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Abstract

Recent advances in video manipulation techniques have

made the generation of fake videos more accessible than

ever before. Manipulated videos can fuel disinformation and

reduce trust in media. Therefore detection of fake videos has

garnered immense interest in academia and industry. Re-

cently developed Deepfake detection methods rely on Deep

Neural Networks (DNNs) to distinguish AI-generated fake

videos from real videos. In this work, we demonstrate that it

is possible to bypass such detectors by adversarially modi-

fying fake videos synthesized using existing Deepfake gen-

eration methods. We further demonstrate that our adversar-

ial perturbations are robust to image and video compres-

sion codecs, making them a real-world threat. We present

pipelines in both white-box and black-box attack scenarios

that can fool DNN based Deepfake detectors into classifying

fake videos as real.

1. Introduction

With the advent of sophisticated image and video synthe-

sis techniques, it has become increasingly easier to generate

high-quality convincing fake videos. Deepfakes are a new

genre of synthetic videos, in which a subject’s face is modi-

fied into a target face in order to simulate the target subject in

a certain context and create convincingly realistic footage of

events that never occurred. Video manipulation methods like

Face2Face [49], Neural Textures [48] and FaceSwap [26]

operate end-to-end on a source video and target face and

require minimal human expertise to generate fake videos in

real-time.

The intent of generating such videos can be harmless and

have advanced the research of synthetic video generation

for movies, storytelling and modern-day streaming services.

However, they can also be used maliciously to spread disin-

formation, harass individuals or defame famous personali-

ties [45]. The extensive spread of fake videos through social

media platforms has raised significant concerns worldwide,

particularly hampering the credibility of digital media.

Figure 1. Adversarial Deepfakes for XceptionNet [40] detector.

Top: Frames of of a fake video generated by Face2Face being

correctly identified as fake by the detector. Bottom: Corresponding

frames of the adversarially modified fake video being classified as

real by the detector.

To address the threats imposed by Deepfakes, the machine

learning community has proposed several countermeasures

to identify forgeries in digital media. Recent state-of-the-art

methods for detecting manipulated facial content in videos

rely on Convolutional Neural Networks (CNNs) [17, 40,

1, 2, 30, 39]. A typical Deepfake detector consists of a

face-tracking method, following which the cropped face is

passed on to a CNN-based classifier for classification as

real or fake [1, 13]. Some of the recent DeepFake detection

methods use models operate on a sequence of frames as

opposed to a single frame to exploit temporal dependencies

in videos [15].

While the above neural network based detectors achieve

promising results in accurately detecting manipulated videos,

in this paper we demonstrate that they are susceptible to ad-

versarial examples which can fool the detectors to classify

fake videos as real 1. An adversarial example is an inten-

tionally perturbed input that can fool a victim classification

1Video Examples: https://adversarialdeepfakes.github.io/
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model [46]. Even though several works have demonstrated

that neural networks are vulnerable to adversarial inputs (Sec-

tion 2.3), we want to explicitly raise this issue that has been

ignored by existing works on Deepfake detection (Section

2.2). Since fake video generation can potentially be used for

malicious purposes, it is critical to address the vulnerability

of Deepfake detectors to adversarial inputs.

To this end, we quantitatively assess the vulnerability of

state-of-the-art Deepfake detectors to adversarial examples.

Our proposed methods can augment existing techniques for

generating fake videos, such that they can bypass a given

fake video detector. We generate adversarial examples for

each frame of a given fake video and combine them together

to synthesize an adversarially modified video that gets classi-

fied as real by the victim Deepfake detector. We demonstrate

that it is possible to construct fake videos that are robust to

image and video compression codecs, making them a real

world threat since videos shared over social media are usu-

ally compressed. More alarmingly, we demonstrate that it is

possible to craft robust adversarial Deepfakes in black-box

settings, where the adversary may not be aware of the clas-

sification model used by the detector. Finally, we discuss

normative points about how the community should approach

the problem of Deepfake detection.

2. Background

2.1. Generating Manipulated Videos

Until recently, the ease of generating manipulated videos

has been limited by manual editing tools. However, since

the advent of deep learning and inexpensive computing ser-

vices, there has been significant work in developing new

techniques for automatic digital forgery. In our work, we

generate adversarial examples for fake videos synthesized us-

ing FaceSwap (FS) [26], Face2Face (F2F) [49], DeepFakes

(DF) [16] and NeuralTextures (NT) [48]. We perform our

experiments on this FaceForesics++ dataset [40], which is

a curated dataset of manipulated videos containing facial

forgery using the above methods. Another recently proposed

dataset containing videos with facial forgery is the Deep-

Fake Detection Challenge (DFDC) Dataset [17], which we

utilize when evaluating our attacks against sequence based

detection frameworks (Section 3.1).

2.2. Detecting Manipulated Videos

Traditionally, multimedia forensics investigated the au-

thenticity of images [51, 10, 21] using hand-engineered fea-

tures and/or a-priori knowledge of the statistical and physical

properties of natural photographs. However, video synthesis

methods can be trained to bypass hand-engineered detec-

tors by modifying their training objective. We direct readers

to [7, 9] for an overview of counter-forensic attacks to bypass

traditional (non-deep learning based) methods of detecting

forgeries in multimedia content.

More recent works have employed CNN-based ap-

proaches that decompose videos into frames to automatically

extract salient and discriminative visual features pertinent

to Deepfakes. Some efforts have focused on segmenting

the entire input image to detect facial tampering resulting

from face swapping [56], face morphing [38] and splicing

attacks [5, 6]. Other works [28, 29, 1, 23, 40, 41] have fo-

cused on detecting face manipulation artifacts resulting from

Deepfake generation methods. The authors of [29] reported

that eye blinking is not well reproduced in fake videos, and

therefore proposed a temporal approach using a CNN + Re-

current Neural Network(RNN) based model to detect a lack

of eye blinking when exposing deepfakes. Similarly, [54]

used the inconsistency in head pose to detect fake videos.

However, this form of detection can be circumvented by pur-

posely incorporating images with closed eyes and a variety

of head poses in training [50, 18].

The Deepfake detectors proposed in [40, 1, 17] model

Deepfake detection as a per-frame binary classification prob-

lem. The authors of [40] demonstrated that XceptionNet

can outperform several alternative classifiers in detecting

forgeries in both uncompressed and compressed videos, and

identifying forged regions in them. In our work, we expose

the vulnerability of such state-of-the-art Deepfake detectors.

Since the task is to specifically detect facial manipulation,

these models incorporate domain knowledge by using a face

tracking method [49] to track the face in the video. The face

is then cropped from the original frame and fed as input to

classification model to be labelled as Real or Fake. Experi-

mentally, the authors of [40] demonstrate that incorporation

of domain knowledge helps improve classification accuracy

as opposed to using the entire image as input to the classi-

fier. The best performing classifiers amongst others studied

by [40] were both CNN based models: XceptionNet [13]

and MesoNet [1]. More recently, some detectors have also

focused on exploiting temporal dependencies while detect-

ing DeepFake videos. Such detectors work on sequence of

frames as opposed to a single frame using a CNN + RNN

model or a 3-D CNN model. One such model based on a 3-D

EfficientNet [47] architecture, was used by the third place

winner [15] of the recently conducted DeepFake Detection

Challenge (DFDC) [17]. The first two winning submissions

were CNN based per-frame classification models similar

to ones described above. We evaluate our attacks against

the 3D CNN model to expose the vulnerability of temporal

Deepfake detectors.

2.3. Adversarial Examples

Adversarial examples are intentionally designed inputs to

a machine learning (ML) model that cause the model to make

a mistake [46]. Prior work has shown a series of first-order

gradient-based attacks to be fairly effective in fooling DNN
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based models in both image [35, 34, 22, 31, 11, 44, 43], au-

dio [12, 37, 33] and text [20, 8, 32] domains. The objective

of such adversarial attacks is to find a good trajectory that

(i) maximally changes the value of the model’s output and

(ii) pushes the sample towards a low-density region. This is

equivalent to the ML model’s gradient with respect to input

features. Prior work on defenses [53] against adversarial

attacks, propose to perform random operations over the in-

put images, e.g., random cropping and JPEG compression.

However, such defenses are shown to be vulnerable to attack

algorithms that are aware of the randomization approach.

Particularly, one line of adversarial attack [3, 4] computes

the expected value of gradients for each of the sub-sampled

networks/inputs and performs attacks that are robust against

compression.

3. Methodology

3.1. Victim Models: Deepfake Detectors

Frame-by-Frame detectors: To demonstrate the effective-

ness of our attack on Deepfake detectors, we first choose

detectors which rely on frame level CNN based classification

models. These victim detectors work on the frame level and

classify each frame independently as either Real or Fake

using the following two-step pipeline:

1. A face tracking model [49] extracts the bounding box of

the face in a given frame.

2. The cropped face is then resized appropriately and passed

as input to a CNN based classifier to be labelled as either

real or fake.

In our work, we consider two victim CNN classifiers:

XceptionNet [13] and MesoNet [1]. Detectors based on the

above pipeline have been shown to achieve state-of-the-art

performance in Deepfake detection as reported in [17, 40,

55]. The accuracy of such models on the FaceForensics++

Dataset [40] is reported in Table 1.

Sequence based models: We also demonstrate the effec-

tiveness of our attacks on detectors that utilize temporal

dependencies. Such detection methods typically use a CNN

+ RNN or a 3D-CNN architecture to classify a sequence of

frames as opposed to a single frame. A 3D-CNN architecture

performs convolutions across height, width and time axis

thereby exploiting temporal dependencies. In Section 5, we

evaluate our attacks against one such detection method [15]

that uses a 3-D EfficientNet [47] CNN model for classify-

ing a sequence of face-crops obtained from a face tracking

model. In this model, a 3-D convolution is added to each

block of the EfficientNet model to perform convolutions

across time. The length of the input sequence to the model

is 7 frames and the step between frames is 1/15 of a second.

This 3-D CNN model was used by the third place winner of

the recently conducted DFDC challenge.

𝟄+ =

Classifier

Classifier

Fake

Real

Fake video

Adversarially modified fake video

Figure 2. An overview of our attack pipeline to generate Adversarial

Deepfakes. We generate an adversarial example for each frame

in the given fake video and combine them together to create an

adversarially modified fake video.

3.2. Threat Model

Given a facially manipulated (fake) video input and a

victim Deepfake detector, our task is to adversarially modify

the fake video such that most of the frames get classified

as Real by the Deepfake detector, while ensuring that the

adversarial modification is quasi-imperceptible.

Distortion Metric: To ensure imperceptibility of the ad-

versarial modification, the Lp norm is a widely used distance

metric for measuring the distortion between the adversarial

and original inputs. The authors of [22] recommend con-

straining the maximum distortion of any individual pixel by

a given threshold ✏, i.e., constraining the perturbation using

an L1 metric. Additionally, Fast Gradient Sign Method

(FGSM) [22] based attacks, which are optimized for the L1

metric, are more time-efficient than attacks which optimize

for L2 or L0 metrics. Since each video can be composed of

thousands of individual frames, time-efficiency becomes an

important consideration to ensure the proposed attack can

be reliably used in practice. Therefore, in this work, we use

the L1 distortion metric for constraining our adversarial

perturbation and optimize for it using gradient sign based

methods.

Notation: We follow the notation previously used

in [11, 36]: Define F to be the full neural network (clas-

sifier) including the softmax function, Z(x) = z to be the

output of all layers except the softmax (so z are the logits),

and

F (x) = softmax(Z(x)) = y

The classifier assigns the label C(x) = argmaxi(F (x)i) to

input x.

Problem Formulation: Mathematically, for any given
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frame x0 of a fake video, and a victim frame-forgery detector

model C, we aim to find an adversarial frame xadv such that,

C(xadv ) = Real and ||xadv � x0||1 < ✏

Attack Pipeline: An overview of the process of generat-

ing adversarial fake videos is depicted in Figure 2. For any

given frame, we craft an adversarial example for the cropped

face, such that after going through some image transforma-

tions (normalization and resizing), it gets classified as Real

by the classifier. The adversarial face is then placed in the

bounding box of face-crop in the original frame, and the

process is repeated for all frames of the video to create an

adversarially modified fake video. In the following sections,

we consider our attack pipeline under various settings and

goals.

Note that, the proposed attacks can also be applied on

detectors that operate on entire frames as opposed to face-

crops. We choose face-crop based victim models because

they have been shown to outperform detectors that operate

on entire frames for detecting facial-forgeries.

3.3. White-box Attack

In this setting, we assume that the attacker has complete

access to the detector model, including the face extraction

pipeline and the architecture and parameters of the classifi-

cation model. To construct adversarial examples using the

attack pipeline described above, we use the iterative gradient

sign method [27] to optimize the following loss function:

Minimize loss(x0) where

loss(x0) = max (Z(x0)Fake � Z(x0)Real , 0)
(1)

Here, Z(x)y is the final score for label y before the soft-

max operation in the classifier C. Minimizing the above

loss function maximizes the score for our target label Real .

The loss function we use is recommended in [11] because

it is empirically found to generate less distorted adversarial

samples and is robust against defensive distillation. We use

the iterative gradient sign method to optimize the above ob-

jective while constraining the magnitude of the perturbation

as follows:

xi = xi�1 � clip
✏
(↵ · sign(rloss(xi�1))) (2)

We continue gradient descent iterations until success or until

a given number number of maximum iterations, whichever

occurs earlier. In our experiments, we demonstrate that

while we are able to achieve an average attack success rate

of 99.05% when we save videos with uncompressed frames,

the perturbation is not robust against video compression

codecs like MJPEG. In the following section, we discuss our

approach to overcome this limitation of our attack.

3.4. Robust White-box Attack

Generally, videos uploaded to social networks and other

media sharing websites are compressed. Standard opera-

tions like compression and resizing are known for removing

adversarial perturbations from an image [19, 14, 24]. To

ensure that the adversarial videos remain effective even after

compression, we craft adversarial examples that are robust

over a given distribution of input transformations [4]. Given

a distribution of input transformations T , input image x, and

target class y, our objective is as follows:

xadv = argmaxxEt⇠T [F (t(x))y] s.t. ||x� x0||1 < ✏

That is, we want to maximize the expected probability of

target class y over the distribution of input transforms T . To

solve the above problem, we update the loss function given

in Equation 1 to be an expectation over input transforms T
as follows:

loss(x) = Et⇠T [max (Z(t(x))Fake � Z(t(x))Real , 0)]

Following the law of large numbers, we estimate the above

loss functions for n samples as:

loss(x) =
1

n

X

ti⇠T

[max (Z(ti(x))Fake � Z(ti(x))Real , 0)]

Since the above loss function is a sum of differentiable

functions, it is tractable to compute the gradient of the loss

w.r.t. to the input x. We minimize this loss using the iterative

gradient sign method given by Equation 2. We iterate until a

given a number number of maximum iterations or until the

attack is successful under the sampled set of transformation

functions, whichever happens first.

Next we describe the class of input transformation func-

tions we consider for the distribution T :

Gaussian Blur: Convolution of the original image with a

Gaussian kernel k . This transform is given by t(x) = k ⇤ x
where ⇤ is the convolution operator.

Gaussian Noise Addition: Addition of Gaussian noise sam-

pled from Θ ⇠ N (0,�) to the input image. This transform

is given by t(x) = x+Θ

Translation: We pad the image on all four sides by ze-

ros and shift the pixels horizontally and vertically by a

given amount. Let tx be the transform in the x axis and

ty be the transform in the y axis, then t(x) = x0

H,W,C s.t

x0[i, j, c] = x[i+ tx, j + ty, c]
Downsizing and Upsizing: The image is first downsized

by a factor r and then up-sampled by the same factor using

bilinear re-sampling.

The details of the hyper-parameter search distribution

used for these transforms can be found in the Section 4.1.
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3.5. Black-box Attack

In the black-box setting, we consider the more challeng-

ing threat model in which the adversary does not have access

to the classification network architecture and parameters.

We assume that the attacker has knowledge of the detection

pipeline structure and the face tracking model. However, the

attacker can solely query the classification model as a black-

box function to obtain the probabilities of the frame being

Real or Fake. Hence there is a need to estimate the gradient

of the loss function by querying the model and observing

the change in output for different inputs, since we cannot

backpropagate through the network.

We base our algorithm for efficiently estimating the gra-

dient from queries on the Natural Evolutionary Strategies

(NES) approach of [52, 25]. Since we do not have access

to the pre-softmax outputs Z, we aim to maximize the class

probability F (x)y of the target class y. Rather than maxi-

mizing the objective function directly, NES maximizes the

expected value of the function under a search distribution

⇡(✓|x). That is, our objective is:

Maximize: E⇡(✓|x)[F (✓)y]

This allows efficient gradient estimation in fewer queries as

compared to finite-difference methods. From [52], we know

the gradient of expectation can be derived as follows:

rxE⇡(✓|x) [F (✓)y] = E⇡(✓|x) [F (✓)yrx log (⇡(✓|x))]

Similar to [25, 52], we choose a search distribution ⇡(✓|x)
of random Gaussian noise around the current image x. That

is, ✓ = x+ �� where � ⇠ N (0, I). Estimating the gradient

with a population of n samples yields the following variance

reduced gradient estimate:

rE[F (✓)] ⇡
1

�n

nX

i=1

�iF (✓ + ��i)y

We use antithetic sampling to generate �i similar to

[42, 25]. That is, instead of generating n values � ⇠ N (0, I),
we sample Gaussian noise for i 2 {1, . . . , n

2 } and set

�j = ��n�j+1 for j 2 {(n2 +1), . . . , n}. This optimization

has been empirically shown to improve performance of NES.

Algorthim 1 details our implementation of estimating gra-

dients using NES. The transformation distribution T in the

algorithm just contains an identity function i.e., T = {I(x)}
for the black-box attack described in this section.

After estimating the gradient, we move the input in the

direction of this gradient using iterative gradient sign updates

to increase the probability of target class:

xi = xi�1 + clip
✏
(↵ · sign(rF (xi�1)y)) (3)

3.6. Robust Black-box Attack

To ensure robustness of adversarial videos to compression,

we incorporate Expectation over Transforms (Section 3.4)

method in the black-box setting for constructing adversarial

videos.

To craft adversarial examples that are robust under a given

set of input transformations T , we maximize the expected

value of the function under a search distribution ⇡(✓|x) and

our distribution of input transforms T . That is, our objective

is to maximize:

Et⇠T [E⇡(✓|x) [F (t(✓))y]]

Following the derivation in the previous section, the gradient

of the above expectation can be estimated using a population

of size n by iterative sampling of ti and �i:

rE[F (✓)] ⇡
1

�n

nX

i=1,ti⇠T

�iF (ti(✓ + ��i))y

Algorithm 1 NES Gradient Estimate

Input: Classifier F (x),target class y, image x
Output: Estimate of rxF (x)y
Parameters: Search variance �, number of samples n,

image dimensionality N
g  0n

for i = 1 to n do

ti ⇠ T
ui  N (0N , IN ·N )
g  g + F (ti(x+ � · ui))y · ui

g  g � F (ti(x� � · ui))y · ui

end for

return 1
2n� g

We use the same class of transformation functions listed

in Section 3.4 for the distribution T . Algorithm 1 details our

implementation for estimating gradients for crafting robust

adversarial examples. We follow the same update rule given

by Equation 3 to generate adversarial frames. We iterate

until a given a number of maximum iterations or until the

attack is successful under the sampled set of transformation

functions.

4. Experiments

Dataset and Models: We evaluate our proposed attack al-

gorithm on two pre-trained victim models: XceptionNet [13]

and MesoNet [1]. In our experiments, we perform our at-

tack on the test set of the FaceForensics++ Dataset [40],

consisting of manipulated videos from the four methods de-

scribed in Section 2.1. We construct adversarially modified

fake videos on the FaceForensics++ test set, which contains
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70 videos (total 29,764 frames) from each of the four ma-

nipulation techniques. For simplicity, our experiments are

performed on high quality (HQ) videos, which apply a light

compression on raw videos. The accuracy of the detector

models for detecting facially manipulated videos on this test

set is reported in Table 1. We will be releasing code for all

our attack algorithms in PyTorch2.

DF F2F FS NT

XceptionNet Acc % 97.49 97.69 96.79 92.19

MesoNet Acc % 89.55 88.6 81.24 76.62

Table 1. Accuracy of Deepfake detectors on the FaceForensics++

HQ Dataset as reported in [40]. The results are for the entire

high-quality compressed test set generated using four manipulation

techniques (DF: DeepFakes, F2F: Face2Face, FS: FaceSwap and

NT: NeuralTextures).

Evaluation Metrics: Once the adversarial frames are

generated, we combine them and save the adversarial videos

in the following formats:

1) Uncompressed (Raw): Video is stored as a sequence of

uncompressed images.

2) Compressed (MJPEG): Video is saved as a sequence of

JPEG compressed frames.

3) Compressed (H.264): Video is saved in the commonly

used mp4 format that applies temporal compression across

frames.

We conduct our primary evaluation on the Raw and

MJPEG video formats across all attacks. We also study

the effectiveness of our white box robust attack using dif-

ferent compression levels in the H264 codec. We report the

following metrics for evaluating our attacks:

Success Rate (SR): The percentage of frames in the adver-

sarial videos that get classified to our target label Real. We

report: SR-U- Attack success rate on uncompressed adver-

sarial videos saved in Raw format; and SR-C- Attack success

rate on compressed adversarial videos saved in MJPEG for-

mat.

Accuracy: The percentage of frames in videos that get clas-

sified to their original label Fake by the detector. We report

Acc-C- accuracy of the detector on compressed adversarial

videos.

Mean distortion (L1): The average L1 distortion between

the adversarial and original frames. The pixel values are

scaled in the range [0,1], so changing a pixel from full-on to

full-off in a grayscale image would result in L1 distortion

of 1 (not 255).

4.1. White-box Setting

To craft adversarial examples in the white-box setting,

in our attack pipeline, we implement differentiable image

2Code released upon publication

pre-processing (resizing and normalization) layers for the

CNN. This allows us to backpropagate gradients all the way

to the cropped face in-order to generate the adversarial image

that can be placed back in the frame. We set the maximum

number of iterations to 100, learning rate ↵ to 1/255 and

max L1 constraint ✏ to 16/255 for both our attack methods

described in Sections 3.3 and 3.4.

XceptionNet MesoNet

Dataset L1 SR - U SR - C Acc-C% L1 SR - U SR - C Acc-C%

DF 0.004 99.67 43.11 56.89 0.006 97.30 92.27 7.73

F2F 0.004 99.85 52.50 47.50 0.007 98.94 96.30 4.70

FS 0.004 100.00 43.13 56.87 0.009 97.12 86.10 13.90

NT 0.004 99.89 95.10 4.90 0.007 99.22 96.20 3.80

All 0.004 99.85 58.46 41.54 0.007 98.15 92.72 7.28

Table 2. Success Rate of White-box attack on XceptionNet and

MesoNet. We report the average L∞ distortion between the adver-

sarial and original frames and the attack success rate on uncom-

pressed (SR-U) and compressed (SR-C) videos. Acc-C denotes the

accuracy of the detector on compressed adversarial videos.

Table 2 shows the results of the white-box attack (Sec-

tion 3.3). We are able to generate adversarial videos with an

average success rate of 99.85% for fooling XceptionNet and

98.15% for MesoNet when adversarial videos are saved in

the Raw format. However, the attack average success rate

drops to 58.46% for XceptionNet and 92.72% for MesoNet

when MJPEG compression is used. This result is coherent

with past works [19, 14, 24] that employ JPEG compres-

sion and image transformations to defend against adversarial

examples.

Fake (from Dataset) White-Box Robust White-Box Black-Box Robust Black-Box

DF

F2F

FS

NT

Figure 3. Randomly selected frames of Adversarial Deepfakes

from successful attacks. The frame from the dataset in the first

column is correctly identified as Fake by the detectors, while the

corresponding frames generated by each of our attacks are labelled

as Real with a probability of 1. Video examples are linked in the

footnote on the first page.

Robust White-Box: For our robust white box attack, we

sample 12 transformation functions from the distribution T
for estimating the gradient in each iteration. This includes

three functions from each of the four transformations listed
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in Section 3.4. Table 3 shows the search distribution for

different hyper-parameters of the transformation functions.

Transform Hyper-parameter search distribution

Gaussian Blur Kernel k(d, d,�), d ⇠ U [3, 7], � ⇠ U [5, 10]
Gaussian Noise � ⇠ U [0.01, 0.02]

Translation dx ⇠ U [�20, 20], dy ⇠ U [�20, 20]
Down-sizing & Up-sizing Scaling factor r ⇠ U [2, 5]

Table 3. Search distribution of hyper-parameters of different trans-

formations used for our Robust White box attack. During training,

we sample three functions from each of the transforms to estimate

the gradient of our expectation over transforms.

XceptionNet MesoNet

Dataset L1 SR - U SR - C Acc-C% L1 SR - U SR - C Acc-C%

DF 0.016 99.67 98.71 1.29 0.030 99.94 99.85 0.15

F2F 0.013 100.00 99.00 1.00 0.020 99.71 99.67 0.33

FS 0.013 100.00 95.33 4.67 0.026 99.02 98.50 1.50

NT 0.011 100.00 99.89 0.11 0.025 99.99 99.98 0.02

All 0.013 99.91 98.23 1.77 0.025 99.67 99.50 0.50

Table 4. Success Rate of Robust White-box attack on XceptionNet

and MesoNet. Acc-C denotes the accuracy of the detector on

compressed adversarial videos.

Table 4 shows the results of our robust white-box attack.

It can be seen that robust white-box is effective in both Raw

and MJPEG formats. The average distortion between origi-

nal and adversarial frames in the robust attack is higher as

compared to the non-robust white-box attack. We achieve

an average success rate (SR-C) of 98.07% and 99.83% for

XceptionNet and MesoNet respectively in the compressed

video format. Additionally, to assess the gain obtained by

incorporating the transformation functions, we compare the

robust white-box attack against the non-robust white-box

attack at the same level of distortion in Table 5. We ob-

serve a significant improvement in attack success rate on

compressed videos (SR-C) when using the robust attack as

opposed to the simple white-box attack (84.96% vs 74.69%

across all datasets at L1 norm of 0.008).

White Box Robust White Box

Dataset L1 SR - U SR - C Acc-C% SR - U SR - C Acc-C%

DF 0.008 99.67 60.36 39.64 99.67 75.06 24.94

F2F 0.008 99.85 80.69 19.31 100.0 90.20 9.80

FS 0.008 100.00 59.63 40.37 100.0 76.12 23.88

NT 0.008 99.89 98.08 1.92 100.0 98.48 1.52

All 0.008 99.85 74.69 25.31 99.91 84.96 15.04

Table 5. Comparison of white-box and robust white-box attacks

at the same magnitude of L∞ norm of the adversarial perturba-

tion. Acc-C denotes the accuracy of the detector on compressed

adversarial videos.

We also study the effectiveness of our robust white box

attack under different levels of compression in the H.264

H.264 Quantization Factor
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Figure 4. Attack success rate vs Quantization factor used for com-

pression in H264 codec for robust white box attack.

format which is widely used for sharing videos over the

internet. Figure 4 shows the average success rate of our

attack across all datasets for different quantization parameter

c used for saving the video in H.264 format. The higher

the quantization factor, the higher is the compression level.

In [40], fake videos are saved in HQ and LQ formats which

use c = 23 and c = 40 respectively. It can be seen that even

at very high compression levels (c = 40), our attack is able

to achieve 80.39% and 90.50% attack success rate for Xcep-

tionNet and MesoNet respectively, without any additional

hyper-parameter tuning for this experiment.

4.2. Black-box Setting

We construct adversarial examples in the black-box set-

ting using the methods described in Sections 3.5 and 3.6.

The number of samples n in the search distribution for esti-

mating gradients using NES is set to 20 for black-box attacks

and 80 for robust black-box to account for sampling different

transformation functions ti. We set the maximum number

of iterations to 100, learning rate ↵ to 1/255 and max L1

constraint ✏ to 16/255.

Table 6 shows the results of our Black-box attack (Sec-

tion 3.5) without robust transforms. Note that the average

L1 norm of the perturbation across all datasets and mod-

els is higher than our white-box attacks. We are able to

generate adversarial videos with an average success rate of

97.04% for XceptionNet and 86.70% for MesoNet when

adversarial videos are saved in the Raw format. Similar to

our observation in the white-box setting, the success rate

drops significantly in the compressed format for this attack.

The average number of queries to the victim model for each

frame is 985 for this attack.

Robust Black-box: We perform robust black-box attack

using the algorithm described in (Section 3.6). For sim-

plicity, during the robust black-box attack we use the same

hyper-parameters for creating a distribution of transforma-

tion functions T (Table 3) as those in our robust white-box

attack. The average number of network queries for fooling

each frame is 2153 for our robust black-box attack. Table

7 shows the results for our robust black-box attack. We ob-

serve a significant improvement in the attack success rate for

XceptionNet when we save adversarial videos in the com-
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XceptionNet MesoNet

Dataset L1 SR - U SR - C Acc-C% L1 SR - U SR - C Acc-C %

DF 0.055 89.72 55.64 44.36 0.062 96.05 93.33 6.67

F2F 0.055 92.56 81.40 18.6 0.063 84.08 77.68 22.32

FS 0.045 96.77 23.50 76.5 0.063 77.55 62.44 37.56

NT 0.024 99.86 94.23 5.77 0.063 85.98 79.25 20.75

All 0.045 94.73 63.69 36.31 0.063 85.92 78.18 21.82

Table 6. Success Rate of of Black-box attack on XceptionNet and

MesoNet. Acc-C denotes the accuracy of the detector on com-

pressed adversarial videos.

XceptionNet MesoNet

Dataset L1 SR - U SR - C Acc-C% L1 SR - U SR - C Acc-C%

DF 0.060 88.47 79.18 20.82 0.047 96.19 93.80 6.20

F2F 0.058 97.68 94.42 5.58 0.054 84.14 77.50 22.50

FS 0.052 98.97 63.26 36.74 0.061 77.34 61.77 38.23

NT 0.018 99.65 98.91 1.09 0.053 88.05 80.27 19.73

All 0.047 96.19 83.94 16.06 0.053 86.43 78.33 21.67

Table 7. Success Rate of Robust Black-box attack on XceptionNet

and MesoNet. Acc-C denotes the accuracy of the detector on

compressed adversarial videos.

pressed format as compared to that in the naive black-box

attack setting. When attacking MesoNet in robust black-

box setting, we do not observe a significant improvement

even though overall success rate is higher when using robust

transforms.

5. Evaluation on Sequence Based Detector

We consider the 3D CNN based detector described in

Section 3.1. The detector performs 3D convolution on a se-

quence of face-crops from 7 consecutive frames. We perform

our attacks on the pre-trained model checkpoint (trained on

DFDC [17] train set) released by the NTech-Lab team [15].

We evaluate our attacks on the DeepFake videos from the

DFDC public validation set which contains 200 Fake videos.

We report the accuracy of the detector on the 7-frame se-

quences from this test set in the first row of Table 8.

Similar to our attacks on frame-by-frame detectors, in

the white-box setting we back-propagate the loss through

the entire model to obtain gradients with respect to the in-

put frames for crafting the adversarial frames. While both

white-box and robust white-box attacks achieve 100% suc-

cess rate on uncompressed videos, the robust white-box at-

tack performs significantly better on the compressed videos

and is able to completely fool the detector. As compared

to frame-by-frame detectors, a higher magnitude of pertur-

bation is required to fool this sequence model in both the

white-box attacks. In the black-box attack setting, while

we achieve similar attack success rates on uncompressed

videos as the frame-by-frame detectors, the attack success

rate drops after compression. The robust black-box attack

helps improve robustness of adversarial perturbations to com-

pression as observed by higher success rates on compressed

videos (51.02% vs 24.43% SR-C).

3D CNN Sequence Model

Attack Type L1 SR - U SR - C Acc. - C%

None - - - 91.74

White-Box 0.037 100.00 77.67 22.33

Robust White-Box 0.059 100.00 100.00 0.00

Black-Box 0.061 87.99 24.43 75.57

Robust Black-Box 0.062 88.21 51.02 48.98

Table 8. Evaluation of different attacks on a sequence based de-

tector on the DFDC validation dataset. The first row indicates the

performance of the classifier on benign (non adversarial) videos.

6. Discussion and Conclusion

The intent of Deepfake generation can be malicious and

their detection is a security concern. Current works on DNN-

based Deepfake detection assume a non-adaptive adversary

whose aim is to fool the human-eye by generating a realistic

fake video. To use these detectors in practice, we argue that

it is essential to evaluate them against an adaptive adversary

who is aware of the defense being present and is intentionally

trying to fool the defense. In this paper, we show that the

current state-of-the-art methods for Deepfake detection can

be easily bypassed if the adversary has complete or even

partial knowledge of the detector. Therefore, there is a need

for developing provably robust detectors that are evaluated

under different attack scenarios and attacker capabilities.

In order to use DNN based classifiers as detectors, ensur-

ing robustness to adversarial examples is necessary but not

sufficient. A well-equipped attacker may devise other meth-

ods to by-pass the detector: For example, an attacker can

modify the training objective of the Deepfake generator to

include a loss term corresponding to the detector score. Clas-

sifiers trained in a supervised manner on existing Deepfake

generation methods, cannot be reliably secure against novel

Deepfake generation methods not seen during training. We

recommend approaches similar to Adversarial Training [22]

to train robust Deepfake detectors. That is, during training,

an adaptive adversary continues to generate novel Deepfakes

that can bypass the current state of the detector and the detec-

tor continues improving in order to detect the new Deepfakes.

In conclusion, we highlight that adversarial examples are a

practical concern for current neural network based Deepfake

detectors and therefore recommend future work on designing

provably robust Deepfake detectors.
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