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Abstract

We propose an effective framework for the temporal ac-

tion segmentation task, namely an Action Segment Refine-

ment Framework (ASRF). Our model architecture consists

of a long-term feature extractor and two branches: the Ac-

tion Segmentation Branch (ASB) and the Boundary Regres-

sion Branch (BRB). The long-term feature extractor pro-

vides shared features for the two branches with a wide tem-

poral receptive field. The ASB classifies video frames with

action classes, while the BRB regresses the action bound-

ary probabilities. The action boundaries predicted by the

BRB refine the output from the ASB, which results in a sig-

nificant performance improvement. Our contributions are

three-fold: (i) We propose a framework for temporal action

segmentation, the ASRF, which divides temporal action seg-

mentation into frame-wise action classification and action

boundary regression. Our framework refines frame-level

hypotheses of action classes using predicted action bound-

aries. (ii) We propose a loss function for smoothing the

transition of action probabilities, and analyze combinations

of various loss functions for temporal action segmentation.

(iii) Our framework outperforms state-of-the-art methods

on three challenging datasets, offering an improvement of

up to 13.7% in terms of segmental edit distance and up to

16.1% in terms of segmental F1 score. Our code is publicly

available1.

1. Introduction

In recent years, with the exponential increase in the num-

ber of videos uploaded on the Internet, more attention is

now being paid to video analysis. One of the most active

topics in video analysis is video classification, the goal of

which is to classify a trimmed video into a single action

label [1]. The rise of sophisticated architectures (e.g. two-

stream convnets [38, 13], 3D CNNs [43, 2, 16, 47, 12, 11],

(2+1)D CNN [45]) and large-scale video datasets such as

1https://github.com/yiskw713/asrf

Figure 1. Overview of proposed framework. The Action Segment

Refinement Framework (ASRF) consists of a long-term feature ex-

tractor(Section 3.1), an Action Segmentation Branch (ASB; Sec-

tion 3.2) and a Boundary Regression Branch (BRB; Section 3.3).

Video features are input for a long-term feature extractor, and it

provides shared features for the ASB and the BRB. Then these two

branches output frame-wise action class predictions and boundary

probabilities, respectively. The ASRF reassigns frame-level action

predictions from the ASB utilizing the action boundaries predicted

by the BRB.

Kinetics [21, 3] and Sports-1M [20] has greatly improved

the performance of video classification.

However, natural videos are untrimmed and may con-

tain multiple action instances. Therefore, analysis of these

videos demands the recognition of action sequences. Mo-

tivated by this, we address the task of temporal action seg-

mentation, which aims to capture and classify each action

segment of an untrimmed video into an action category.

Action segmentation has various potential applications in

robotics, surveillance and the analysis of human activities.

Extant research typically approaches this task through

two phases: i) extracting spatial or spatiotemporal fea-

tures with 2D CNNs, two-stream convnets [38, 13] or 3D

CNNs [2] and ii) temporally classifying the extracted fea-

tures using an RNN [17] or temporal convolutional net-
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works [25, 28, 9]. These models claim better results on

datasets with a small number of action classes and video

clips than earlier approaches [37, 19]. However, it is diffi-

cult for these methods to recognize action segments, espe-

cially on large datasets with diverse action classes, which

results in continuously fluctuating action class predictions,

or over-segmentation errors.

When considering temporal action segmentation, over-

segmentation is a critical issue. The prediction in the upper

part of Figure 1 shows an example prediction with over-

segmentation errors. This error is crucial when analyzing

untrimmed videos with a sequence of actions. For example,

when analyzing the steps that are taken in cooking videos,

over-segmentation will result in detecting extra steps. As-

suming that actions in videos exist as chunks and do not

rapidly change, reducing these errors is essential for im-

proving action segmentation performance.

To address this problem, we propose a framework for

action segmentation that leverages predicted action bound-

aries for action segmentation, namely Action Segment Re-

finement Framework (ASRF). The ASRF consists of a long-

term feature extractor and two branches, an Action Segmen-

tation Branch (ASB) and a Boundary Regression Branch

(BRB) as in Figure 1. The long-term feature extractor

expands the temporal receptive field and provides shared

features for the following two branches. Then, the ASB

broadly predicts frame-wise actions in a video, while the

BRB detects action boundaries regardless of action class.

Our framework refines the outputs from the ASB using ac-

tion boundaries predicted by the BRB. The ASB and the

BRB are complementary to each other, which enables the

reduction of over-segmentation errors. In summary, the

main contributions of this work are highlighted as follows:

1. We propose a simple but effective framework for ac-

tion segmentation, an ASRF. Our framework decou-

ples frame-wise action classification and action bound-

ary regression, which enables the capturing of reliable

segments and correct classification. Having a decou-

pled architecture enhances single model classification

results by up to 10.6% in terms of segmental F1 score

and 10.8% in terms of segmental edit distance.

2. We propose a loss function for smoothing the transi-

tion of action probabilities and investigate appropri-

ate combinations of loss functions for our framework.

Combining this loss function with a class-weighted

classification loss function enables a 8.2% improve-

ment of segmental F1 score and a 5.9% improvement

of segmental edit distance.

3. Our approach outperforms state-of-the-art methods on

three challenging datasets for action segmentation:

50 Salads [41], Georgia Tech Egocentric Activities

(GTEA) [10] and the Breakfast dataset [22], by up

to 16.1% improvement of segmental F1 score, 13.7%

improvement of segmental edit distance and 2.6% im-

provement for frame-wise accuracy.

2. Related Work

Video Representation. Action segmentation aims to

classify each frame in a video into action classes, assum-

ing that each frame contains a single action. Extant meth-

ods are typically divided into two phases: first extracting

frame-wise spatio-temporal features by 2DCNNs[30], two-

stream convnets [38, 13] or 3DCNNs [2, 47, 12, 44, 11],

and then conducting the frame-wise classification. Some

works [40, 26, 39, 35] focus on extracting effective features

for action segmentation. However, our work focuses on the

method for classifying action and feature extraction is be-

yond the scope of this work. Following [9], we use I3D [2]

features as input to our framework.

Action Segmentation. Earlier approaches detect ac-

tion segments using a sliding window and filter out redun-

dant hypotheses with non-maximum suppression [37, 19].

Other approaches model the temporal action sequence with

a Markov model [23, 36] or an RNN [39] to classify frame-

wise actions. Lea et al. [26] propose a spatiotemporal CNN

for extracting features, which takes RGB and motion his-

tory images as input, and uses a semi-Markovian model for

jointly segmenting and classifying actions.

Following the success in the speech synthesis domain,

some studies have adopted a temporal convolutional net-

work from the WaveNet model [46]. Lea et al. [25] propose

two types of temporal convolutional networks (TCN) for ac-

tion segmentation. Lei et al. [28] propose a network with

temporal deformable convolutions and a residual stream.

These approaches use temporal pooling, which help to cap-

ture long-range dependencies between actions. However,

pooling operations may lose temporal information that is

indispensable for action segmentation.

To address this problem, Farha et al. [9] propose a multi-

stage architecture, namely MS-TCN. MS-TCN stacks sev-

eral TCNs, which have dilated convolutions with residual

connections. They also propose a loss function for penal-

izing over-segmentation errors. This architecture and the

loss function enable the refinement of action segmentation

results through each stage. Zhang et al. [48] propose a

bilinear pooling module and combines it with MS-TCN.

The above two methods are capable of capturing depen-

dencies between actions and reducing over-segmentation

errors. Yifei et al. [18] propose Graph-based Temporal Rea-

soning Module, which can be added to top of action segme-

nation models. Combining this module with MS-TCN im-

proves the performance. However, there is still room for im-

provement, especially on large datasets with diverse action

classes such as the Breakfast dataset [22]. Existing works

perform with high frame-wise accuracy, but produce many

false positive. which results in over-segmentation error de-
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spite the multi-stage architecture and the smoothing loss.

Our experiments are conducted with comparison to these

state-of-the-art methods to demonstrate the efficacy of our

proposal. Some works [4, 5] apply domain adaptation tech-

niques to action segmentation, but we do not compare these

works as their setting is different from our work.

Action Proposal Generation. Substantial research has

been carried out in this domain, some of which is related to

our approach. Existing methods for action proposal gener-

ation can broadly be divided into two types of approaches:

anchor-based approaches [32, 14, 15] and anchor-free ap-

proaches [49, 33, 31]. Anchor-based approaches define

multi-scale anchors with even intervals as proposals and

generate confidence scores for each proposal. Anchor-free

approaches first evaluate actionness or the likelihood of a

frame being the start or end of an action, and then gener-

ate final predictions by leveraging these cues. Inspired by

these anchor-free approaches, we additionally use an action

boundary regression network for the action segmentation

task. Our action boundary network regresses only bound-

ary probabilities, regardless of it being a start or end of an

action. Using predicted action boundaries, our framework

refines frame-wise predictions to improve the performance

of action segmentation.

3. Our Proposed Method

In this section, we introduce our approach for action seg-

mentation, ASRF. Our framework decouples frame-wise ac-

tion classification and action boundary regression. Our pro-

posed framework consists of a long-term feature extractor

and two branches, an Action Segmentation Branch (ASB)

and a Boundary Regression Branch (BRB), as in Figure 1.

A long-term feature extractor takes video features as in-

put, expands the receptive field and captures long-term de-

pendencies between action segments. Then, both branches

take the features as inputs and frame-level action predic-

tions and action boundary probabilities as outputs. Let

X = [x1, ...xT ] ∈ R
T×D be the input to the ASRF, where

T is the number of frames in a video and D is the dimension

of the feature. Given X , our goal is to classify frame-level

action classes C = [c1, ..., cT ]. For each frame, we predict

action boundaries B = [b1, ..., bT ], and use this to improve

the classification.

3.1. Long­term Feature Extractor

Given X , the goal of a long-term feature extractor is to

capture long-term dependencies between action segments

and extract rich features X ′ ∈ R
T×D′

, where D′ is the di-

mension of the feature. As a long-term feature extractor, we

use a temporal convolutional network (TCN) with dilated

residual layers proposed in [9]. This architecture can con-

volve features with full temporal resolution and a large re-

ceptive field. This enables the network to capture long-term

dependencies between action segments and extract shared

features for the following branches. Our feature extractor

consists of 10 dilated residual layers with 64 filters, each of

which are followed by a dropout layer with a dropout rate

of 0.5. The dilation rate is doubled at every residual convo-

lution.

3.2. Action Segmentation Branch

Given X ′, the goal of the Action Segmentation Branch

(ASB) is to predict frame-wise action classes C. To predict

action classes, we simply use a 1D convolutional layer fol-

lowed by a softmax layer. However this prediction contains

some errors such as over-segmentation errors. So we add

a multi-stage architecture proposed in [9] after the output

layer. The first layer takes X ′ as input and outputs the initial

predictions, and the subsequent stages refine the predictions

made from previous stages. This architecture facilitates

capturing temporal dependencies and recognizes action seg-

ments, preventing over-segmentation errors. Herein, each

stage consists of a single temporal convolution with a ker-

nel size of 1 and 64 filters, 10 dilated residual convolutions,

and another temporal convolution for reducing the feature

dimension to the number of action classes. The parameters

of each dilated convolutional layer are the same as in the

long-term feature extractor. We set the number of stages to

3 after the initial prediction layer as per [9].

3.3. Boundary Regression Branch

Although stacking several TCNs improves performance

of action segmentation, the predictions still contain over-

segmentation errors. To address this, we introduce a Bound-

ary Regression Branch (BRB) in addition to the ASB. Given

X ′, the BRB aims to regress the action boundary probabili-

ties P ∈ [0, 1]T in a video, which are used later for refining

the action segmentation results from the ASB (see Section

3.4). Action boundaries are defined as frames when an ac-

tion starts and ends irrespective of action classes. Unlike the

methods which use a Hidden Markov model to determine

the most probable sequence of actions [23, 42], the BRB

is class-agnostic, which eliminates the need for modeling

the probabilities from each class to every other. Rather, the

BRB only regresses the likelihood of general action bound-

aries. Therefore, the BRB requires far less data for train-

ing and can improve the robustness in comparison with the

class-aware methods. We applies the the same structure as

in the ASB to the BRB. The stacked structure also allows

the refinement of action boundary predictions within the

branch. In Section 4.4.1, we will explore the effect of the

number of stages for action boundary regression.

3.4. Refining Action Segmentation Results

We describe how to refine the action segmentation re-

sults C from the ASB using action boundary probabilities
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Pb from the BRB. First, we determine action boundaries

B ∈ {0, 1}T from Pb. We define B as the frame-level pre-

diction where Pb,t scores a local maximum and is over a

certain threshold θp. B is our prediction for action bound-

aries, so we divide action segments based on these predic-

tions. Assuming that each segment contains a single action,

we assign action classes to segments based on the action

segmentation predictions from the ASB. We make final pre-

dictions by majority voting on the action class within each

segment. Note that this refinement process is done only dur-

ing inference. In the experiments, the efficacy of this refine-

ment strategy will be illuminated (see Section 4.2).

3.5. Loss Function

Our framework outputs both frame-wise action predic-

tions and action boundaries. Hence, our loss function is

defined as:

L = Lasb + λLbrb (1)

where Lasb and Lbrb are loss functions for the ASB and the

BRB respectively and λ is the weight of the Lbrb. In our

work, we set λ to 0.2 for GTEA and 0.1 for 50 Salads and

the Breakfast dataset. In the following sections, we describe

loss functions for each branch.

3.5.1 Loss Function for ASB.

Existing works usually adopt cross entropy as a classifica-

tion loss.

Lce =
1

T

∑

t

− log (yt,c) (2)

where yt,c is the action probability for class c at time t.
However, this approach cannot penalize over-segmentation

errors because there is no constraint for temporal transition

of probabilities. To overcome this, the authors of [9] addi-

tionally use the Truncated Mean Squared Error (TMSE).

LTMSE =
1

TN

∑

t,c

∆̃2
t,c (3)

∆̃t,c =

{

∆t,c : ∆t,c ≤ τ
τ : otherwise

(4)

∆t,c = |log yt,c − log yt−1,c| (5)

where T is the length of a video, N is the number of classes

and τ is a threshold for the transition of probabilities.

Herein, in addition to these two loss functions, we val-

idate two other loss functions. First, we simply impose a

class weight for the cross entropy loss Lce,cw). The fre-

quency of different action segments differs for each action

class, leading to an imbalance during training. For weight-

ing, we use median frequency balancing [8], where the

weight to each class is calculated by dividing the median

of class frequencies by each class frequency. In our exper-

iments, we also compare this weighting method with Focal

Loss [34] (see Section 4.4.3).

Next, we introduce Gaussian Similarity-weighted TMSE

(GS-TMSE) as a loss function, which improves upon

TMSE. TMSE penalizes all frames in a video to smooth the

transition of action probabilities between frames. However,

this results in penalizing the frames where actions actually

transition. To address this problem, we apply the Gaussian

kernel to TMSE as follows:

LGS−TMSE =
1

TN

∑

t,c

exp

(

−
‖xt − xt−1‖

2

2σ2

)

∆̃2
t,c

(6)

where xt is an index of similarity for frame t and σ de-

notes variance. Because of the Gaussian kernel based on the

similarity of frames, this function penalizes adjacent frames

with large differences with a smaller weight. Here, we use

the frame-level input feature for an index of similarity and

set σ to 1.0. We also set τ in TMSE and GS-TMSE as 4,

following [9].

The loss function for each prediction in the ASB is de-

fined:

Las = Lce + LGS−TMSE (7)

Then we average the losses for each prediciton in the ASB

as follows:

Lasb =
1

Nas

∑

i

Las,i (8)

where Nas is the number of predictions in the ASB (Nas =

4 in our framework).

In the experiments, we compare various loss functions

and their combinations for action segmentation as well as

Equation 10. When combining them, we simply add each

loss function except TMSE. We multiply LTMSE by 0.15

and then add the other loss functions as per [9].

3.5.2 Loss Function for BRB.

We use a binary logistic regression loss function for the ac-

tion boundary regression:

Lbl =
1

T

T
∑

t=1

(wpyt · log pt + (1− yt) · log (1− pt)) (9)

where yt and pt are the ground truth and the action bound-

ary probability for frame t, respectively. We weight positive

samples by wp since the number of frames that are action

boundaries is much smaller than that of the others. We cal-

culate the ratio of positive data points over the whole train-

ing data and use the reciprocal of this as the weight. As in

the ASB, we average the losses for each boundary predic-

tion in the BRB as follow:

Lbrb =
1

Nbr

∑

i

Lbl,i (10)
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Figure 2. An example where the prediction refined the by ground

truth boundaries is worse than that of the ASB. The color bands

differentiate action classes, and the horizontal direction denotes

time. Our framework decides action classes of each segment by

majority voting. Therefore segments can be reassigned as the

wrong class.

where Nbr is the number of predictions in the BRB (Nbr is

also 4 in our framework).

4. Experiments

Datasets. For our evaluation, we use three challenging

datasets: 50 Salads [41], Georgia Tech Egocentric Activi-

ties (GTEA) [10], and the Breakfast dataset [22]. The 50

Salads dataset contains 50 videos in which 25 people in to-

tal are preparing two kinds of mixed salads. The videos,

each consisting of 9000 to 18000 RGB frames, depth maps

and accelerometer data, are annotated with 17 action classes

every frame. The GTEA dataset contains 28 videos of 7

types of daily activities, each performed by 4 different sub-

jects. Each video is recorded egocentrically, from a camera

mounted on a subject’s head. The Breakfast dataset con-

tains over 77 hours of videos, where 10 classes of actions

are performed by 52 individuals in 18 different kitchens.

As per [9], for all datasets, we use spatiotemporal fea-

tures extracted by I3D [2] as input to both ASB and BRB.

Following [9], we downsample the videos in the 50 Salads

dataset from 30 to 15 fps to ensure consistency between the

datasets. For evaluation, we use 5-fold cross-validation on

50 Salads dataset and 4-fold cross-validation on the others

as in [41, 22, 9].

Evaluation Metrics for Action Segmentation. The fol-

lowing three metrics are used for action segmentation as

in [27, 26, 25]: frame-wise accuracy (Acc), segmental edit

distance (Edit), and segmental F1 score with overlapping

threshold k% (F1@k). Although frame-wise accuracy is

commonly used as a metric for action segmentation, this

measure is not sensitive to over-segmentation errors. There-

fore, as well as frame-wise accuracy, we also use segmental

edit distance [27, 26] and segmental F1 score [25] because

both of the latter penalize over-segmentation errors.

The segmental edit distance, Sedit(G,P ) is a met-

ric for measuring the difference between ground truth

segments G = {G1, ..., GM} and predicted segments

P = {P1, ..., PN}. This metric is calculated using

the Levenshtein Distance[29] between hypotheses and

ground truths. For the sake of clarity, we report (1 −
Sedit(G,P )/max(M,N))× 100 as segmental distance.

The segmental F1 score is averaged per class, in which

a prediction is classified as correct if the temporal Intersec-

tion over Union (IoU) is larger than a certain threshold. This

metric is invariant with respect to temporal shifts in predic-

tions emanating from the ambiguity of the action boundary

or human annotation noise.

Evaluation Metrics for Boundary Regression. The

action boundary F1 score is used as an evaluation metric

for the action boundary regression. We define the action

boundary F1 score referencing the boundary F1 score used

for semantic segmentation [6]. Let Bgt ∈ {0, 1}T denote

if each frame is a boundary or not and Pb ∈ [0, 1]T de-

note the predicted boundary probability map. We define

Bpred ∈ {0, 1}T as the frame-level prediction where Pb,t

is both over a threshold θp and is a local maximum. The

precision and the recall for action boundaries are defined

as:

Precision =
1

|Bpred|

∑

x∈Bpred

I [d (x,Bgt) < θb] , (11)

Recall =
1

|Bgt|

∑

x∈Bgt

I [d (x,Bpred) < θb] , (12)

where I[·] denotes the indicator function, d(·) is the L1

distance for temporal span and θb is a threshold over

timestamp. We set θb as 5 and θp as 0.5 in all experi-

ments. Then the boundary F1 metric is defined as BF =
2×Precision×Recall
Precision+Recall

.

In addition, assuming that we have an oracle ASB which

outputs the ground truth frame-wise labels, we use the BRB

and refine the output of this oracle ASB. Using a single

BRB, this is the upper bound of the achievable score. There-

fore, when comparing multiple BRBs, this upper bound can

be used to evaluate the efficacy. Note that we do not assume

an oracle BRB for refining action segmentation results from

the ASB, as upper bounds are not achievable even with an

oracle BRB (See Figure 2).

Learning Scheme. We train the entire framework us-

ing the Adam optimizer with a learning rate of 0.0005 and

batch size of 1 as per [9]. We also find the optimal number

of epochs with nested cross-validation. During inference,

action segmentation results from the ASB are refined using

predicted action boundaries from the BRB.

4.1. Comparing ASRF with the state­of­the­art

We compare our proposed framework with existing

methods on three challenging datasets: 50 Salads, Geor-

gia Tech Egocentric Activities (GTEA) and the Breakfast

dataset. Table 1 shows the results for the first two datasets.

Therein, our ASRF is superior to the state-of-the-art in

terms of segmental edit distance and segmental F1 score
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Figure 3. Qualitative results using (a) 50 Salads, (b) GTEA and (c) Breakfast dataset in comparison with predictions before refinement. (d)

Failure example on Breakfast dataset

Dataset 50 Salads GTEA

Method F1@{10, 25, 50} Edit Acc F1@{10, 25, 50} Edit Acc

Bi-LSTM [39] 62.6 58.3 47.0 55.6 55.7 66.5 59.0 43.6 - 55.5

ED-TCN [25] 68.0 63.9 52.6 59.8 64.7 72.2 69.3 56.0 - 64.0

TDRN [28] 72.9 68.5 57.2 66.0 68.1 79.2 74.4 62.7 74.1 70.1

MS-TCN [25] 76.3 74.0 64.5 67.9 80.7 85.8 83.4 69.8 79.0 76.3

MS-TCN + BPGaussian [48] 78.4 75.8 66.7 71.0 80.6 86.7 84.3 72.7 77.2 82.3

MS-TCN + GTRM [18] 75.4 72.8 63.9 67.5 82.6 - - - - -

ASRF 84.9 83.5 77.3 79.3 84.5 89.4 87.8 79.8 83.7 77.3

Improvement +6.5 +5.1 +10.6 +8.3 +1.9 +2.7 +3.5 +7.1 +4.7 -5.0

Table 1. Comparing our proposed method with existing methods on 50 Salads and GTEA.

with competitive frame-wise accuracy on each dataset, hav-

ing up to 8.3% improvement for segmental edit distance,

and up to 10.6% improvement for the segmental F1 score

on 50 Salads and GTEA. As per Table 2, our framework

also outperforms the existing methods by a large margin on

the Breakfast dataset with respect to all evaluation metrics.

We find that our framework offers better results for

stricter overlap thresholds when calculating the segmental

F1 score. On GTEA, our framework and MS-TCN with bi-

linear pooling [48] perform similarly in terms of F1@10.

However, our framework outperforms [48] on F1@50 by

7.1%. This shows that our framework is capable of rec-

ognizing action segments which overlap markedly with the

ground truth segments.

In the case of GTEA, the frame-wise accuracy for our

framework is inferior to that of [48]. We hypothesize that

our framework predicted action boundaries off by some

margin, therefore affecting the frame-wise accuracy. The

rise in the segmental metrics support our hypothesis, as

these errors are not accounted for here.

Qualitative results are presented in Figure 3. Predictions

before refinement have some over-segmentation errors, but

our framework can reduce these using action boundaries

(Figure 3 (a), (b), (c)). Figure 3 (d) shows a failure case of

our framework. However, the BRB has limits in the sense

that it cannot reassign completely incorrect segments of in-

ferred action classes by the ASB.

4.2. Effect of our refining paradigm

In this section, we show the effect of refinement on the

action segmentation metrics using action boundaries pre-

dicted by the BRB. In addition to the refinement with the

BRB, we evaluate three other postprocessing methods: i)

Relabeling. relabeling actions of segments shorter than a

certain temporal span θt with the action of the previous seg-

ment, ii) Smoothing. smoothing action probabilities using

the 1D Gaussian filter with a kernel size K, and iii) Similar-

ity. refinement with predicted action boundaries based on

frame-level similarity. We measure the similarity of frames

using frame-level features as in Section 3.5.1, and decide

action boundary positions based on where the similarity is

a local minimum.

Table 3 shows the action segmentation results of the ASB

and those after refinement on the 50 Salads dataset. As

observed, our refinement method with action boundaries

improves action segmentation results by over 8.8% for ev-

ery segmental metric with comparable frame-wise accuracy.

Especially the stricter we set the IOU threshold for the seg-

mental F1 score, the better the ASRF scores. This shows
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Figure 4. Examples of refinement process on the Breakfast dataset. The first row shows predictions from the ASB and the second row

shows predicted boundary probabilities. Combining them, the ASRF outputs final predictions (the third row).

Breakfast F1@{10, 25, 50} Edit Acc

ED-TCN [25] * - - - - 43.3

HTK [24] - - - - 50.7

TCFPN [7] - - - - 52.0

HTK(64) [23] - - - - 56.3

GRU [7] * - - - - 60.6

MS-TCN [9] 58.2 52.9 40.8 61.4 65.1

MS-TCN+GTRM [18] 57.5 54.0 43.3 58.7 65.0

ASRF 74.3 68.9 56.1 72.4 67.6

Improvement +16.1 +14.9 +12.8 +13.7 +2.5

Table 2. Comparing our proposed method with existing methods

on the Breakfast dataset. * reported results by the author of [7].

that the ASRF not only prevents over-segmentation errors

but also generates predictions that highly overlap with the

ground truth. In addition, our method is superior to other

ways of postprocessing in terms of every metric. Smooth-

ing has less impact on the metrics than our ASRF, and Sim-

ilarity has a negative effect. Although Relabeling is better

than the other two methods, this method is highly depen-

dent on the hyperparameter θt. With a large θt, the method

can reduce over-segmentation errors, but drops small action

segments. On the other hand, our framework can detect ac-

tion boundaries and capture action segments irrespective of

temporal length, which results in better performance.

Figure 4 shows our refinement process on the Breakfast

dataset. The BRB outputs some false positives, but they

are ignored when the ASB captures action segments with-

out over-segmentation errors (the middle of Figure 4). This

shows that our framework not only refines frame-level ac-

tion predictions with boundaries, but selects reasonable ac-

tion boundaries during refinement as well. Therefore, the

ASB and the BRB are mutually supportive.

4.3. Comparison with segment­level classifier

Our framework classifies actions by the frame level be-

fore predicting action boundaries, then reassigning action

classes for each predicted action segment. Another vari-

ant is to use a TCN to classify each predicted action seg-

ment. Therefore, we compare our framework with a com-

bination of a boundary regression model and segment-level

F1@{10, 20, 50} Edit Acc

w/o post-processing 76.1 74.5 66.7 68.5 82.6

Relabeling (θt = 5) 81.5 79.7 71.6 74.8 82.6

Relabeling (θt = 15) 82.4 80.6 72.5 76.2 82.7

Smoothing (K = 5) 80.7 78.9 70.8 73.5 82.6

Smoothing (K = 15) 80.8 79.0 70.9 73.6 82.6

Similarity 39.8 30.9 18.1 32.8 40.0

ASRF 84.9 83.5 77.3 79.3 84.5

Table 3. Effect of refinement strategy using action boundaries from

the BRB on the 50 Salads dataset.

F1@{10, 20, 50} Edit Acc

Segment classifier 51.8 49.0 40.0 42.8 58.5

ASRF 84.9 83.5 77.3 79.3 84.5

Table 4. Comparing our proposed method with the segment-level

classification method on the 50 Salads dataset.

classifier. We use a single-stage TCN with 10 dilated con-

volutions and two convolutions as a segment-level classifier.

Note that we add global average pooling before the last con-

volutional layer of the single-stage TCN to aggregate tem-

poral features. Otherwise, for both the action boundary re-

gression and segment-level classification, we use the same

networks as our method. As seen in Table 4, our framework

outperforms this variant by a large margin. This shows the

importance of capturing long-range dependencies between

action segments in the context of action segmentation.

4.4. Ablation Study

4.4.1 Effect of the number of stages

We use a multi-stage architecture for BRB as well as ASB,

which must be validated. Therefore we train a variety of

multi-stage networks and evaluate their performances. Each

network stage has 10 dilated convolutions and two convolu-

tions like our proposed BRB. As can be observed in Table 5,

the three-stage architecture after the initial prediction layer

outperforms others in terms of action segmentation. This

shows that stacking TCNs helps to regress boundaries as

well. However, using four stages on the 50 Salads dataset

does not improve the predictions, which is thought to be the

result of overfitting due to the size of the 50 Salads dataset.

We found that the precision of the BRB is low, but
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Boundary Regression Action Segmentation Action Segmentation (Oracle)

Precision Recall F1 Score F1@{10, 20, 50} Edit Acc F1@{10, 20, 50} Edit Acc

No stage 18.8 76.4 29.9 82.0 80.4 74.4 76.7 82.7 86.8 86.2 83.5 82.2 88.5

1 stage 34.8 69.9 46.4 82.5 81.1 73.1 76.8 80.9 86.0 85.4 81.7 81.4 87.2

2 stages 38.7 66.0 48.7 83.3 82.3 76.4 78.3 82.7 86.2 85.8 84.1 82.7 88.6

3 stages 37.3 63.2 46.8 84.9 83.5 77.3 79.3 84.5 86.9 86.8 84.5 83.2 89.3

4 stages 37.4 63.0 46.9 84.4 82.9 75.7 78.1 82.7 86.5 86.0 83.8 82.5 87.8

Table 5. Effect of the number of stages for the BRB after the initial prediction layer on the 50 Salads dataset.

Boundary Regression Action Segmentation

θp Precision Recall F1 Score F1@{10, 20, 50} Edit Acc

0.1 36.5 63.7 46.3 84.6 83.3 76.7 79.0 84.4

0.3 37.0 63.4 46.7 84.7 83.4 76.8 78.9 84.4

0.5 37.3 63.2 46.8 84.9 83.5 77.3 79.3 84.5

0.7 37.6 63.1 47.1 84.5 83.2 77.3 78.8 83.9

0.9 37.6 63.1 47.1 84.5 83.2 77.3 78.8 83.9

Table 6. Comparing the effect of θp for action boundary decision

Loss Function F1@{10, 20, 50} Edit Acc

Lce + LTMSE 79.7 77.7 69.1 73.4 79.8

Lce + LGS−TMSE 80.9 79.4 72.7 74.6 81.6

Lfocal + LTMSE 77.3 75.8 67.1 71.3 78.0

Lfocal + LGS−TMSE 78.3 76.0 66.3 71.0 78.0

Lce,cw + LTMSE 83.3 81.8 75.1 77.0 81.8

Lce,cw + LGS−TMSE 84.9 83.5 77.3 79.3 84.5

Table 7. Comparing combinations of loss functions on the 50 Sal-

ads dataset.

overdetected boundaries can still help the refinement of

frame-wise action predictions. The reason of the low pre-

cision is that it is difficult to predict action boundaries pre-

cisely because of the ambiguity of human annotations and

the action boundary itself. In addition, the θb for calcu-

lating precision is only 5 frames, which is a strict thresh-

old. Also, we highlight that the low precision of the BRB

does not have a negative impact. In our framework, the

ASB and the BRB are complementary, so even if nonex-

istent action boundaries are predicted, some of them disap-

pear when combining outputs from the ASB. In addition,

segmental edit distance and segmental F1 score with IoU

thresholds tolerate the shifts of action starting and ending

points. Results show that there is little to no correlation

between boundary scores and action segmentation scores.

This is because segmental metrics are tolerant to shifts in

action boundary predictions. Therefore, oracle experiments

are selected for the evaluation of boundary regression in our

framework.

4.4.2 Impact of θp for boundary regression

As described in Section 3.5.2, we set the threshold θp = 0.5
for deciding action boundaries from outputs predicted by

BRB. Table 6 shows the impact of θp for boundary regres-

sion. Note that we do not use an oracle ASB in this ex-

periment, because an overdetecting BRB would obtain per-

fect results, therefore setting θp to a minimal value would

be best performing. As in Table 6, our framework is not

particularly sensitive to θp. For our framework, θp = 0.5
showed the best balance.

4.4.3 Comparing loss functions for the ASB

Table 7 compares the results of each combination of loss

functions. Our proposed smoothing loss LGS−TMSE im-

proves the segmental metrics by up to 3.6%. This shows

that LGS−TMSE can smooth the transition of action prob-

abilities without penalizing frames where actions actually

transition, which results in alleviating over-segmentation er-

rors. In addition, imposing class weight to the cross also

improves all the metrics while Lfocal has a negative influ-

ence. Though tuning hyperparameters in Lfocal may still

help to improve performance, it is costly to do so for ev-

ery dataset. Our combination of loss functions enable better

performance in comparison with loss functions used in ex-

isting works.

5. Conclusions

We proposed an effective framework for the action seg-

mentation task. In addition to an action segmentation net-

work, we use an action boundary regression network for

refining action segmentation results with predicted action

boundaries. We also compared and evaluated various loss

functions and their combinations for action segmentation.

Through experiments, it was confirmed that our frame-

work is capable of recognizing action segments and alleviat-

ing over-segmentation errors. Our framework outperforms

state-of-the-art methods on the three challenging datasets,

especially on the Breakfast dataset by a large margin, which

contains a larger number of videos and action classes than

the others.
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Hager. Segmental spatiotemporal cnns for fine-grained ac-

tion segmentation. European Conference on Computer Vi-

sion (ECCV), pages 36–52, 2016.
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