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Abstract

Weight Normalization (WN) is an essential building

block in deep learning. However, even state-of-the-art WN

methods need to be combined with activation normalization

methods, such as Batch Normalization (BN), to provide the

same classification accuracy as BN. In this paper, we aim to

circumvent this issue with a weight normalization approach

that can be used on its own to provide a classification ac-

curacy competitive to BN. Our approach mimics three fun-

damental properties of BN, namely, keeping the norm of the

weights constant, setting the mean of the weights to zero,

and simulating stochastic perturbations due to batch sam-

pling bias. Unlike most of the existing WN methods that

rely on “reparametrization”, our method directly optimizes

the weights with proper constraints and thus can circum-

vent its serious drawback, gradient explosion. Moreover,

we propose an efficient and easy-to-implement algorithm to

solve our constrained optimization problem without sacri-

ficing its benefits. The results of classification experiments

on three popular benchmark datasets demonstrate that our

method is highly competitive with or even better than the

state-of-the-art normalization methods.

1. Introduction

Deep neural networks have become a standard tool in

many pattern recognition tasks. A considerable amount

of effort has revealed the essential ingredients for success-

ful deep neural network training. Batch Normalization

(BN) [12] is currently a representative building block in

general deep neural network training to improve the training

stability and final generalization performance. With its suc-

cess, significant shortcomings of BN (e.g., performance is

heavily dependent on mini-batch size [15]) have also been

revealed, and a number of extensions in this vein have been

proposed [32, 2, 30, 21, 19]. In contrast to these “activation

normalization” methods, another approach called Weight

Normalization (WN) has also been explored [24, 1, 10, 22].

It aims to achieve the same effect as activation normaliza-

tion by normalizing only the weights of the network instead

of the activation values. The advantage of WN is that the

normalization is input- and output-independent, which nat-

urally avoids some of the significant problems plaguing BN,

e.g., dependence on mini-batch size. Moreover, normalized

weights are precomputable, which means that WN has the

potential to provide a simpler and more efficient scheme. In

this work, we investigate WN for stable and effective train-

ing of deep neural networks for classification tasks.

Stemming from the pioneering work by [24, 1], several

WN methods have been proposed [10, 22]. The most com-

mon approach is to “reparameterize” each weight vector in

the network as a normalized version of another parameter

vector and optimize the parameter vector instead of the orig-

inal weight vector. For example, Salimans et al. [24] repa-

rameterize a weight vector using two types of parameters

representing its length and direction, respectively. Weight

Standardization (WS) [22] models each weight vector as the

result of the standard normalization of the parameter vector.

However, the issue with these methods is that their perfor-

mance is still lower than BN [24, 22]. To achieve the same

level of accuracy, they need to be combined with activation

normalization methods such as BN or Group Normalization

(GN) [32]. Consequently, the network no longer enjoys the

potential benefit of the framework of WN, namely, being

able to avoid additional computations for inference.

In this work, we propose a weight normalization method

that can solely achieve the same performance level as BN.

The processing of BN is characterized by three fundamen-

tal properties: making the variance of the activation val-

ues constant, making the mean of the activation values

zero, and sampling mini-batches stochastically. Our method

aims to reproduce these properties as much as possible

within the framework of WN. Some existing WN meth-

ods [24, 1, 10, 22] have also attempted to reproduce these

properties (in part) based on the reparameterization ap-

proach. However, reparameterization has a serious draw-

back in that the variance of the unnormalized parameter

vectors appears in the gradients, resulting in a gradient ex-
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plosion problem. We argue that this is one of the main rea-

sons the existing WN methods perform unsatisfactorily un-

less combined with activation normalization methods. As

an alternative, we formulate an optimization problem con-

strained to satisfy the above BN properties and thereby

avoid the gradient explosion by directly obtaining normal-

ized weights, without relying on reparameterization. We

propose a simple algorithm that can efficiently solve the

constrained optimization problem. Experiments in classifi-

cation tasks using three popular benchmark datasets demon-

strate that our method can achieve highly competitive or

even better performance compared to the state-of-the-art

normalization methods.

2. Related Works

In machine learning, it has long been known that nor-

malization of input data contributes to improving the stabil-

ity, speed, and final accuracy of the training process. The

impact of normalization is also prominent in deep learn-

ing, which often uses unbounded activation functions (e.g.,

ReLU), and its importance has been widely recognized

since its dawn. Early examples like Local Contrast Nor-

malization (LCN) [13] and Local Response Normalization

(LRN) [16] aim to extract stable features by normalizing the

contrast of the input image (or feature map) locally.

BN [12] is the first example of trainable normalization

layers that normalizes the layer output in a global sense. De-

spite excellent performance on a variety of tasks, BN is not

always desirable. First, it is known that when the batch size

is small, the batch statistics used for normalization become

unstable and cause serious performance degradation [32].

A more universal property is that there is no mini-batch

processing during inference. There is always a stochastic

gap between the models during training and inference, so

while they might match asymptotically they never match

perfectly. Second, the reason for the success has not been

fully clarified [25]. While many studies have analyzed the

reasons BN contributes to training stability, there are still

different viewpoints on this, such as 1) suppressing inter-

nal covariate shifts [12], 2) preventing the mean and vari-

ance of the network output from increasing exponentially

as the layers get deeper [3], and 3) preventing the vanish-

ing/exploding gradient problem during training through the

suppression of Lipschitz constant [25].

Motivated by these weaknesses and insights, several nor-

malization methods have been proposed. The majority of

these can be grouped into two approaches, activation nor-

malization and weight normalization (WN).

Activation Normalization. Activation normalization was

originally designed to suppress the adverse effect of the in-

ternal covariate shift [12]. The difference between the ex-

isting methods mainly lies in which dimensions are nor-

malized (batch, channel, height, and width) and at what

granularity. For example, Layer Normalization (LN) [2]

normalizes the set of activations along the channel direc-

tion. Instance Normalization (IN) [30] resembles LN but

normalizes the input across each channel in each training

sample. In Group Normalization (GN) [32], the normal-

ization is performed over groups of channels to address the

issue induced by the small batch size. To deal with the is-

sue of small batches, Batch Renormalization (BRN) [11]

has also been proposed. Other variants [26] or their combi-

nations [21, 19, 36, 21] have also been explored. Unfortu-

nately, these methods often do not perform as well as BN.

Furthermore, as with BN, normalization depends on the in-

put and output, which requires additional computations for

normalization during inference.

Weight Normalization. Instead of normalizing the layer

input/output, a few recent methods aim to achieve similar

effects by normalizing only the weights of the network. In

the original weight normalization method presented by Sal-

imans et al. [24], each weight is decomposed into a length

and a vector and is updated during optimization on the ba-

sis of both of these gradients. In Weight Standardization

(WS) [22] and Centered Weight Normalization [10], the

weight is renormalized by the mean and the variance of

each weight. WN is generally much simpler than activa-

tion normalization, as there is no additional computation for

normalization, even during inference, and there is no disad-

vantage in terms of depending on the batch size or mini-

batch statistics. However, it is widely known that the per-

formance of WN alone is inferior to that of BN, and it can

only achieve accuracy comparable to BN when combined

with some activation normalization method. For example,

WN can only achieve the same level of accuracy as BN

when combined with mean-only batch normalization [24].

In other words, WS needs to be combined with GN to be

competitive with BN [22].

Unlike existing WN methods, the method proposed in

this paper does not require any activation normalization

method to compete with BN. Our proposed method is, to the

best of our knowledge, the first that achieves the same level

of accuracy as BN in classification tasks without a combi-

nation of activation normalization methods.

3. Proposed Method

We begin our discussion with the standard learning pro-

cess of deep convolutional neural networks. Let us de-

note a convolution operation performed in a single layer by

y = Wx, where x, y, and W are the input, output, and

trainable weights of a layer, respectively. Without loss of

generality, we assume that the bias is zero. The weights

W are typically learned by optimizing some loss function
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L, e.g., softmax cross entropy, with respect to them by us-

ing some gradient descent method, e.g., Stochastic Gradient

Descent (SGD).

min
{W(l)}

L({W(l)}), ∀l. (1)

where W(l) is the weights of the l-th layer.

In this paper, we aim to normalize the weight parame-

ters for stable and effective training. To this end, instead of

solving Eq. (1), we obtain the normalized weights directly

by solving the following constrained optimization problem.

min
{W(l)}

L({W(l)}), ∀l

s.t. ‖w(l)
i ‖22 = c(l),1⊤w

(l)
i = 0, ∀i, l, (2)

where w
(l)
i is a weight vector corresponding to i-th output

in l-th layer and 1 is the all-one vector. The two constraints

which we call sphere constraint and centralization con-

straint are imposed to imitate the fundamental property

of BN: the former keeps the weight of the norm constant,

and the latter constrains the weights to be centered. We

also introduce another concept, noise injection, to repli-

cate the gap between testing and training caused by stochas-

tic mini-batch sampling. As discussed later in Section 3.5,

one key benefit of our optimization-based approach is that

it does not suffer from the gradient explosion problem, un-

like existing WN methods based on the reparameterization

approach [24, 1, 10, 22].

Various constraints for weight optimization W have

been proposed to date. For example, weight decay is an

implementation of a ridge regularization and is widely used

to improve generalization performance. Spectral Normal-

ization [20] is another example proposed to stabilize the

training of GANs. In addition to these, there are several

other methods aimed at learning unbiased [34] or normal-

ized weights [9] to improve the stability of training. Our

method is designed to mimic BN and therefore uses a dif-

ferent set of constraints from these methods.

3.1. Sphere Constraint

It is widely known that keeping the distribution of the

activation values fixed before and after a layer is effective

in stabilizing learning; in BN, the efficient stabilization is

achieved by controlling the distribution statistics of the in-

put, especially the first and second moments [12]. More-

over, it is known that the variance of the output y is equal to

the norm of the weights ‖w(l)
i ‖22, under the assumption that

x is whitened [24]. Hence, applying BN to y is equivalent

to normalizing the weights. Following these observations,

we impose the first constraint named Sphere Constraint to

strictly control the second moment of the weights W(l) for

each layer to a constant value c(l).

While c(l) can be an arbitrary bounded constant, it is pos-

sible to ensure the uniformity of the distributions over mul-

tiple layers under certain assumptions [7]. Specifically, let

us assume that W(l)’s are mutually independent, x(l)’s are

also mutually independent, and W(l) and x(l) are indepen-

dent of each other. As given in [7], under these assump-

tions, the variance of the activation of the l-th layer y(l) can

be written as a function of that of y(l−1) as

Var[y(l)] =
nl

2
Var[w(l)]Var[y(l−1)], (3)

where nl is the number of input dimensions of the l-th layer.

In order to equalize the variance of these two outputs, a suf-

ficient condition is

nl

2
Var[w(l)] = 1, (4)

which can be satisfied by setting the constant as c(l) = 2, ∀l.
Unless otherwise stated, we will use this setting hereafter.

3.2. Centralization Constraint

The second constraint, named Centralization Constraint,

is introduced to suppress the harmful effects stemming from

the bias of the activation values by controlling the first mo-

ment of the weight distribution. The presence of the bias of

the activation values is known to cause an undesirable in-

crease in the range of the activation values as the layers get

deeper, which also has an undesirable effect on the gradient

values [24, 10]. By making the average of the weights zero,

i.e., w⊤1 = 0, we have

w⊤

(

x− 1

n
(1⊤x)1

)

= w⊤x− 1

n
(1⊤x)w⊤1

= w⊤x. (5)

Here, 1
n
(1⊤x)1 gives the mean of the input x. This sug-

gests that by introducing the Centralization Constraint on

the weights, we can make the output activation values unbi-

ased even if the input is biased.

These two constraints, Sphere Constraint and Centraliza-

tion Constraint, require that the variance and the mean be

the same in all the layers, which may reduce the represen-

tation ability of the entire network. In BN (and other acti-

vation normalization methods like GN), new scale and bias

parameters are introduced and learned to restore the repre-

sentation ability deteriorated by the normalization. Follow-

ing this idea, we introduce two parameters for improving

the representation ability. Formally, the l-th layer’s output

value y
(l)
i is given by

yi = γ
(l)
i xi + β

(l)
i , (6)

where γ
(l)
i and β

(l)
i are the scale and bias parameters, re-

spectively.
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Figure 1: An illustration of our projected gradient descent.

The solution is updated along the zero-mean gradient direc-

tion and then normalized to satisfy the constraint.

3.3. Noise injection

During the training, BN uses the mini-batch statistics

(mean and standard deviation) to normalize the activation

values. These are sample statistics for the entire training

data and vary randomly, depending on the mini-batch sam-

ples. In contrast, in the case of WN, such randomness

never exist because the normalization does not depend on

the mini-batch. In general, it is known that introducing

reasonable randomness often improves the final generaliza-

tion performance of a network. Typical examples include

dropout, data augmentation, and, more recently, NoisyStu-

dent [28]. Even in BN, this discrepancy due to the above

randomness is believed to impact performance [27].

Assuming that the randomness of BN is a factor in im-

proving performance, we inject random noise into our WN

training to mimic the behavior of BN. Specifically, instead

of using Eq. (6), we compute the output yi during the train-

ing as

yi = (1 + ni)γixi + βi, (7)

where ni ∼ N(0, σ2
l ) is the noise injected to simulate the

randomness from the mini-batch statistics of BN. A simple

selection of σ2
l is to use a certain constant σ uniformly in

every layer. However, we find that linearly increasing σl

in the number of layers L achieves better performance for

residual-type networks (e.g., ResNet):

σl =
l

L
σ. (8)

We use σl = σ for non-residual-type networks.

3.4. Optimization

For solving our problem in Eq. (2), we utilize projected

gradient descent through solving the following constrained

Algorithm 1 Weight update rules of our method

Input: initial weights of a neural network w(1), learning

rate α,

for t = 1 to T do

# Compute forward and backward and obtain the gra-

dient ∇wL:

# update with zero-mean gradient:

w̃← w(t) − α
(

∇wL− (1⊤∇wL)1/n
)

# update with norm-constrained weight:

w(t+1) ←
√
c(l)w̃/‖w̃‖

end for

optimization problem:

w(t+1) =min
w

∥

∥

∥
w −

(

w(t) − α∇wL(w)
)∥

∥

∥

2

2

s.t. ‖w‖22 = c,1⊤w = 0, (9)

where α is the learning rate. For simplicity, we drop the

subscripts l and i. The Lagrangian function associated with

Eq. (9) is

∥

∥

∥
w −

(

w(t) − α∇wL(w)
)
∥

∥

∥

2

2
+λ1

(

‖w‖22 − c
)

+λ21
⊤w,

(10)

where λ1 and λ2 are Lagrange multipliers. From the deriva-

tive of Eq. (10), we can obtain the solution of the optimiza-

tion problem in Eq. (9):

w =
√
c

w(t) − α
(

∇wL(w)− (1⊤∇wL(w))1/n
)

∥

∥w(t) − α
(

∇wL(w)− (1⊤∇wL(w))1/n
)∥

∥

,

(11)

where n is the number of input dimensions. The update rule

of w by gradient decent is

w(t+1) = (1−β)w(t)−α′
(

∇wL(w)− (1⊤∇wL(w))1/n
)

,
(12)

where coefficients β and α′ are given by

β = 1− 1

‖w(t) − α(∇wL(w)− (1⊤∇wL(w))1)/n‖
,

(13)

α′ =
α

‖w(t) − α(∇wL(w)− (1⊤∇wL(w))1)/n‖
. (14)

The proposed optimization in Eq. (12) can be easily im-

plemented by a two-step approach in popular deep learning

libraries such as PyTorch and TensorFlow. Figure 1 shows

the image of our projected gradient descent. First, the pa-

rameters are updated along the centralized gradient direc-

tion. Then we obtain updated parameters by normalizing

weights to satisfy the norm constraint. This is as efficient as

the standard SGD because it requires only mean subtraction

and scaling. The pseudo-code is shown in Algorithm 1.
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Table 1: Comparison of top-1 error on the CIFAR-10 and CIFAR-100 datasets with various network architectures. The best

and second-best results are denoted in bold and italics, respectively.

Augmentation Network Ours BN GN WS+BN WS+GN

CIFAR-10

Standard

CNN 5.50 5.36 6.45 5.43 5.71

ResNet-110 5.65 5.68 6.34 5.52 6.69

WideResNet-28-10 4.19 3.70 5.01 4.78 4.67

FastAA

CNN 4.18 4.40 4.93 4.65 4.37

ResNet-110 4.26 4.11 6.76 3.92 5.85

WideResNet-28-10 2.59 2.64 3.68 3.42 3.29

CIFAR-100

Standard

CNN 24.26 25.11 29.28 25.51 26.27

ResNet-110 25.16 26.28 29.75 25.55 28.51

WideResNet-28-10 18.31 18.48 22.63 19.82 22.62

FastAA

CNN 21.03 22.23 25.34 21.87 22.31

ResNet-110 21.87 21.84 28.90 22.10 27.83

WideResNet-28-10 16.40 16.57 19.96 19.18 19.41

3.5. Discussion: Gradient explosion problem
caused by reparameterization

We discuss the weakness of the weight normalization

approaches based on reparametrization [24, 1, 10, 22]. In

existing WN methods based on reparameterization, the

weights are modeled as normalized versions of some pa-

rameters, making the output values aligned during the for-

ward propagation. For example, WS1 replaces the convo-

lution operation y = Wx with y = Ŵx, where Ŵ =
[ŵ⊤

1 , · · · , ŵ⊤
no
] are reparametrized weights as a function of

W, specifically defined as

ŵi =
wi − µwi

σwi

, (15)

where µwi
and σwi

are the mean and the standard deviation

of a weight vector given by

µwi
=

1

ni

w⊤
i 1, (16)

σwi
=

√

√

√

√

1

ni

ni
∑

j

(wij − µwi
)2. (17)

By this reparameterization, the output y for the forward

propagation becomes scaling-invariant [28]; even if the

weight W is scaled by the factor α as W ←− αW, the

output y is invariant by using Ŵ. In general, however, this

possibly induces the gradient explosion problem, i.e., the

gradient of the loss function may grow extremely large in

the backpropagation step. The gradient of the loss function

1We pick up WS [22] as an example here, but the same can be applied

to other methods based on reparameterization (e.g., [24, 1, 10]).

L is formally given by

∇wi
L = ∇ẇi

L − 1

ni

(1⊤∇ẇi
L)1, (18)

∇ẇi
L =

1

σwi

(

∇ŵi
L − 1

ni

〈ŵi,∇ŵi
L〉ŵi

)

, (19)

where < >̇ denotes the dot product. The update rule by

gradient descent with weight decay parameter β is

w(t+1) = (1−β)w(t)−α′
(

∇ẇL(w)− (1⊤∇ẇL(w))1/ni

)

(20)

As shown in Eq. (19), the scale of the gradient magnitude

is controlled by the standard deviation of the unnormalized

weights σwi
, which means that the gradient∇WL becomes

dramatically large when σwi
becomes small during train-

ing. This is a reason why the existing WN methods need

to be coupled with activation normalization methods like

BN or GN to reduce the dependence of the gradients on the

scale of the weights.

In contrast, our approach constrains the norm of the

weights w and updates them without dividing the gradient

∇WL by the standard deviation σwi
(see Eq. (12)), which

means it can naturally avoid the gradient explosion problem

and achieve stable training.

4. Experiments

In this section, we empirically investigate the perfor-

mance of our proposed method in image classification and

3D point cloud classification.

4.1. Results on CIFAR10/CIFAR100

We first evaluate our proposed method with the CIFAR-

10 and CIFAR-100 datasets. Both CIFAR-10 and CIFAR-
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Table 2: Results for small batch size training on the CIFAR-10 and CIFAR-100 datasets. WideResNet-28-10 and FastAu-

toAugment are used as the base network and data augmentation, respectively. B denotes the batch size.

Ours BN

B = 4 B = 16 B = 128 B = 4 B = 16 B = 128

CIFAR-10 2.65 2.64 2.59 3.08 2.80 2.64

CIFAR-100 15.12 14.80 16.40 17.98 16.37 16.57

100 consist of 32× 32 RGB color images, with 50,000 im-

ages for training and 10,000 images for testing. We com-

pare our method with major activation and weight normal-

ization methods, specifically, BN [12], GN [32], WS with

BN (WS+BN) [22], and WS with GN (WS+GN) [22].

4.1.1 Setup

We used all 50,000 training images for training the networks

of three architectures from scratch: 9-layer CNN, ResNet-

110 [8], and WideResNet-28-10 [35]. The configuration of

the 9-layer CNN is: Conv(3,64) - Conv(3,64) - Conv(3,64)

- AvgPool(2) - Conv(3,128) - Conv(3,128) - Conv(3,128)

- AvgPool(2) - Conv(3,256) - Conv(3,256) - Conv(3,256) -

GAP - Linear, where Conv(k,c) denotes a convolution-BN-

ReLU layer with the kernel size k×k and output channel c,
AvgPool(2) denotes average pooling with stride 2, and GAP

is global average pooling. Our method is implemented by

replacing all BN layers with scale and bias layers Eq. (6).

In additio to the standard data augmentation strategy us-

ing mirroring and random cropping, we also test a more

advanced data augmentation strategy using Fast AutoAug-

ment [17] coupled with Cutout [4] (FastAA) for practical

performance evaluation.

Except for the small batch size training discussed in Sec-

tion 4.1.3, all DNN models are trained for 200 epochs using

one GPU with batch size 128. We use SGD with a momen-

tum of 0.9, whose learning rate is decayed by cosine shape

learning rate scheduling [18]. For our method, the initial

learning rate and weight decay are respectively set to 0.1
and 1.0× 10−3 for CNN, 0.2 and 5.0× 10−3 for WideRes-

Net, and 0.2 and 1.0 × 10−3 for ResNet. We do not apply

weight decay for the trainable scale and bias parameters (γ
and β in Eq. (6)) for our method. For GN, we set the number

of groups to 16.

4.1.2 Main results

We report the test errors at the end of the training. Ta-

ble 1 shows the results of our method and all the baselines

with the three network architectures. Overall, our method

achieved a highly competitive or even better performance

compared to all the baselines. It achieved the best perfor-

mance when using WideResNet-28-10 and FastAA; 2.59

Table 3: Ablation study of the proposed method on the

CIFAR-10 and CIFAR-100 datasets. WideResNet-28-10

with standard data augmentation is used.

centerize spherize σ = 0.0 σ = 1.0

CIFAR-10

5.36 4.97

X 5.58 4.66

X 5.68 5.29

X X 4.45 4.19

CIFAR-100

24.15 21.85

X 23.43 20.43

X 22.76 20.88

X X 20.61 18.31

on CIFAR-10 and 16.40 on CIFAR-100. On the CIFAR-

100 dataset, our method outperformed all the others except

for the case using ResNet-110 with FastAA. Note that the

proposed method is equal to or better than BN without com-

bining any activation normalization methods. This is a clear

difference from existing weight normalization methods that

must always be coupled with an activation normalization

method (e.g., WS+BN and WS+GN). These results demon-

strate a clear advantage of our method.

4.1.3 Small batch size training

As mentioned earlier, one major problem of BN is its per-

formance degradation in the case of small mini-batch train-

ing because of inaccurate estimation of the batch statis-

tics [11, 32]. We compare our method with BN under small

batch sizes. In this set of experiments, we follow the linear

learning rate scaling rule [5] to adapt to batch size changes.

Specifically, we set the learning rate to ηB/128 for the

batch size of B, where η is the learning rate at the batch

size of 128.

The results are shown in Table 2. Similar to reports in

previous studies, the performance of BN severely degraded

when training with small batch size, especially on CIFAR-

100 for B = 4. In contrast, our method was robust to the

batch size and stably achieved excellent performance even

with the extremely small batch size of B = 4. Moreover,
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Table 4: Experimental results on the CIFAR-10 and CIFAR-100 datasets with different levels of noise injection. WideResNet-

28-10 with standard data augmentation is used. The best and second-best results are denoted in bold and italics, respectively.

no noise
constant linear

σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8 σ = 1.0

CIFAR-10 4.45 4.78 4.55 4.59 4.25 4.49 4.49 4.45 4.45 4.19

CIFAR-100 20.61 21.00 20.13 19.81 - 20.78 19.86 18.74 18.25 18.31
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Figure 2: Learning curves on the CIFAR-100 dataset with different levels of noise injection. WideResNet-28-10 with standard

data augmentation is used.

our method sometimes performed better with smaller batch

sizes. For example, on CIFAR-100, the error rate was 16.40
when B = 128, but it was reduced to 15.12 when B = 4.

One possible reason would be a characteristic of SGD. That

is, SGD with smaller batch sizes can find flatter minima and

achieve better generalization performance [14]. Unlike BN,

our method is not dependent on batch statistics and there-

fore enjoys this benefit of SGD for the case of small batch

sizes without suffering from its disadvantage. This suggests

another important advantage of our method that does not

need to be combined with BN.

4.1.4 Ablation study

The three main components of the proposed method are

centralization, spherization and noise injection. We con-

duct ablation experiments to investigate the effect of each

of these components on the final performance.

Centralization and normalization. Table 3 shows the

test errors on the CIFAR-10 and CIFAR-100 datasets. We

found that using only spherization or only centralization

can reduce the performance, while using both together can

significantly improve the performance. Some existing WN

methods have only considered either spherization or cen-

tralization. Our results suggest that it might be a source of

the performance degradation of these methods.

Noise injection. We consider two noise injection strate-

gies: constant noise injection (i.e., σl = σ) and the linearly

increasing noise injection given in Eq. (8). The results are

shown in Table 4. We found that the test accuracy improved

over the baseline (no noise) by injecting the proper mag-

nitude of noise. For both datasets, the linearly increasing

noise injection performed better than the constant noise. In

the range up to σ = 1.0, larger standard deviations tended to

give higher accuracy. Figure 2(a) and (b) show the training

loss and test error with respect to epochs on the CIFAR-100

dataset, respectively. Although applying noise injection in-

creased the final training loss value, it also improved the test

accuracy without a significant delay in learning. This indi-

cates that our noise injection improves the generalization

performance.
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Table 5: Comparison of point cloud classification accuracy

on the ModelNet40 dataset. The results other than ours are

cited from [22].

Method Mean class acc. Overall acc.

Ours 89.0 91.4

GN 87.0 89.7

WS+GN 88.8 91.2

BN 89.3 91.7

WS+BN 89.6 92.0

4.2. Results on ModelNet40

To demonstrate the generality of our method, we perform

experiments in a 3D object classification task. We apply our

proposed method to point cloud classification on the Mod-

elNet40 dataset [33], which contains 40 manually created

object categories of CAD models. There are 12, 311 CAD

models in total, split into 9, 843 for training and 2, 468 for

testing.

4.2.1 Setup

We follow the same experimental settings as [31], i.e.,

1, 024 points are uniformly sampled on mesh faces accord-

ing to face area and then normalized into a unit sphere. In

the training phase, we augment the point cloud on-the-fly

by randomly rotating the object along the up-axis and jit-

ter the position of each point. The network architecture and

pre-processing for training are also the same as in [31]. In

our proposed method, we replace all the BN layers in the

same way as the previous image classification experiments.

We set σ = 0.4 for our method.

4.2.2 Results

We show the mean class accuracy and overall accuracy for

the proposed and existing methods in Table 5. Note that re-

sults other than ours are cited from [22]. Our method clearly

outperformed GN and had comparable results to WS+GN

and BN. This demonstrates that our proposed method can

improve learning efficiency on the point cloud classification

task.

4.3. Results on ImageNet

Finally, we evaluate our method on the ImageNet 2012

classification dataset [23], which consists of 1.28 million

training images and 50, 000 validation images from 1, 000
classes.

Table 6: Comparison of error rates on the ImageNet dataset.

ResNet-50 is used as the base network.

Method Top-1 accuracy Top-5 accuracy

Ours 75.15 92.37

Plain 73.76 91.15

GN 75.19 92.54

WS+GN 76.28 93.01

BN 75.70 92.81

WS+BN 76.24 92.87

4.3.1 Setup

In our evaluation, the validation set is used as the test set.

We trained each method with the ResNet-50 [8] architec-

ture. We follow the simple data augmentation in [6, 29].

More specifically, input images of size 224 × 224 are ran-

domly cropped from a resized image using scale and aspect

ratio augmentation. The networks are optimized using SGD

with a momentum of 0.9 and the batch size of 256. We start

from a learning rate of 0.1 and divide it by 10 at 30, 60, and

90 epochs.

4.3.2 Results

We compared our method with BN, GN, WS+BN, WS+GN,

and plain ResNet which is a ResNet whose BN layers have

been removed. Top-1 and top-5 error rates on the validation

set are shown in Table 6. The results other than ours and for

plain CNN are quoted from [22]. Our method significantly

improved the top-1 accuracy from 73.76% to 75.15% and

achieved a comparable performance to GN.

5. Conclusion

In this paper, we proposed a weight normalization ap-

proach that can be used on its own to provide a classifi-

cation accuracy competitive to BN. The key concepts of

our approach are that it 1) makes the norm of the weights

constant and the mean of the weights zero and 2) mimics

stochastic perturbations by injecting noise. Unlike exist-

ing WN methods based on reparametrization, which often

suffer from the gradient explosion problem, our method di-

rectly optimizes the weights by solving a constrained op-

timization problem and thus can avoid that harmful effect.

Our algorithm can efficiently solve the proposed optimiza-

tion problem. We evaluated our proposed method in various

classification tasks using three popular datasets and found

that it was highly competitive with, or even better than, the

state-of-the-art normalization methods without relying on

any activation normalization methods.
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