 32(4):1–12, 2013.

[32] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-

moncelli. Image quality assessment: from error visibility to

structural similarity. IEEE transactions on image processing,

13(4):600–612, 2004.

[33] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin

Johnson. Synsin: End-to-end view synthesis from a single

image. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 7467–7477, 2020.

[34] Jimei Yang, Scott E Reed, Ming-Hsuan Yang, and Honglak

Lee. Weakly-supervised disentangling with recurrent trans-

formations for 3d view synthesis. In Advances in Neural

Information Processing Systems, pages 1099–1107, 2015.

[35] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G

Lowe. Unsupervised learning of depth and ego-motion from

video. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1851–1858, 2017.

[36] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,

and Noah Snavely. Stereo magnification: Learning view

synthesis using multiplane images. ACM Transactions on

Graphics, pages 1–12, 2018.

[37] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Ma-

lik, and Alexei A Efros. View synthesis by appearance flow.

In European Conference on Computer Vision (ECCV), pages

286–301. Springer, 2016.

[38] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu,

Antonio Torralba, Josh Tenenbaum, and Bill Freeman. Vi-

sual object networks: Image generation with disentangled

3d representations. In Advances in neural information pro-

cessing systems (NIPS), pages 118–129, 2018.

3128


