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Abstract

In this work, we propose an AI-based method that in-

tends to improve the conventional retinal disease treatment

procedure and help ophthalmologists increase diagnosis

efficiency and accuracy. The proposed method is composed

of a deep neural networks-based (DNN-based) module, in-

cluding a retinal disease identifier and clinical description

generator, and a DNN visual explanation module. To train

and validate the effectiveness of our DNN-based module,

we propose a large-scale retinal disease image dataset.

Also, as ground truth, we provide a retinal image dataset

manually labeled by ophthalmologists to qualitatively

show the proposed AI-based method is effective. With our

experimental results, we show that the proposed method

is quantitatively and qualitatively effective. Our method

is capable of creating meaningful retinal image descrip-

tions and visual explanations that are clinically relevant.

https://github.com/Jhhuangkay/DeepOpht-Medical-Report-Generation-for-Retinal-Images-via-Deep-Models-and-Visual-Explanation.

1. Introduction

The World Health Organization (WHO) estimates that

typical retinal diseases such as Age-related Macular Degen-

eration (AMD) and Diabetic Retinopathy (DR) are expected

to affect over 500 million people worldwide shortly [49].

Besides, generally speaking, the traditional process of reti-

nal disease diagnosis and creating a medical report for a

patient takes time in practice. The above means that oph-

thalmologists will become busier and busier.

As we may know, the current state of the art in Artificial

Intelligence (AI) involves deep learning research, and we

claim deep learning is one of the promising ways to help

ophthalmologists and improve the traditional retinal disease

treatment procedure. Deep learning based models such as

convolutional neural networks (CNN) or recurrent neural

DNN	Visual
explanation
module

Clinical
description
generator	

Retinal
disease
identifier

(DNN-based	module)

Table-based
concept

(An	input	retinal	image)

(Output)

Medical	report

Figure 1: This figure shows the proposed AI-based medi-

cal diagnosis method in the ophthalmology expert domain.

It contains DNN-based and DNN Visual explanation mod-

ules. The DNN-based module is composed of two sub-

modules, i.e., a retinal disease identifier and a clinical de-

scription generator reinforced by our proposed keyword-

driven method, referring to our Methodology section. The

input of our method is a retinal image, and the output is a

table-based [68] medical report. In Figure 2, we shows how

to exploit this AI-based method to improve the traditional

retinal diseases treatment procedure. Note that, in this fig-

ure, DNN indicates deep neural networks.

networks (RNN) for computer vision or natural language

processing tasks, respectively, have achieved, and, in some

cases, even exceeded human-level performance. There is

no better time than now to propose an AI-based medical

diagnosis method to aid ophthalmologists.

In this paper, we propose an AI-based method for au-

tomatic medical report generation based on an input reti-

nal image, as illustrated in Figure 1. The proposed method

intends to improve the traditional retinal disease diagnosis

procedure, referring to Figure 2, and help ophthalmologists

increase diagnosis efficiency and accuracy. The main idea

of this method is to exploit the deep learning based models,

including an effective retinal disease identifier (RDI) and an

effective clinical description generator (CDG), to automate

part of the traditional treatment procedure. Then, the pro-

posed method will make the diagnosis more efficient.
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To train our deep learning models and validate the effec-

tiveness of our RDI and CDG, we introduce a new large-

scale retinal disease image dataset, called DeepEyeNet

(DEN). Besides, as ground truth, we provide a retinal im-

age dataset manually labeled by ophthalmologists to quali-

tatively show that the proposed AI-based model is effective.

The dataset helps us show the activation maps of our deep

models are aligned with image features that are clinically

recognized by ophthalmologists as linked with the identified

disease. Our experimental results show that the proposed

AI-based method is effective and successfully improves the

traditional retinal disease treatment procedure. Our main

contributions are summarized as follows:

Contributions.

• To improve the traditional retinal disease treatment

procedure and help ophthalmologists increase diagno-

sis efficiency and accuracy, we propose an AI-based

method to generate medical reports for retinal images.

In this method, we exploit the deep learning based

models including an RDI and a CDG to automate part

of the conventional treatment procedure.

• We propose a large-scale retinal disease image dataset,

called DeepEyeNet (DEN) dataset, with 15,709 im-

ages to train our deep models and validate the effec-

tiveness of the proposed RDI and CDG quantitatively.

• We provide another dataset with 300 retinal images

labeled by ophthalmologists to qualitatively show our

method is effective by visually confirming the activa-

tion maps of our models are aligned with image fea-

tures clinically recognized by ophthalmologists.

2. Related Work

In this section, we divide the related works into retinal

disease classification, image captioning, neural networks vi-

sual explanation, and retinal dataset comparison.

2.1 Retinal Disease Classification

Optical Coherence Tomography (OCT), Fluorescein An-

giography (FA), and Color Fundus Photography (CFP) are

the three most commonly used and important imaging

methods for the diagnosis of retinal diseases [61]. Optical

Coherence Tomography (OCT) is a technology of emerg-

ing biomedical imaging, and it provides high-resolution and

non-invasive real-time imaging of highly scattering tissues.

That is, OCT images [11, 34, 18] usually are used to show

the structure of the retina. [5] have proposed an algorithm

to segment and detect six different retinal layers, includ-

ing Nerve Fiber Layer (NFL), Ganglion Cell Layer (GCL)

+ Inner Plexiform Layer (IPL), Inner Nuclear Layer (INL),

Outer Plexiform Layer (OPL), Outer Nuclear Layer (ONL)

+ Photoreceptor Inner Segments (PIS), and Photoreceptor

Outer Segments (POS), in OCT retinal images. Fluorescein
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Figure 2: (a) is an existing traditional medical treatment

procedure for retinal diseases [56]. Typically, doctors have

to handle most of the jobs in the traditional procedure. In

(b), we incorporate the AI-based medical diagnosis method,

referring to Figure 1, in the traditional treatment proce-

dure to improve the efficiency of (a), based on the point-

of-care (POC) [47] concept. In the proposed method, it

mainly contains DNN-based and DNN visual explanation

modules. The outputs of the DNN-based module are “Dis-

ease class “A”” and “Clinical description”. DNN visual ex-

planation module visualize the information from the DNN-

based module on the classification tasks. Please refer to our

Methodology section for a more detailed explanation. Note

that DNN indicates deep neural networks in this figure.

Angiography (FA) has been used to realize the pathophysio-

logic course of Retinopathy of Prematurity (ROP) following

intravitreal anti-Vascular Endothelial Growth Factor (Anti-

VEGF) [36]. Color Fundus photography (CFP) is a simple

and cost-effective technology for trained medical profes-

sionals. Image preprocessing is one of the important issues

in the automated analysis of CFP. The authors of [67] have

proposed a method to reduce the vignetting effect caused by

non-uniform illumination of a retinal image. In this work,

we mainly exploit the DNN-based methods [19, 53, 65] to

further investigate the retinal disease classification [62] to-

ward a multi-label task combining language information.

2.2 Image Captioning

Recently, computer vision researchers have proposed a

new task, image captioning, and [31, 59, 14] are early

works. In [31], the proposed model can embed visual and

language information into a common multimodal space.

The authors of [14] exploit a natural language model to

combine a set of possible words, which are related to sev-

eral small parts of the image, and then generate the caption

of the given image. The authors of [59] use CNN to ex-

tract the image feature and use it as the input at the first

time step of the RNN to generate the caption of the input

image. The authors of [17] propose a new deliberate resid-

ual attention network for image captioning. The layer of

first-pass residual-based attention prepares the visual atten-

tion and hidden states for generating a preliminary version

of the captions, while the layer of second-pass deliberate

residual-based attention refines them. Since the second-pass

is based on the global features captured by the hidden layer
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and visual attention in the first-pass, their method has the

potentials to generate better captions. In [41], the authors

mention that existing image captioning models are usually

trained via maximum likelihood estimation. However, the

log-likelihood score of some captions cannot correlate well

with human assessments of quality. Standard syntactic text

evaluation metrics, such as METEOR [6], BLEU [48], and

ROUGE [39], are also not well correlated. The authors of

[41] show how to use a policy gradient method to optimize

a linear combination of CIDEr [58] and SPICE [3]. In [20],

the authors propose a method that focuses on discriminat-

ing properties of the visible object, jointly predicts a class

label, and explains why the predicted label is proper for a

given image. Through a loss function based on reinforce-

ment learning and sampling, their model learns to generate

captions. According to [59, 31, 17], existing image caption-

ing models are only able to generate the rough description

for a given image. So, in this work, we exploit keywords to

make our CDG have better reasoning ability.

2.3 Neural Networks Visual Explanation

There are some popular CNN visualization tools, [70, 52,

64]. The authors of [70] have proposed a technique, called

Class Activation Mapping (CAM), for CNN. It makes

classification-trained CNN learn how to perform the task

of object localization, without using a bounding box. In our

previous works [42, 63], we exploit class activation maps

to visualize the predicted class scores on retinal images,

highlighting the discriminative object parts which are de-

tected by the CNN. In [52], the authors have proposed the

other similar features visualization tool, called Gradient-

weighted Class Activation Mapping (Grad-CAM), for mak-

ing a CNN-based model transparent by producing visual

explanations of features. The authors of [69] introduce a

CNN visualization technique that gives insight into the op-

eration of the classifier and the function of intermediate fea-

ture layers. These visualizations allow us to find architec-

tures of CNN models. The authors of [8] propose a gen-

eralized method, Grad-CAM++, based on Grad-CAM. The

Grad-CAM++ method provides better visual explanations

of CNN model predictions than Grad-CAM, in terms of bet-

ter object localization [66] and occurrences explanation of

multiple object instances in a single image. In [38], the

authors propose another method different from the above

methods which are trying to explain the network. They

build up an end-to-end model to provide supervision di-

rectly on the visual explanations. Furthermore, the authors

validate that the supervision can guide the network to fo-

cus on some expected regions. The aforementioned is more

related to image data only visualization. The authors of

[68, 51, 29, 16] have proposed some methods for the mul-

timedia data, such as text and images, visualization. In

[68], the authors introduce five popular multimedia visu-

alization concepts, including basic grid, similarity space,

similarity-based, spreadsheet, and thread-based concepts.

In this work, we exploit CAM to visually show that the ac-

tivation maps of our deep models are aligned with image

features that are clinically recognized by ophthalmologists

as linked with the identified disease. In addition, we use a

table-based concept, similar to the static spreadsheet con-

cept, to visualize our medical report.

2.4 Retinal Dataset Comparison

Retinal disease research already has long history and

many retinal datasets have been proposed, such as [55, 50,

7, 21, 54, 13, 32, 33, 44, 10, 2, 43, 12, 45, 1, 15, 22, 46, 57].

The DRIVE dataset [55] contains 40 retina images which

are obtained from a diabetic retinopathy screening program

in the Netherlands. These 40 images have been divided into

a half training set and a half test set. For the training images,

a single manual segmentation of the vasculature is available.

For the test cases, two manual segmentations are available.

The IDRiD dataset [50] is a dataset for retinal fundus image

consisting of 516 images. The authors of IDRiD dataset

provide ground truths associated with the signs of Diabetic

Macular Edema (DME) and Diabetic Retinopathy (DR) and

normal retinal structures given below and described as fol-

lows: (i) Pixel level labels of typical DR lesions and optic

disc; (ii) Image level disease severity grading of DR, and

DME; (iii) Optic disc and fovea center coordinates. The

DRIONS-DB dataset [7] consists of 110 color digital reti-

nal images, and it contains several visual characteristics,

such as cataract (severe or moderate), light artifacts, some

of the rim blurred or missing, moderate peripapillary atro-

phy, concentric peripapillary atrophy/artifacts, and strong

pallor distractor. The FIRE dataset [21] consists of 129 reti-

nal images forming 134 image pairs, and image pairs are

split into three different categories depending on their char-

acteristics. The Drishti-GS dataset [54] contains 101 im-

ages, and it is divided into 50 training and 51 testing images.

The MESSIDOR dataset [13] has 1200 eye fundus color

numerical images. Although the dataset contains a medi-

cal diagnosis for each image, there is no manual annotation,

such as lesions contours or position, on the images. The DI-

ARETDB0 dataset [32] consists of 130 color fundus images

of which 20 are normal, and 110 contain signs of the DR.

The DIARETDB1 dataset [33] consists of 89 color fundus

images of which 84 contain at least mild non-proliferative

signs of the DR, and five are considered as normal which

do not contain any signs of the DR. The INSPIRE-AVR

dataset [44] has 40 colorful images of the vessels and op-

tic disc and an arterio-venous ratio reference standard. The

ONHSD dataset [10] has 99 retinal images and it is mainly

used for the segmentation task. The REVIEW dataset [2]

consists of 14 images, and it is also mainly used for the

segmentation task. The ROC dataset [43] aims to help pa-

tients with diabetes through improving computer-aided de-

tection and diagnosis of DR. The e-ophtha [12] is a dataset
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Table 1: Summary of available retinal datasets. Based on this table, we find our proposed DEN is much larger than the

other retinal image datasets. It contains three types of labels including the name of the disease, keywords, and clinical

description. Most of the retinal dataset only contains image data, and the dataset size is not large. Note that “ Text*” denotes

clinical description and keywords, referring to our Dataset Introduction and Analysis section. “ Text” denotes only clinical

description. So, our DEN is unique.

Name of Dataset Field of View Resolution Data Type Number of Images

VICAVR [57] 45◦ 768 ∗ 584 Image 58

VARIA [46] 20◦ 768 ∗ 584 Image 233

STARE [22] ≈ 30◦ − 45◦ 700 ∗ 605 Image + Text 397

CHASE-DB1 [15] ≈ 25◦ 999 ∗ 960 Image 14

RODREP [1] 45◦ 2000 ∗ 1312 Image 1,120

HRF [45] 45◦ 3504*2336 Image 45

e-ophtha [12] ≈ 45◦ 2544 ∗ 1696 Image 463

ROC [43] ≈ 30◦ − 45◦ 768 ∗ 576− 1386 ∗ 1391 Image 100

REVIEW [2] ≈ 45◦ 1360∗1024−3584∗2438 Image 14

ONHSD [10] 45◦ 640 ∗ 480 Image 99

INSPIRE-AVR [44] 30◦ 2392 ∗ 2048 Image 40

DIARETDB1 [33] 50◦ 1500 ∗ 1152 Image + Text 89

DIARETDB0 [32] 50◦ 1500 ∗ 1152 Image 130

MESSIDOR [13] 45◦ 1440∗960−2304∗1536 Image + Text 1,200

Drishti-GS [54] ≈ 25◦ 2045 ∗ 1752 Image 101

FIRE [21] 45◦ 2912 ∗ 2912 Image 129

DRIONS-DB [7] ≈ 30◦ 600 ∗ 400 Image 110

IDRiD [50] 50◦ 4288 ∗ 2848 Image 516

DRIVE [55] 45◦ 565 ∗ 584 Image 40

DeepEyeNet (DEN) ≈ 30◦

− 60◦ various Image + Text* 15,709

of color fundus images specially designed for scientific re-

search in DR. The HRF dataset [45] contains at the mo-

ment 15 images of healthy patients, 15 images of patients

with DR and 15 images of glaucomatous patients. Also,

binary gold standard vessel segmentation images are avail-

able for each image. The RODREP dataset [1] contains re-

peated 4-field color fundus photos (1120 in total) of 70 pa-

tients in the DR screening program of the Rotterdam Eye

Hospital. The CHASE-DB1 dataset [15] is mainly used

for retinal vessel analysis, and it contains 14 images. The

STARE dataset [22] has 397 images and it is used to de-

velop an automatic system for diagnosing diseases of the

human eye. The VARIA [46] is a dataset of retinal images

used for authentication purposes, and it includes 233 im-

ages from 139 different individuals. The VICAVR dataset

[57] includes 58 images, and it is used for the computation

of the ratio of A/V, (Artery/Vein). In this work, we propose

a large-scale retinal images dataset, DeepEyeNet (DEN), to

train our deep learning based models and validate our RDI

and CDG. For convenience, we summarize the above retinal

datasets in Table 1.

3. Dataset Introduction and Analysis

In this section, we start to describe our proposed DEN

dataset in terms of types of retinal images and labels and

some statistics of the dataset. Note that some of our group

members are experienced ophthalmologists and they help

us build the proposed DEN dataset sorted by 265 unique

retinal symptoms from the clinical definition and their pro-

fessional domain knowledge. In our proposed DEN dataset,

there are two types of retinal images, grey scale FA and

colorful CFP. The total amount of images is 15,709, includ-

ing 1,811 FA and 13,898 CFP. As with most of the large-

scale datasets for deep learning research, we create standard

splits, separating the whole dataset into 60%/20%/20%,

i.e., 9425/3142/3142, for training/validation/testing, re-

spectively. Each retinal image has three corresponding la-

bels including the name of the disease, keywords, and clin-

ical description. For the total number of retinal diseases,

the dataset contains 265 different retinal diseases includ-

ing the common and non-common. For the keyword and

clinical description, it contains 15,709 captions and 15,709

keywords labels. Keyword label denotes important infor-

mation in the diagnosis process. Clinical description label

represents the corresponding caption of a given retinal im-

age. Note that all the labels are defined by retina specialists

or ophthalmologists. To better understand our dataset, we

show some data examples from the DEN dataset in Figure

3. Also, in Figure 4, we show the word length distribu-

tion of the keyword and clinical description labels. Based

on Figure 4, we observe the longest word length in our
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Name of disease: Geomorphologic Atrophy 

secondary to AMD 

Keywords: Geomorphologic Atrophy; AMD 

Clinical description: CFP of the right eye of a 76-

year-old man with vision loss for two years shows a 

hypopigmented macular lesion. OCT reveals RPE 

atrophy in the macular area. 

Name of disease: Central Serous Chorioretinopathy 

Keywords: Central Serous Chorioretinopathy 

Clinical description: FA of the left eye of a 23-year-

old lady with vision loss for 3 weeks. FA shows dot 

hyperfluorescence in the macula fovea, and blocked 

fluorescence can be seen around the 

hyperfluorescence lesion. 

Figure 3: Examples from our DEN dataset. Each image has

three labels including the name of the disease, keywords,

and clinical description. Note that ophthalmologists define

all the labels.

Figure 4: This figure shows the word length distribution

of the keyword and clinical description labels. Based on

the figure, the word length in our DEN dataset is mainly

between 5 and 10 words.

dataset is more than 15 words for keywords and 50 words

for clinical descriptions. Note that the longest word length

of existing datasets for natural image captioning or VQA

[4, 9, 40, 27, 24] is only around 10 words. It implies that

our proposed dataset is challenging. Additionally, we pro-

vide the Venn-style word cloud visualization results clinical

description labels, referring to Figure 5. Based on Figure 5,

in clinical description labels, we see there are specific ab-

stract concepts, which makes the dataset more challenging.

4. Methodology

In this section, we start to describe the proposed AI-

based method for automatic medical report generation. The

proposed method is mainly composed of the DNN-based

module and DNN visual explanation module.

4.1 DNN-based Module

The DNN-based module contains two components, i.e.,

Figure 5: The figure represents Venn-style word cloud for

clinical description labels. Note that the word size indi-

cates the normalized counts. Based on this figure, we can

see there are specific abstract concepts, which makes image

captioning algorithms more difficult to generate descrip-

tions with good quality.

(An input retinal image) (Pre-trained CNN for the 

image feature extraction)

(Keywords)
Keyword embedding 

module

(Recurrent Neural Networks)

(Clinical description)

Cone,…, Dystrophy

Retinal image 

disease…

(Image feature)

(Keywords feature)

(Fused feature)

Figure 6: This figure conceptually depicts the clinical

description generator with our proposed keyword-driven

method. In our clinical description generator, we exploit a

pre-trained CNN model to extract the retinal image feature.

So, the CNN model is a so-called image encoder. Then, we

use an LSTM model, i.e., recurrent neural networks (RNN),

as a decoder to generate a word at each time step. Finally,

all of the collected words will form a clinical description.

a retinal disease identifier (RDI) and a clinical description

generator (CDG). We introduce them in the following sub-

sections. Note that we hypothesize an effective RDI and ef-

fective CDG help improve the conventional retinal disease

treatment procedure and help ophthalmologists increase di-

agnosis efficiency and accuracy.

Retinal Disease Identifier (RDI). To identify retinal dis-

eases, in our RDI sub-module, we provide two types of

deep learning models based on [19, 53], pre-trained on Ima-

geNet, and then trained on the proposed DEN dataset. From

the lower level feature perspective, such as color, most of

the medical images, e.g., radiology images of the chest, are

mainly grey-scale [35] but retinal images are mainly color-

ful in our dataset. Using the ImageNet pre-trained at least

helps extract the better lower level features information. So,
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Table 2: This table shows the quantitative results of differ-

ent RDI models based on our DEN. The RDI model based

on [53] with ImageNet pre-training has the best perfor-

mance. “Pre-trained” indicates the model is initialized from

the pre-trained weights of ImageNet. “Random init” means

the model’s weights are initialized randomly. Prec@k in-

dicates how often the ground truth label is within the top

k ranked labels after the softmax layer. We investigate

Prec@1 and Prec@5 due to the need to shortlist candidates

of diseases in real-world scenarios. Note that since we have

265 retinal disease candidates and limited training data, it is

hard to have good performance in the sense of Prec@1. The

situation of limited data is common in medicine.

Model

Precision

Pre-trained Random init

Prec@1 Prec@5 Prec@1 Prec@5

He, et al. [19] 37.09 63.36 36.60 62.87

Simonyan, et al. [53] 54.23 80.75 35.93 73.73

Jing, et al. [30] 32.72 63.75 29.11 60.68

in this case, we expect that pre-training on ImageNet can

improve model performance.

Clinical Description Generator (CDG). To generate the

clinical description for an input retinal image, we use a pre-

trained CNN-based model, such as MobileNetV2, VGG16,

VGG19, or InceptionV3, as our image feature encoder and

a Long Short-term Memory (LSTM) as our decoder to gen-

erate text, referring to Figure 6. When we try to generate

the clinical description by the LSTM unit, we incorporate

the beam-search mechanism to get the better final output

description. In ophthalmological practice, commonly ex-

isting keywords, with unordered nature, help ophthalmol-

ogists create medical reports. Inspired by this, we exploit

keywords to reinforce our CDG sub-module. As shown in

Figure 6, we use a keyword embedding module, such as

bag of words, to encode our keyword information. Note

that when keywords are used to reinforce CDG, it means

we will have two types of input features, i.e., image and

text features. In this work, we use the average method to

fuse these two types of features, referring to Figure 6.

4.2 DNN Visual Explanation Modules

There are some existing DNN visual explanation meth-

ods, such as [70, 52, 23]. The authors of [70] have proposed

a technique, called Class Activation Mapping (CAM), for

CNN. It makes classification-trained CNN learn how to per-

form the task of object localization, without using a bound-

ing box. Furthermore, they exploit class activation maps to

visualize the predicted class scores on a given image, high-

lighting the discriminative object parts which are detected

by the CNN. To improve the conventional retinal disease

treatment procedure, we incorporate the DNN visual expla-

nation module in our proposed AI-based method. Also, we

exploit this module to help verify the effectiveness of the

method, referring to our Experiments section.

4.3 Medical Report Generation

According to [68, 51], proper multimedia data visualiza-

tion helps people get insight from the data efficiently. In

some sense, we can say that multimedia visualization is a

way to visually arrange multimedia data, and it sometimes

even helps people get a deeper understanding and extra in-

formation from the visualized data. In this work, it contains

five multimedia data, including the name of the disease,

keyword, clinical description, retinal image, and CAM re-

sult image. So, we exploit the table-based concept, which is

similar to the static spreadsheet-based concept [68], to visu-

alize our medical report, referring to Figure 7. The medical

report visualization intends to help ophthalmologists get the

insight from the above image and text data efficiently and

also increase the diagnostic accuracy.

5. Experiments

In this section, we compare our proposed method to

baselines for verifying the effectiveness based on the as-

sumption described in our Methodology section.

5.1 Retinal Disease Identifier (RDI) Verification

In our experiment, we try to show that the RDI model

with ImageNet pre-training is better than the RDI model

without ImageNet pre-training, i.e., our baseline. We ex-

ploit the ImageNet-pre-trained DNN-based deep model and

non-ImageNet-pre-trained DNN-based deep model with

different architectures to do fine-tuning on DEN. For em-

pirical reasons, we use two recipes to train different models.

For the RDI model based on [19], we start with a learning

rate of 0.1 and decay it 5 times for every 50 epoch. For the

RDI model based on [53], we start with a learning rate of

0.001 and decay it 5 times for every 50 epoch. According

to the evaluation results in Table 2, we find that the RDI

model based on [53] with ImageNet pre-training has better

performance than others. We conjecture that RDI models

based on [19, 30] may be too complicated for the proposed

DEN dataset. Although DEN is a large-scale dataset from

the retinal field perspective, the number of training images

is still not enough for very deep models. Note that our pro-

posed DEN dataset has 265 classes, including common and

non-common retinal diseases or symptoms, and only 8512

training images, so it is not easy to achieve high Prec@1 ac-

curacy for human doctors and AI machines. That is one of

the reasons why we investigate both Prec@1 and Prec@5.

Also, reporting Prec@5 accuracy is more appropriate from

the real-world scenario perspective.

5.2 Clinical Description Generator (CDG) Verification

In [25, 28, 26], the authors mention that the evalua-

tion of image description generators is very subjective and

there is no such thing as the most proper metric to evaluate

the text-to-text similarity. Different text-to-text similarity

metrics have different properties, so we exploit six com-

monly used metrics, including BLEU-1, BLEU-2, BLEU-
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Figure 7: This figure shows the medical reports based on the table-based concept [68]. Since retinal diseases may have some

implicit common property or relation, we can put the diseases with the common property or relation together on the table.

The table-based medical report intends to help ophthalmologists get more insights.

Retinal image Ground truth caption Predicted caption

75-year-old white male. srnv-md. 60 year old white male. srnv md.

67-year-old female with diabetic 

maculopathy multiple myeloma with 

retinal detachment.

FoV

25° 

30° 

67 year old patient diabetic maculopathy 

multiple myeloma with the the in a the to the a 

retinal detachment.

Figure 8: This figure shows some generated results by our clinical description generator. Based on this figure, we know that

our models can generate meaningful clinical descriptions for ophthalmologists. Note that, in practice, “age” and “gender”

are hard to be generated correctly by automatic algorithms. The first row with correct “age” prediction is just a special case.

3, BLEU-4 [48], ROUGE [39], and CIDEr [58], to eval-

uate generated results by our CDG. Table 3 contains the

evaluation results of our CDGs based on the above six dif-

ferent text-to-text similarity metrics. All CDG modules

with the keyword-driven method have better performance

than the non-keyword-driven CDGs, i.e., our baseline. It

implies that using keywords to reinforce the CDGs is ef-

fective. Based on Table 3 and [30, 60], we find that the

evaluation score of the medical image captioning, based on

the above commonly used text evaluation metrics, is much

lower than the evaluation score of the natural image cap-

tioning. One reason is that, typically, the length of the med-

ical image caption is much longer than the natural image

caption. Also, the medical image caption has more abstract

words or concepts than the natural image caption. These ab-

stract words/concepts will make algorithms difficult to gen-

erate correct captions. The other possible reason is that the

innate property of the commonly used text-to-text similar-

ity metrics [25, 28, 26] makes this happen. In addition, in

Figure 8, we show some generated clinical description re-

sults. Based on Figure 8, we find that although our CDG

module cannot always generate correct “age” or “gender”,

the models are capable of generating correct descriptions to

important characteristics for retinal images.

Based on the assumption mentioned in our Methodology

section, subsection 5.1, and subsection 5.2, we have shown

the proposed AI-based method is quantitatively effective.

5.3 Evaluation by DNN Visual Explanation Module

The main idea of DNN visual explanation module evalu-

ation is that if our DNN visual explanation results generated
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Table 3: This table shows the evaluation results of our keyword-driven and non-keyword-driven clinical description genera-

tors (CDGs). Note that we highlight the best scores of keyword-driven and non-keyword-driven generators in each column,

respectively. “w/o” denotes non-keyword-driven baseline generators, and “w/” denotes our proposed keyword-driven gen-

erators. “BLEU-avg” denotes the average score of BLEU-1, BLEU2, BLEU-3, and BLEU-4. Note that the model based

on “Jing, et al. [30]” has the best performance among all the non-keyword-driven models, and the keyword-driven model

based on “Jing, et al. [30]” also has the best performance among all the models. All the keyword-driven models, with the

average feature fusion method, are superior to the non-keyword-driven models. So, using keywords to reinforce the CDGs is

effective.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-avg CIDEr ROUGE

Karpathy, et al. [31]
w/o 0.081 0.031 0.009 0.004 0.031 0.117 0.134

w/ 0.169 0.103 0.060 0.017 0.087 0.120 0.202

Vinyals, et al. [59]
w/o 0.054 0.018 0.002 0.001 0.019 0.056 0.083

w/ 0.144 0.092 0.052 0.021 0.077 0.296 0.197

Jing, et al. [30]
w/o 0.130 0.083 0.044 0.012 0.067 0.167 0.149

w/ 0.184 0.114 0.068 0.032 0.100 0.361 0.232

Li, et al. [37]
w/o 0.111 0.060 0.026 0.006 0.051 0.066 0.129

w/ 0.181 0.107 0.062 0.032 0.096 0.453 0.230

by CAM [70] are accepted by ophthalmologists, it implies

that the proposed method is qualitatively effective. To prove

the claim, we build the other retinal image dataset with 300

retinal images labeled by ophthalmologists and exploit the

CNN visualization tool, CAM, to visualize the learned fea-

ture and compare it to the ground truth retinal image. We

show the qualitative results in Figure 9. In Figure 9, row

(a) shows the four different kinds of raw images of retina

diseases and each raw image has a yellow sketch labeled

by the ophthalmologist to highlight the lesion areas on the

retina. The numbers from (1) to (4) denote the four differ-

ent diseases, including Optic Neuritis, Macular Dystrophy,

Albinotic Spots in Macula, and Stargardt Cone-Rod Dys-

trophy, respectively. We exploit CAM to generate row (b)

to demonstrate the visualization results of our DNN-based

model. Then, row (c) is produced by the same method as

the row (b). Note that both row (b) and row (c) use the

same pre-trained weights of ImageNet but row (b) has fine-

tuning on DEN dataset and row (c) has no fine-tuning on

DEN. The comparison of row (b) and row (c) shows that the

DNN-based model successfully learns the robust features of

retinal images by training on our DEN dataset. Also, row

(b) indicates that the features learned by DNN agree with

the domain knowledge of ophthalmologists. That is to say,

the activation maps of our deep models are aligned with im-

age features that are clinically recognized by ophthalmol-

ogists as linked with the identified disease. The above ex-

perimental results show our proposed AI-based method is

qualitatively effective.

6. Conclusion

To sum up, we propose an AI-based method to automati-

cally generate medical reports for retinal images to improve

(c) 

(a) 

(b) 

(1) (2) (3) (4) 

Figure 9: This figure shows the randomly selected quali-

tative results of CAM. For the detailed explanation, please

refer to subsection 5.3.

the traditional retinal diseases treatment procedure. The

proposed method is composed of a DNN-based module, in-

cluding RDI and CDG sub-modules, and DNN visual expla-

nation module. To train our deep models and validate the ef-

fectiveness of our RDI and CDG, we propose a large-scale

retinal disease image dataset, DEN. Also, we provide an-

other retinal image dataset manually labeled by ophthalmol-

ogists to qualitatively evaluate the proposed method. Our

experimental results show the proposed AI-based method is

effective and successfully improves the conventional treat-

ment procedure of retinal diseases.
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