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Abstract

We present a weakly supervised instance segmentation

algorithm based on deep community learning with mul-

tiple tasks. This task is formulated as a combination of

weakly supervised object detection and semantic segmenta-

tion, where individual objects of the same class are iden-

tified and segmented separately. We address this prob-

lem by designing a unified deep neural network architec-

ture, which has a positive feedback loop of object detec-

tion with bounding box regression, instance mask genera-

tion, instance segmentation, and feature extraction. Each

component of the network makes active interactions with

others to improve accuracy, and the end-to-end trainabil-

ity of our model makes our results more robust and re-

producible. The proposed algorithm achieves state-of-the-

art performance in the weakly supervised setting without

any additional training such as Fast R-CNN and Mask R-

CNN on the standard benchmark dataset. The implementa-

tion of our algorithm is available on the project webpage:

https://cv.snu.ac.kr/research/WSIS_CL.

1. Introduction

Object detection and semantic segmentation algorithms

have achieved great success in recent years thanks to the ad-

vent of large-scale datasets [12, 29] as well as the develop-

ment of deep learning technologies [15, 19, 31, 32]. How-

ever, most of existing image datasets have relatively simple

forms of annotations such as image-level class labels, while

many practical tasks require more sophisticated information

such as bounding boxes and areas corresponding to object

instances. Unfortunately, the acquisition of the complex la-

bels needs significant human efforts, and it is challenging to

construct a large-scale dataset containing such comprehen-

sive annotations.

Instead of standard supervised learning formulations [5,

8, 18, 19], we tackle a more challenging task, weakly super-

vised instance segmentation, which relies only on image-
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Figure 1. The proposed community learning framework for weakly

supervised instance segmentation. Our model is composed of ob-

ject detection module, instance mask generation module, instance

segmentation module and feature extractor, which constructs a

positive feedback loop within a community. It first identifies posi-

tive detection bounding boxes from the detection module and gen-

erates pseudo-ground-truths of instance segmentation using class

activation maps. The model is trained with multi-task loss of the

three components using the pseudo-ground-truths. The final seg-

mentation masks are obtained from the ensemble of outputs from

instance mask generation and segmentation modules.

level class labels for instance-wise segmentation. This task

shares critical limitations with many weakly supervised ob-

ject recognition problems; trained models typically focus

too much on discriminative parts of objects in the scene,

and, consequently, fail to identify whole object regions and

extract accurate object boundaries in a scene. Moreover,

there are additional challenges in handling two problems

jointly, weakly supervised object detection and semantic

segmentation; incomplete ground-truths incur noisy estima-

tion of labels in both tasks, which makes it difficult to take

advantage of the joint learning formulation. For example,

although object detection methods typically employ object

proposals to provide rough information of object location

and size, a naı̈ve application of instance segmentation mod-

ule to weakly supervised object detection results may not be

successful in practice due to noise in object proposals.

Our approach aims to realize the goal using a deep neural

network with multiple interacting task-specific components

that construct a positive feedback loop. The whole model
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is trained in an end-to-end manner and boosts performance

of individual modules, leading to outstanding segmentation

accuracy. We call such a learning concept community learn-

ing, and Figure 1 illustrates its application to weakly super-

vised instance segmentation. The community learning is

different from multi-task learning that attempts to achieve

multiple objectives in parallel without tight interaction be-

tween participating modules. The contributions of our work

are summarized below:

• We introduce a deep community learning framework

for weakly supervised instance segmentation, which is

based on an end-to-end trainable deep neural network

with active interactions between multiple tasks: object

detection, instance mask generation, and object seg-

mentation.

• We incorporate two empirically useful techniques for

object localization, class-agnostic bounding box re-

gression and segmentation proposal generation, which

are performed without full supervision.

• The proposed algorithm achieves substantially higher

performance than the existing weakly supervised ap-

proaches on the standard benchmark dataset without

post-processing.

The rest of the paper is organized as follows. We briefly

review related works in Section 2 and describe our algo-

rithm with community learning in Section 3. Section 4 ana-

lyzes the experimental results on a benchmark dataset.

2. Related Works

This section reviews existing weakly supervised algo-

rithms for object detection, semantic segmentation, and in-

stance segmentation.

2.1. Weakly Supervised Object Detection

Weakly Supervised Object Detection (WSOD) aims to

localize objects in a scene only with image-level class la-

bels. Most of existing methods formulate WSOD as Mul-

tiple Instance Learning (MIL) problems [11] and attempt

to learn detection models via extracting pseudo-ground-

truth labels [4, 35, 36, 42]. WSDDN [4] combines clas-

sification and localization tasks to identify object classes

and their locations in an input image. However, this tech-

nique is designed to find only a single object class and

instance conceptually and often fails to solve the prob-

lems involving multiple labels and objects. Various ap-

proaches [22, 34, 35, 36, 38] tackle this issue by incorpo-

rating additional components, but they are still prone to fo-

cus on the discriminative parts of objects instead of whole

object regions. Recently, there are several research inte-

grating semantic segmentation to improve detection perfor-

mance [10, 28, 33, 40]. WCCN [10] and TS2C [40] filter

out object proposals using semantic segmentation results,

but still have trouble in identifying spatially overlapped ob-

jects in the same class. Meanwhile, SDCN [28] utilizes se-

mantic segmentation result to refine pseudo-ground-truths.

WS-JDS [33] leverages weakly supervised semantic seg-

mentation module that estimates importance for object pro-

posals. Although the core idea is valuable and the segmen-

tation module improves detection performance, the instance

segmentation performance improvement is marginal com-

pared to simple box masking of its baselines [4, 22].

2.2. Weakly Supervised Semantic Segmentation

Weakly Supervised Semantic Segmentation (WSSS) is

a task to estimate pixel-level semantic labels in an im-

age based on image-level class labels only. Class Ac-

tivation Map (CAM) [43] is widely used for WSSS be-

cause it generates class-specific likelihood maps using the

supervision for image classification. SPN [24], one of

the early works that exploit CAM for WSSS, combines

CAM with superpixel segmentation result to extract accu-

rate class boundaries in an image. AffinityNet [2] propa-

gates the estimated class labels using semantic affinities be-

tween adjacent pixels. Ge et al. [14] employ a pretrained

object detector to obtain segmentation labels. Recent ap-

proaches [21, 24, 26, 27, 39, 41] often train their models

end-to-end. DSRG [21] and MCOF [39] propose iterative

refinement procedures starting from CAM. FickleNet [26]

performs stochastic feature selection in its convolutional

layers and captures the regularized shapes of objects.

2.3. Instance Segmentation

Instance segmentation can be regarded as a combination

of object localization and semantic segmentation, which

needs to identify individual object instances. There exist

several fully supervised approaches [5, 8, 18, 19]. Haydr et

al. [18] utilize Region Proposal Network (RPN) [32] to de-

tect individual instances and leverage Object Mask Network

(OMN) for segmentation. Mask R-CNN [19], Masklab [5]

and MNC [8] have similar procedures to predict their pixel-

level segmentation labels.

There have been recent works for Weakly Supervised

Instance Segmentation (WSIS) based on image-level class

labels only [1, 13, 25, 44, 45]. Peak Response Map

(PRM) [44] takes the peaks of an activation map as piv-

ots for individual instances and estimates the segmentation

mask of each object using the pivots. Instance Activation

Map (IAM) [45] selects pseudo-ground-truths out of pre-

computed segment proposals based on PRM to learn seg-

mentation networks. Label-PEnet [13] combines various

components with different functionalities to obtain the final

segmentation masks. However, it involves many duplicate

operations across the components and requires very com-

plex training pipeline. There are a few attempts to gener-
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ate pseudo-ground-truth segmentation maps based on weak

supervision and forward them to the well-established net-

work [19] for instance segmentation [1, 25]. To improve

accuracy, the algorithms often employ post-processing such

as MCG proposals [3] or denseCRF [23].

3. Proposed Algorithm

This section describes our community learning frame-

work based on an end-to-end trainable deep neural network

for weakly supervised instance segmentation.

3.1. Overview and Motivation

One of the most critical limitations in a naı̈ve combi-

nation of detection and segmentation networks for weakly

supervised instance segmentation is that the learned mod-

els often attend to small discriminative regions of objects

and fail to recover missing parts of target objects. This is

partly because segmentation networks rely on noisy detec-

tion results without proper interactions and the benefit of

the iterative label refinement procedure is often saturated in

the early stage due to the strong correlation between outputs

from two modules.

To alleviate this drawback, we propose a deep neural net-

work architecture that constructs a circular chain along with

the components and generates desirable instance detection

and segmentation results. The chain facilitates the interac-

tions along individual modules to extract useful informa-

tion. Specifically, the object detector generates proposal-

level pseudo-ground-truth labels. They are used to create

pseudo-ground-truth masks for instance segmentation mod-

ule, which estimates the final segmentation labels of in-

dividual proposals using the masks. These three network

components make up a community and collaborate to up-

date the weights of the backbone network for feature ex-

traction, which leads to regularized representations robust

to overfitting to poor local optima.

3.2. Network Architecture

Figure 2 presents the network architecture of our weakly

supervised object detection and segmentation algorithm. As

mentioned earlier, the proposed network consists of four

parts: feature extractor, object detector with bounding box

regressor, instance mask generator and instance segmen-

tation module. Our feature extraction network is made

of shared fully convolutional layers, where the feature of

each proposal is obtained from the Spatial Pyramid Pooling

(SPP) [20] layers on the shared feature map and fed to the

other modules.

3.2.1 Object Detection Module

For object detection, a 7 × 7 feature map is extracted from

the SPP layer for each object proposal and forwarded to the

last residual block (res5). Then, we pass these features to

both the detector and the regressor. Since this process is

compatible with any end-to-end trainable object detection

network based on weak supervision, we adopt one of the

most popular weakly supervised object detection networks,

referred to as OICR [36], which has three refinement lay-

ers after the base detector. For each image-level class la-

bel, we extract foreground proposals based on their esti-

mated scores corresponding to the label and apply a non-

maximum suppression (NMS) to reduce redundancy. Back-

ground proposals are randomly sampled from the proposals

that are overlap with foreground proposals below a thresh-

old. Among the foreground proposals, the one with the

highest score for each class is selected as a pseudo-ground-

truth bounding box.

Bounding box regression is typically conducted under

full supervision to refine the proposals corresponding to ob-

jects. However, learning a regressor in our problem is par-

ticularly challenging since it is prone to be biased by dis-

criminative parts of objects; such a characteristic is difficult

to control in a weakly supervised setting and is aggravated

in class-specific learning. Hence, unlike [15, 16, 32], we

propose a class-agnostic bounding box regressor based on

pseudo-ground-truths to avoid overly discriminative repre-

sentation learning and provide better regularization effect.

Note that a class-agnostic regressor has not been explored

actively yet since fully supervised models can exploit ac-

curate bounding box annotations and learning a regressor

with weak labels only is not common. If a proposal has

a higher IoU with its nearest pseudo-ground-truth proposal

than a threshold, the proposal and the pseudo-ground-truth

proposal are paired to learn the regressor.

3.2.2 Instance Mask Generation (IMG) Module

This module constructs pseudo-ground-truth masks for in-

stance segmentation using the proposal-level class labels

given by our object detector. It takes the feature of each

proposal from the SPP layers attached to multiple convolu-

tional layers as shown in Figure 2. Since the IMG module

utilizes hierarchical representations from different levels in

a backbone network, it can deal with multi-scale objects ef-

fectively.

We construct pseudo-ground-truth masks for individual

proposals by integrating the following additional features

into CAM [43]. First, we compute a background class ac-

tivation map by augmenting a channel corresponding to the

background class. This map is useful to distinguish objects

from the background. Second, instead of the Global Aver-

age Pooling (GAP) adopted in the standard CAM, we em-

ploy the weighted GAP to give more weights to the center

pixels within proposals. It computes a weighted average of

the input feature maps, where the weights are given by an
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Figure 2. The proposed network architecture for weakly supervised instance segmentation. Our end-to-end trainable network consists of

four parts: (a) feature extraction network computes the shared feature maps and provides proposal-level features with the other networks,

(b) object detection network identifies the location of objects and gives a pseudo-label of object class to each proposal, (c) instance mask

generation network constructs the class activation map for given proposals using predicted pseudo-labels from the detector, (d) instance

segmentation network predicts segmentation masks and is learned with the outputs of the above networks as pseudo-ground-truths.

isotropic Gaussian kernel. Third, we convert input features

f of the CAM module to log scale values, i.e., log(1 + f),
which penalizes excessively high peaks in the CAM and

leads to spatially regularized feature maps appropriate for

robust segmentation.

The output of the IMG module, denoted by M, is an av-

erage of three CAMs to which min-max normalizations [30]

are applied. For each selected proposal, the pseudo-ground-

truth mask M̃ ∈ R
(C+1)×T 2

for instance segmentation is

given by the following equation using the three CAMs, Mk

(k = 1, 2, 3),

M̃ = δ

[
1

3

3∑

k=1

Mk > ξ

]
, (1)

where Mk ∈ R
(C+1)×T 2

is the kth CAM whose size is T ×
T for all classes including background, δ[·] is an element-

wise indicator function, and ξ is a predefined threshold.

3.2.3 Instance Segmentation Module

For instance segmentation, the output of the res5 block is

upsampled to T × T activation maps and provided to four

convolutional layers along with ReLU layers and the final

segmentation output layer as illustrated in Figure 2. This

module learns a pixel-wise binary classification label for

each proposal based on the pseudo-ground-truth mask M̃
c,

provided by the IMG module. The predicted mask of each

proposal is a class-specific binary mask, where the class la-

bel c is determined by the detector. Note that our model is

compatible with any semantic segmentation network.

3.3. Losses

The overall loss function of our deep community learn-

ing framework is given by the sum of losses from the three

modules as

L = Ldet + Limg + Lseg, (2)

where Ldet, Limg, and Lseg denote detection loss, instance

mask generation loss, and instance segmentation loss, re-

spectively. The three terms interact with each other to train

the backbone network including the feature extractor in an

end-to-end manner.

3.3.1 Object Detection Loss

The object detection module is trained with the sum of clas-

sification loss Lcls, refinement loss Lrefine, and bounding box

regression loss Lreg. The features extracted from the indi-

vidual object proposals are given to the detection module

based on OICR [36]. Image classification loss Lcls is calcu-

lated by computing the cross-entropy between image-level

ground-truth class label y = (y1, . . . , yC)
T and its corre-

sponding prediction φ = (φ1, . . . , φC)
T, which is given by

Lcls = −
C∑

c=1

yc log φc + (1− yc) log(1− φc), (3)

where C is the number of classes in a dataset. As in the

original OICR, the pseudo-ground-truth of each object pro-

posal in the refinement layers is obtained from the outputs
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of their preceding layers, where the supervision of the first

refinement layer is provided by WSDDN [4]. The loss of

the kth refinement layer is computed by a weighted sum of

losses over all proposals as

Lk
refine = −

1

|R|

|R|∑

r=1

C+1∑

c=1

wk
r y

k
cr log x

k
cr, (4)

where xk
cr denotes a score of the rth proposal with respect to

class c in the kth refinement layer, wk
r is a proposal weight

obtained from the prediction score in the preceding refine-

ment layer, and |R| is the number of proposals. In the re-

finement loss function, there are C + 1 classes because we

also consider background class.

Regression loss Lreg employs smooth ℓ1-norm between

a proposal and its matching pseudo-ground-truth, following

the bounding box regression literature [15, 32]. The regres-

sion loss is defined as follows:

Lreg =
1

|R|

|R|∑

r=1

|G|∑

j=1

qrj
∑

k∈{x,y,w,h}

smoothℓ1(trjk − vrk),

(5)

where G is a set of pseudo-ground-truths, qrj is an indicator

variable denoting whether the rth proposal is matched with

the jth pseudo-ground-truth, vrk is a predicted bounding

box regression offset of the kth coordinate for rth proposal

and trjk is the desirable offset parameter of the kth coor-

dinate between the rth proposal and the jth pseudo-ground-

truth as in R-CNN [16].

The detection loss Ldet is the sum of image classifica-

tion loss, bounding box regression loss, and K refinement

losses, which is given by

Ldet = Lcls + Lreg +
K∑

k=1

Lk
refine, (6)

where K = 3 in our implementation.

3.3.2 Instance Mask Generation Loss

For training CAMs in the IMG module, we adopt average

classification scores from three refinement branches of our

detection network. The loss function of the kth CAM net-

work, denoted by Lk
cam, is given by a binary cross entropy

loss as

Lk
cam = −

1

|R|

|R|∑

r=1

C+1∑

c=1

ỹrc log p
k
rc + (1− ỹrc) log(1− pkrc),

(7)

where ỹrc is an one-hot encoded pseudo-label from detec-

tion branch of the rth proposal for class c, and pkrc is a soft-

max score of the same proposal for the same class obtained

by the weighted GAP from the last convolutional layer. The

instance mask generation loss is the sum of all the CAM

losses as shown in the following equation:

Limg =
3∑

k=1

Lk
cam. (8)

3.3.3 Instance Segmentation Loss

The loss in the segmentation network is obtained by com-

paring the network outputs with the pseudo-ground-truth M̃

using a pixel-wise binary cross entropy loss for each class,

which is given by

Lseg = −
1

T 2

|R|∑

r

C+1∑

c

∑

(i,j)∈T×T

mij
rc log s

ij
rc (9)

+ (1−mij
rc) log

(
1− sijrc

)
,

where mij
rc means a binary element at (i, j) of M̃ for the

rth proposal, and sijrc is the output value of the segmentation

network, S ∈ R
|R|×(C+1)×T 2

, at location (i, j) of the rth

proposal.

3.4. Inference

Our model sequentially predicts object detection and in-

stance segmentation for each proposal in a given image. For

object detection, we use the average scores of three refine-

ment branches in the object detection module. Each re-

gressed proposal is labeled as the class that corresponds to

the maximum score. We apply a non-maximum suppression

with IoU threshold 0.3 to the proposals. The survived pro-

posals are regarded as detected objects and used to estimate

pseudo-labels for instance segmentation.

For instance segmentation, we select the foreground ac-

tivation map of the identified class c, Mc, from the IMG

module and the corresponding segmentation score map, Sc,

from instance segmentation module for each detected ob-

ject. The final instance segmentation label is given by the

ensemble of two results,

O
c = δ

[
M

c + S
c

2
> ξ

]
, (10)

where O
c is a binary segmentation mask for detected class

c, δ[·] is an element-wise indicator function, and ξ is a

threshold identical used in Eq. (1). For post-processing, we

utilize Multiscale Combinatorial Grouping (MCG) propos-

als [3] as used in PRM [44]. Each instance segmentation

mask is substituted as a max overlap MCG proposal. Since

the MCG proposal is a group of superpixels, it contains

boundary information. Hence, if a segmentation output cov-

ers overall shape well, MCG proposal is greatly helpful to

catch details of an object.
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Table 1. Instance segmentation results on the PASCAL VOC 2012 segmentation val set with two different types of supervisions (I: image-

level class label, C: object count). The numbers in red and blue denote the best and the second best scores without Mask R-CNN re-training,

respectively.

Method Supervision Post-procesing mAP0.25 mAP0.5 mAP0.75 ABO

WISE [25] w/ Mask R-CNN I X 49.2 41.7 23.7 55.2

IRN [1] w/ Mask R-CNN I X - 46.7 - -

Cholakkal et al. [7] I + C X 48.5 30.2 14.4 44.3

PRM [44] I X 44.3 26.8 9.0 37.6

IAM [45] I X 45.9 28.3 11.9 41.9

Label-PEnet [13] I X 49.2 30.2 12.9 41.4

Ours
I 57.0 35.9 5.8 43.8

I X 56.6 38.1 12.3 48.2

4. Experiments

This section describes our setting for training and evalu-

ation and presents the experimental results of our algorithm

in comparison to the existing methods. We also analyze

various aspects of the proposed network.

4.1. Training

We use Selective Search [37] for generating bounding

box proposals. All fully connected layers in the detec-

tion and the IMG modules are initialized randomly using a

Gaussian distribution (0, 0.012). The learning rate is 0.001
at the beginning and reduced to 0.0001 after 90K iterations.

The hyper-parameter in the weight decay term is 0.0005, the

batch size is 2, and the total training iteration is 120K. We

use 5 image scales of {480, 576, 688, 864, 1000}, which are

based on the shorter size of an image, for data augmentation

and ensemble in training and testing. The NMS threshold

for selecting foreground proposals is 0.3 and ξ in Eq (1)

is set to 0.4 following MNC [8]. For regression, a pro-

posal is associated with a pseudo-ground-truth if the IoU is

larger than 0.6. The output size T of the IMG and instance

segmentation modules is 28. Our model is implemented

on PyTorch and the experiments are conducted on a single

NVIDIA Titan XP GPU.

4.2. Datasets and Evaluation Metrics

We use PASCAL VOC 2012 segmentation dataset [12] to

evaluate our algorithm. The dataset is composed of 1,464,

1,449, and 1,456 images for training, validation, and test-

ing, respectively, for 20 object classes. We use the stan-

dard augmented training set (trainaug) with 10,582 images

to learn our network, following the prior segmentation re-

search [1, 6, 7, 13, 17, 44, 45]. In our weakly supervised

learning scenario, we only use image-level class labels to

train the model. Detection and instance segmentation accu-

racies are measured on PASCAL VOC 2012 segmentation

validation (val) set.

We employ the standard mean average precision (mAP)

Table 2. Instance segmentation results on the PASCAL VOC 2012

segmentation train set. [1, 25] report results without Mask R-CNN

obtained from their original papers.

WISE [25] IRN [1] Ours

mAP0.5 25.8 37.7 39.2

to evaluate object detection performance, where a bounding

box is regarded as a correct detection if it overlaps with a

ground-truth more than a threshold, i.e. IoU > 0.5. Cor-

Loc [9] is also used to evaluate the localization accuracy

on the trainaug dataset. For instance segmentation task,

we evaluate performance of an algorithm using mAPs at

IoU thresholds 0.25, 0.5 and 0.75. We also use Average

Best Overlap (ABO) to present overall instance segmenta-

tion performance of our model.

4.3. Comparison with Other Algorithms

We compare our algorithm with existing weakly super-

vised instance segmentation approaches [7, 13, 44, 45]. Ta-

ble 1 shows that our algorithm generally outperforms the

prior arts even without post-processing. Note that our post-

processing using MCG proposals [3] improves mAP at high

thresholds and ABO significantly, and leads to outstanding

performance in terms of both mAP and ABO after all. We

believe that such large gaps come from the effective regu-

larization given by our community learning. The accuracy

of our model is not as good as the method given by Mask

R-CNN re-training [1, 25], but direct comparison is not fair

due to the retraining issue. Table 2 illustrates that our model

outperforms the methods without re-training on train split.

4.4. Ablation Study

We discuss the contribution of each component in the

network and the effectiveness of our training strategy. We

also compare two different regression strategies—class-

agnostic vs. class-specific—using detection scores. Note

that we present the results without post-processing for the
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Table 3. Contribution of individual components integrated into our

algorithm study. The evaluation is performed on PASCAL VOC

2012 segmentation val set for mAP and trainaug set for CorLoc (*

indicates that detection bounding boxes are used as segmentation

results as well).

Architecture
Instance

Segmentation

Object

Detection

mAP0.5 mAP CorLoc

Detector 18.8∗ 45.3 63.6

Detector + IMG 32.8 48.6 66.3

Detector + IMG + IS 33.7 49.2 66.8

Detector + REG + IMG + IS 35.9 53.2 70.8

Table 4. Accuracy of the variants of IMG module with background

class (BG), weighted GAP (wGAP), and feature smoothing (FS),

based on the ResNet50 backbone without REG

BG BG + wGAP BG + FS wGAP + FS All

mAP0.5 28.8 30.0 31.8 27.4 33.7

ablation study to verify the contribution of each component

clearly.

4.4.1 Network Components

We analyze the effectiveness of individual modules for in-

stance segmentation and object detection. For comparisons,

we measure mAP0.5 for instance segmentation and mAP for

object detection on PASCAL VOC 2012 segmentation val

set while computing CorLoc on the trainaug set. Note that

the instance segmentation accuracy of the detection-only

model is given by using detected bounding boxes as seg-

mentation masks. All models are trained on PASCAL VOC

2012 segmentation trainaug set.

Table 3 presents that the IMG and Instance Segmenta-

tion (IS) modules are particularly helpful to improve accu-

racy for both tasks. By adding the two components, our

model achieves accuracy gain in detection by 3.9% and

3.2% points in terms of mAP and CorLoc, respectively,

compared to the baseline detector. Additionally, bounding

box regression (REG) enhances performance by generating

better pseudo-ground-truths.

4.4.2 IMG module

We further investigate the components in the IMG module

and summarize the results in Table 4. All results are from

the experiments without bounding box regression to demon-

strate the impact of individual components clearly. All the

three tested components make substantial contribution for

performance improvement. The background class activa-

tion map models background likelihood within a bound-

ing box explicitly and facilitates the comparison with fore-

Table 5. Comparison our model with a combination of OICR and

AffinityNet on PASCAL VOC 2012 segmentation val set

Model
OICR

+ AffinityNet

OICR (ResNet50)

+ AffinityNet
Ours

mAP0.5 27.3 33.3 35.9

Table 6. Comparison of class-agnostic regressor and class-specific

regressor into our algorithm in terms of detection performance.

The evaluation is performed on PASCAL VOC 2012 segmentation

val set for mAP and trainaug set for CorLoc.

Model mAP CorLoc

Ours w/o REG 49.2 66.8

Ours (class-specific) 50.4 68.4

Ours (class-agnostic) 53.2 70.1

ground counterparts. The feature smoothing regularizes ex-

cessively discriminative activations in the inputs to CAM

module while the weighted GAP pays more attention to the

proper region for segmentation.

4.4.3 Comparison to a Simple Algorithm Combination

To demonstrate the benefit of our unified framework, we

compare the proposed algorithm with a straightforward

combination of weakly supervised object detection and se-

mantic segmentation methods. Table 5 presents the result

from a combination of weakly supervised object detection

algorithm, OICR [36], and a weakly supervised semantic

segmentation algorithm, AffinityNet [2]. Note that both

OICR and AffinityNet are competitive approaches in their

target tasks. We train the two models independently and

combine their results by providing a segmentation label map

using AffinityNet for each detection result obtained from

OICR. The proposed algorithm based on a unified end-to-

end training outperforms the simple combination of two

separate modules even without post-processing.

4.4.4 Comparison to Class-Specific Box Regressor

We compare the results from the class-agnostic and class-

specific bounding box regressors in terms of mAP and Cor-

Loc. Table 6 presents that bounding box regressors turn out

to be learned effectively despite incomplete supervision. It

further shows that the class-agnostic bounding box regres-

sor clearly outperforms the class-specific version. We be-

lieve that this is partly because sharing a regressor over all

classes reduces the bias observed in individual classes and

regularizes overly discriminative representations.

4.5. Qualitative Results

Figure 3 shows instance segmentation results from our

model after post-processing and identified bounding boxes
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Figure 3. Instance segmentation results on PASCAL VOC 2012 segmentation val set. Green rectangle is a detected object bounding box.

Figure 4. Qualitative results of detection on PASCAL VOC 2012 segmentation val set. Green rectangle is generated by our model and

yellow one indicates the output of detector-only model (OICR [36] based on ResNet50).

on PASCAL VOC 2012 segmentation val set. Refer to our

supplementary material for more details. Our model suc-

cessfully segments whole regions of objects and discrimi-

nates each object in a same class within an input image via

predicted object proposals. Figure 4 compares detection re-

sults from our full model and a detector-only model, OICR

with the ResNet50 backbone network, on the same dataset.

Our model is more robust to localize a whole object since

the features are better regularized by joint learning of Ob-

ject Detection, IMG, and Instance Segmentation modules.

5. Conclusion

We presented a unified end-to-end deep neural network

for weakly supervised instance segmentation via commu-

nity learning. Our framework trains three subnetworks

jointly with a shared feature extractor, which performs ob-

ject detection with bounding box regression, instance mask

generation, and instance segmentation. These components

interact with each other closely and form a positive feed-

back loop with cross-regularization for improving quality

of individual tasks. Our class-agnostic bounding box re-

gressor successfully regularizes object detectors even with

weak supervisions only while the post-processing based on

MCG mask proposals improves accuracy substantially.

The proposed algorithm outperforms the previous state-

of-the-art weakly supervised instance segmentation meth-

ods and the weakly supervised object detection baseline on

PASCAL VOC 2012 with a simple segmentation module.

Since our framework does not rely on particular network

architectures for object detection and instance segmenta-

tion modules, using better detector or segmentation network

would improve the performance of our framework.
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