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Abstract

This paper proposes a novel Importance Guided Sparse
Spatio-Temporal Regularization based Correlation Filter
(IGSSTRCF) tracker. Our formulation explicitly models
the variations in the correlation filters and associated spa-
tial weights in successive frames. By imposing a spar-
sity penalty on these variations, the formulation ensures
that only relevant changes are incorporated during updates.
This results in more robust filter coefficients that minimize
the tracking drift. The IGSSTRCF also includes an adap-
tive channel importance estimation strategy that assigns an
importance weight to each feature channel during training.
The proposed formulation is efficiently solved via the alter-
nating direction method of multipliers. A comparative anal-
ysis is shown on TC128, UAVI23, VOT-2017, and VOT-2019
datasets; and we present an ablation study to demonstrate
the contribution of each component of the IGSSTRCF. It is
observed that we outperform several state-of-the-art track-
ers and each component of the proposed IGSSTRCF con-
tributes positively towards tracker performance.

1. Introduction

Visual object tracking is a widely scrutinized research
problem in the field of computer vision and video analyt-
ics. Recent Correlation Filter (CF) based trackers use deep
features extracted using a pre-trained CNN. These trackers
model the target appearance with generalized and discrimi-
native deep features, whilst achieving real time speed due to
fast computations in the Fourier domain [28]. However, the
computational efficiency of these CF trackers comes with
a trade off. Negative training samples are generated by
circularly shifting the base patch in the frequency domain
[28]. Such negative samples do not represent the actual
background and are impacted by boundary effects. Train-
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ing with these artificial negative samples can result in an
over-fitted CF that struggles to adapt to rapid visual defor-
mations of the target, leading to tracker drift [11]. To miti-
gate these issues, CF trackers with spatial and temporal con-
straints have been proposed [6, 11, 23, 30]. However, these
trackers either do not model or weakly incorporate the spa-
tial and temporal variations between consecutive frames. In
addition, the multi-channel CNN feature encodes a differ-
ent attribute of the target in each channel. Therefore, the
importance of each channel may change from one tracking
step to the next. Some channels may offer more informative
features for tracking, while others with less useful informa-
tion may degrade the tracking and eventually lead to tracker
drift [11]. To address this issue of channel importance, fea-
ture selection [49], adaptive importance maps [29] and re-
liability learning [45] methods have been proposed. How-
ever, these tracker formulations do not offer efficient spatial
and temporal regularizations, reducing awareness of previ-
ous and spatially adjacent observations.

The challenges with the spatial regularization based CF
trackers are that they cither have fixed spatial weights [11],
or learn spatial weights that are similar to some reference
weights [6]. Likewise, the temporal regularization based CF
tracker imposes a constraint such that the current learned
filter is similar to the previous filter [30]. However, due
to continuous temporal and spatial variations in a tracking
sequence, the filter and spatial weights in a tracking step
will not be identical to their reference counterparts.

The motivation for our proposed approach stems from
the proposition that the above variations can be explicitly
modelled using a constrained optimization framework. To
model the spatial and temporal variations, we propose an
Importance Guided Sparse Spatio-Temporal Regularization
based CF (IGSSTRCEF) tracker with following advances:
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Figure 1: A Block diagram for the proposed IGSSTRCEF tracker. During training, q, B,,, B;;, w and h are learned via ADMM
iterations. During testing, we extract an ensemble of deep and hand-crafted features from the search area. The target is
localized using a responsc map obtained by the dot product of the Fourier transformed features and filters. For target scale
estimation, we follow [6]. F and F~! denotes Fourier and inverse Fourier transform operations respectively

1. We introduce a Sparse Spatial Regularization (SSR)
component that learns the spatial weights with the help
of reference weights, and simultaneously models the
sparse difference between the reference weights and
the learned spatial weights. The filter coefficients be-
longing to the background region are assigned higher
penalty weights. This suppresses the effect of unfavor-
able background information and boundary effects in
the learned filter.

2. We introduce a Sparse Temporal Regularization (STR)
component that learns a correlation filter by modelling
the sparse difference between the previous and the cur-
rent filter. As a result, the filter sparsely adapts to ap-
pearance changes, preventing drift.

3. We introduce a Channel Importance (CI) term that as-
signs higher weights to the feature channels that en-
code useful target information, and lowers weights to
the less informative channels. As a result, less infor-
mative channels that may adversely effect training are
suppressed.

Figure 1 shows a block diagram that describes the process
flow of the proposed IGSSTRCEF tracker. We evaluate the
tracker on the benchmark datasets: TC128 [36], UAV123
[40], VOT-2019 [27] and VOT-2017 [26]. A comparative
analysis shows that the proposed formulation results in a
significant improvement over the baselines [6, 30] and other
recent trackers. An ablation study is also presented that
demonstrates the importance of each regularization term for
tracker performance.

2. Related Work

In recent years, an increased demand for computational
efficiency has made Correlation Filters (CFs) a frequently
used formulation for visual object tracking [8, 11, 14, 18,
20, 23, 47, 50]. MOSSE [4] is one of the earliest trackers
that learns a CF in the frequency domain. It uses a single-

channel gray-scale image to train the CF and offers impres-
sive tracking speed. The limitations of MOSSE [4] have
been addressed by many tracking algorithms proposed af-
terwards. To list a few, a multi-channel version of MOSSE
[4] is proposed in [24]. Henriques et al. proposed kernel-
ized CFs [20], and the use of high dimensional features is
proposed in [19].

Although computationally efficient, CFs learned in the
frequency domain are impacted by boundary effects that
plague the circularly shifted training patches. This leads to
sub-optimal training. Also, the learning is done solely using
the shifted patches of the target, and background informa-
tion is completely overlooked in the learning process. This
results in an over-fitted CF that is prone to poor discrimina-
tion when encountering background clutter and occlusion
[11]. Several methods have been proposed to alleviate the
aforementioned issues. Danelljan ef al. [11] introduces a
weighted regularization constraint in the CF formulation to
penalize filter coefficients near the boundary region. BACF
[23] proposes generating real world positive and negative
training samples by directly multiplying the filter with a bi-
nary matrix. This improves the discriminative ability of the
filters. The above approaches have been used as a baseline
for many subsequent CF based trackers [8, 13, 15, 30, 45].

SITUP [39] introduces an exhaustive scale searching
generic framework that can be easily employed in other CF
based trackers for efficient scale estimation. [17] proposes
to avoid ad hoc linear interpolation and learns increments
of the CFs by using a smooth incremental learning frame-
work. A structural spatio-temporal model for tracking is
introduced in [54] that uses an adaptive generative learning
method for extracting complementary features that can rep-
resent the temporal appearance changes of target and im-
pose adaptive spatial regularization. A spatio-temporally
regularized CF tracker is introduced in [32] that simultane-
ously exploits the local and global information in the re-
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sponse maps and automatically tunes the hyper-parameters.

Many other works propose different spatial constraints
and use spatially larger training samples compared to the
trained filter [10, 11, 12, 25, 48]. These approaches sup-
press the background information during training [11] and
have demonstrated a significant reduction of boundary ef-
fects [25]. Further advancements over SRDCF [11] are
made in STRCF [30] and ASRCF [6]. Li et al. [30] em-
ploys spatio-temporal constraints that utilize CFs learned in
the previous frame to learn the CFs in the current frame.
Dai et al. in [6] introduces an object aware spatial regular-
ization that attempts to learn spatial weights that are similar
to the reference spatial weights. The regularization terms in
[30] and [6] make use of a reference to learn the CFs and
spatial weights. However, the target appearance varies with
every frame. Therefore, the spatial weights or CFs learned
in consecutive frames should be constrained to be similar
while still adapting to variations.

Besides the above methods, many CF based trackers fo-
cus on modeling channel importance as each feature chan-
nel can make a dynamic contribution during each tracking
step. The benefits of selecting the optimal channels dur-
ing tracking with multi-channel features are investigated in
[16]. Lu et al. [37] makes use of channel regularization and
learns a weight for each feature channel in order to suppress
redundant information. Li et al. [29] introduced a feature
integration method for correlation filters, where the filters
and importance maps are jointly learned in each frame. Sun
et al. [45] propose a CF-based optimization method that
jointly models discrimination and reliability information.
Zhou et al. [53] propose to learn a discriminative and robust
dictionary that preserves the locality and similarity of the
input to achieve more accurate visual tracking. However,
these channel importance based CF trackers do not employ
spatial [10, 11, 12, 25] or temporal [6, 30] regularization.

To combat the shortcomings of the above spatio-
temporal regularization based [6, 30] and channel impor-
tance based [29, 45, 53] CF trackers, we propose an Impor-
tance Guided Sparse Spatio-Temporal Regularization based
CF (IGSSTRCEF) tracker. The proposed tracker includes an
object aware sparse spatial regularization and a sparse tem-
poral regularization. The proposed tracker also incorporates
an adaptive channel importance estimation mechanism that
assigns importance weights to each feature channel. To
obtain a local optimal solution for the complete formula-
tion, Alternating Direction Method of Multipliers (ADMM)
[5] is used. The proposed regularizations result in learning
more discriminative filter coefficients compared to the base-
line trackers [6, 30]. The baseline trackers are presented
briefly below.

2.1. ASRCF
The ASRCEF [6] formulation can be given by,

EH,w) == Zxk* P'hy)
A
1Z||W@hk||2+_||w wrll (1)
k=1

where K is the total number of feature channels, and
y € RT*1 is the desired Gaussian shaped correlation fil-
ter response. xj, € RT*! is the vectorized feature and
h;, € RT*" is the vectorized filter for the k' channel. \;
and A, are the regularization % arameters and * is the spa-
tial correlation operator. ’\1 Do llwo h;c||2 is the spatial
regularizer. w,. is the reference spatial weight and w is spa-
tial weight to be learned. H = [hy, hy, ..., hx] is the matrix
of filters from all K channels, P € R”*7 represents a bi-
nary matrix that applies the correlation operation to the true
foreground and background samples directly.

2.2. STRCF
The STRCEF [30] formulation can be given by,

Zxk *hk

els e

E(H,w) =

+5 ZHW D hy |5+
2

where 6 is the regularization parameter, w are the spatial
weights, ¢ Hh(t) —
term, %Zszl lw ® hk||§ is the spatial regularizer. h(®
and h(*~") are the CFs used in the t** and (¢ — 1) frames
respectively.

2. o
h-1 H2 is the temporal regularization

3. Proposed Approach

Motivated by the above discussions, we propose an Im-
portance Guided Sparse Spatio-Temporal Regularization
based Correlation Filter IGSSTRCF) tracker, formulated

as follows, . 2
K CI

1 =
E(h,q.w.Bu.By) = 5y = > “ac (xi + (PThy) | +
k=1
2
2
jz: [[w Dllk”z HVV W — Bw”2 + C[[Buwll; +

Sparse Spatial Regularization (SSR)

0 ) 2 3
5B =B =By Bl + Slali . B
——

Sparse Temporal Regularization (STR) Channel Importance (CI)

where g, is a scalar weight for response channel k, q =
{¢1,92, -, 95}, and §||q||§ is a regularization term for
- Bw||§ is the spatial
is a sparse vector that

the channel weights. %Hw - W,
regularization component and B,,
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learns the spatial changes between the current and reference
spatial weights. & [[h(®) —h(t=1) — Bh||§ is the temporal
regularization term and By, is a sparse vector that learns
the temporal changes between the current and past filter.
A1, A2, 0,(,n and [ are the regularization parameters. Us-
ing Parseval’s theorem to express (3) in frequency domain,
the equality constrained optimization form is given by,

ZXngk

2
Bull +C|Bul,+

(G H 4, W Bwth

A
Z lw © by 3 + 2 ||W W —
k=1
2

ZHh” h{'~) BhH FulBul + 2 gl

sty g = VT FP hy.qe, )

where "~ denotes the Discrete Fourier Transform (DFT) of a
signal, such that a = /TFa,a € R™! Fisa T x T or-
thonormal matrix of complex basis vectors that transforms
any T dimensional vectorized signal into the Fourier do-
main and G = [g1, &s, ..., §x| is an auxiliary variable ma-
trix. The local optimal solution to the model in (4) can
be obtained using ADMM [5]. The augmented Lagrangian

form of (4) is given by,
Z X O 8k

2
Boll, +¢[Bul,+

(G H A, W, Bwth -

)\1 K 2 )\2
Y w3+ 2w - w -
k=1

9 - 2
S|BO =R = By| B+

uK
P

where f is the penalty factor and S = [$,8s,...,8x] €
RT*K is the Fourier transform of the Lagrange multiplier.
The above problem can be solved by using ADMM for the
following sub-problems:

3.1. Solving for H

~ 2
A sl s
.~ VIFP b+ 2| 4 Jlals o
2

Given G, q,w, B, By, in (5), the optimal solution for
H* can be obtained by, )

hj = argmln — Z [lw® hk||2

k=1
2

g K
3w
k=1 2

i K
72
k=1

2

gL — ﬁFPThqu + s;k

(6)

2

Solving (6), we get,

hy = (MWW + T2+ 00) " (TquP (pge + si)+
o'~V + 6B),), )
where W = diag(w) € RT*T and the inverse term can be
conveniently obtained by computing the reciprocal of each
element. H" can be obtained using H* = [h},h3, ..., h}].
3.2. Solving for G

Fixing H, q, w, B, By, in (5), the optimal G* can be
obtained by solving,

G* = rgmm -
G

Zkagk

K
1% T
3 E gr — VIFP thk+

k=1

(®)

2

However, due to high computational complexity, it is diffi-
cult to optimize (8) [6]. Therefore, we proceed pixel-wise
for all channels. The reformulated optimization problem in
(8) is given by,

2
VJ*(G) argmin — Hyj (A)TVj(G)’
V;(G) 2
M . .2
Ll i)+ v ©)
where X = [x1,X2,...,Xk]| and X = [X1,%9, ..., XK].
Vj(X) = [ﬁ1j7ﬁ2j...,)2Kj]T is a K x 1 vector, picking

the j** element from each channel of X, ie., Vl(f() =
[)A{H,}A{Ql,...,f(Kl]T and V](G) = [glj,ggj,...,ng]T.
Similarly, we form, V;(M) = V; (%) ~V;(VTFP Hq),
& 5 & s T
where V; (%) = [, 20 2k

[ N

. Solving (9), we get,

T —1

Vi(G) = (uI+V;(X)V;(X))

(¥;Vi(X) — pv; (S) +uV;(VIFP Hq)).  (10)

Equation (10) can be efficiently computed using the
Sherman-Morrison formula [6] as follows.

N T
Vi@ = <1 e )(sfjvj(fc)
a 1+ V(X)) V5(X)

w; (%) + uV;(VIFP" Hq)). (11)

2778



S
Frames

3D View

Figure 2: Pictorial representation of B,, and B}, learned for consecutive ADMM updates from the sequence Mountainbike
(Frame# 46, 48, 50, 52 and 54) of the TC128 dataset [36]. By, is normalized between [0 1] for display purpose

3.3. Solving for q

If G, H,w,B,, By, are fixed in (5), ¢ can be computed
as follows,

gL — \/TFPThqu + S;k

K
q = argminﬂ Z
[t

(12)

Solving (12), we get,

. V/Th,"Pgy + Th, Psy
Q= T . (13)
wTh,"PPThy, +

3.4. Solving for w

Fixing G, H,q,B, and B}, in (5), the closed-form so-
lution for w is given by,

A& A ’
x 1 Z 2, A2
wh = ?k—l INew|l5 + > ||W—Wr—Bw||2; (14)

K -1
= <>\1 ZN%N}C + )\21> >\2(Wr + Bw), (15)
k=1
)\2(Wr + Bu)

= ; (16)
MY Ohy + Ay

where N, = diag(hy,) € RT*T,

3.5. Solving for B,,

In ASRCEF [6], the authors attempt to learn the spatial
weights w by incorporating the term ||w — W,,||§ in the CF
formulation. This term attempts to make w similar to a ref-
erence weight w,.. However, due to constant changes in the
target appearance and background, w will not be exactly
similar to w,. To capture the minor variation between w,.
and w, we propose to learn a sparse difference vector B,,.
Given G, H, q,w and By, the solution for B,, can be ob-
tained using,

2
B2
5l

* : A ’
B} = ar%mln 32 [|lw — w, — Bw||2 +¢IBully- (A7)

The solution for (17) can obtained using the Iterative Soft
Thresholding algorithm (IST) [2] by

BZ:S%(W—WT). (18)

Here, S,(z;) = sign(z;)max(0,|z;| — ), is the soft-
thresholding operator for a vector z. Figure 2 shows a pic-
torial representation of B,, learned for consecutive ADMM
updates from the sequence Mountainbike in the TC128
dataset [36]. It can be seen that B, has low penalty weights
for the pixels corresponding to the target. Thus, when B, is
added to the reference w,., the resultant w has high penalty
weights near the boundary region and low penalty weights
near the target.

3.6. Solving for B,

In STRCF [30], the temporal regularization term,

Hh,(f) — h,(f_l) , is used to learn a filter hg) similar to

h,(;_l), where t is the frame index and k represents the fea-
ture channel index. However, since the target appearance
changes every frame, the filter hg) will be similar to h,(f_l),
but should also adapt to the variations in the object appear-
ance between consecutive frames. To capture the variation

between hg) and hl(f_l), we learn a sparse difference vec-

tor Bj,. Given G, H, q, w and B,,, the solution for B, can
be obtained using,

0 B 2
B;‘L:argminthff)—hf: Vo By| Bl (9)
By 2

The solution for (19) can obtained using IST [2] by
Bj = Sz (b’ —h{™"). (20)

Here, S is the soft-thresholding operator. Figure 2 shows
a pictorial representation of By, learned for consecutive
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ADMM updates. It can be seen that Bj, is non-zero for
the pixels corresponding to the target and zero for the back-
ground. Thus, when By, is added to h(;_1), the resultant h ;)
contains refined filter coefficients in the target region.

3.7. Lagrangian Multiplier Update

The Lagrangian multipliers are updated using,

ptD — min(fmaz, 1//1,(t)), (21

S+ — §®) 4 041 (GUHD) _ fyle+D)y, (22)
AU = oA, (23)

e+ pg(t), (24)

where p > 1, H*D and G+ are the current solutions
to H and G respectively, and S is the Fourier transform
of the Lagrangian variable in the previous state. Thus, the
optimal filter H*, feature channel weight g;;, spatial weight
w* and the sparse difference components, By, and B}, can
be obtained by iteratively solving for H, G, ¢x, w, B,, and
B, followed by the Lagrangian update, until convergence.

3.8. Target Localization

The target location is determined using,
K
P = %08 (25)
k=1

where T is the response map in the Fourier domain. The
location at which T shows the maximum value is used to
estimate the target location. For target scale estimation, we
follow the same strategy as [6].

3.9. Model Update

In order to adjust to target appearance variations, we use
an online adaptive template scheme [3, 4, 52] to update the
template model,

X(t)odel =(1- W)vai;c}zl +wX®, (26)

m

where w is the online learning rate, X® is the current ob-
servation, ngdle)l is the old template model and ngl)odel
is the updated template model. To introduce a reasonable
prior for adaptive spatial regularization, the reference spa-
tial weights are updated using w,. <— w*. In the first frame,
w,. is initialized with a negative Gaussian shape [6, 11]. The
above update schemes ensure our model is adaptive to target

appearance variations during tracking.

4. Experiments

This section provides implementation details and
presents the performance analysis of the proposed tracker

on four benchmark datasets: TC128 [36], UAV123 [40],
VOT-2019 [27] and VOT-2017 [26], in comparison to state-
of-the-art trackers. The section ends with an extensive abla-
tion study examining the contribution of each regularization
component of the proposed IGSSTRCEF tracker.

4.1. Implementation Details

All proposed formulations are implemented using MAT-
LAB2019a with the MatConvNet toolbox. We use an
ensemble of features extracted from Norml of VGG-M,
Conv4-3 of VGG-16 [44] and HOG features to represent
and localize the target. In Equation (3), the parameters 6
and Ag are 1.2, Ay and § are 0.01, and 7 and ¢ are 0.001. p
in (23) is 1.5 and the learning rate, w, in (26) is 0.0186. v in
(21) is 10 and ez 1S 10%. The initial value of the ADMM
penality factor, u, is set to 1. The ADMM is updated every 2
frames. The value of each parameter is selected empirically.

4.2. Performance Analysis

We present an extensive evaluation of IGSSTRCF on
four challenging tracking benchmarks with a tracking speed
of 8 fps. For TC128 [36] and UAV 123 [40] datasets, we re-
port a one-pass evaluation with distance precision and over-
lap success plots. For the VOT datasets [26, 27], we use the
benchmark protocol to evaluate the tracker in terms of Ex-
pected Average Overlap (EAO), Accuracy (A) and Robust-
ness (R) for the baseline experiments, and overlap Area-
Under-the-Curve (AUC) for the unsupervised experiments
[26]. For VOT datasets, the expected overlap curves, scores,
unsupervised overlap AUC, and A-R analysis for individual
challenges are included in the supplementary material.

4.2.1 Evaluation on TC128 Dataset

The proposed tracker is evaluated on TC128 [36]. Figure 3
(a) and (b) shows the success and precision plots compar-
ing the proposed IGSSTRCEF tracker with recent trackers:
GFSDCF [49], ECO [7], ASRCF [6], IBCCF [31], Auto-
Track [32], CCOT [13], LDES [35], ARCF [21], STRCF
[30], BACF [23], KAOT [33], CF2 [38], HDT [41], DRCF
[15], SITUP [39], SAMF [34], MEEM [51], EnKCF [46],
DSST [9], KCF [20], ASLA [22], L1APG [1], DFT [43]
and IVT [42]. The proposed IGSSTRCF outperforms all
the compared trackers in terms of overlap success and dis-
tance precision, except for GFSDCF [49] and ECO [7].

4.2.2 Evaluation on UAV123 Dataset

The proposed tracker is evaluated on UAV 123 dataset [40].
Figure 3 (c) and (d) shows the success and precision plots
comparing the proposed IGSSTRCF tracker with recent
trackers: GFSDCF [49], ECO [7], CCOT [13], DRCF
[15], KAOT [33], AutoTrack [32], LDES [35], STRCF [30]
ARCF [21], ASRCEF [6], SITUP [39] and EnKCF [46]. The

2780



GFSDCF [0.6049]
==ECO [0.5898]
IGSSTRCF [0.5725]

GFSDCF [08314]
==ECO [0.7878]

Success Plots for TC128 Precision Plots for TC128
WV

Su

IGSSTRCF [0.7771] 09

2
Sos

S T

n 04

ce

Q03

0.2

0.1

0

s ASRCF [0.5714] ! = CCOT [0.7693]
== CCOT [0.5660] — ASRCF [0.7690]
= LDES [0.5544] i KAOT [0.7480]
= ARCF [0.5327] 08 ~—="=_ = ARCF [0.7404]
IBCCF [0.5221] /A = + = LDES [0.7401]
={ AutoTrack [0.5195] ik IBCCF [0.7149]
] KAOT[05M0] ¢ o =4 AutoTrack [0.7032] ©
© - STRCF[05064] O ; CF2[0.6893]
; BACF[04845] "33 +01s STRCF [0.6758]
7 CF2[04785] 5 ¢ HDT [0.6675]
3 HDT [0.4770] D04 == MEEM [0.6429]
Q =#=DRCF [04703] [, BACF [0.6381]
a SITUP [0.4697] SITUP [0.6291]
SAMF [0.4689] 02 == DRCF [0.6259]
== MEEM [0.4620] SAMF [0.6243]
= EnKCF [0.4499] = EnKCF [0.6052]
. =5 DSST[04153] == KCF [0.5478]
& == KCF [0.3867) = DSST[0.5437]
0 02 04 06 08 1 ASLA [03828] 0 ?o 40 60 80100y a 0s10)
Overlap threshold == LIAPG [03277) Distance threshold == LIAPG [04326]
o= DFT [0.3147] IVT [0.4136]
IVT 10.2909] =he=DFT [0.4082]
(@ (b)

Percision Plots for UAV123

Success Plots for UAV123

GFSDCF [0.5335]
—ECO [0.5292] 07
——IGSSTRCF [05204]
—CCOT [0.5003]
—LDES[04%6] &
—DRCF[04900] Q05
— AutoTrack [0.4833] &
—STRCF[0.4788]  © 04
ARCF0478) &
ASRCF (04706 A< O
KAOT [0.4478]
EnKCF [03995]
SITUP [0.3838]

= —— GFSDCF [0.6837]
—IGSSTRCF [0.6748]
—ECO [0.6738]
——CCOT [0.6518]
——DRCF [0.6344]
—KAOT [0.6294]
— AutoTrack [0.6267]
—LDES [0.6261]
STRCF [0.6179]

0.6

ASRCF [0.6096]
ARCF [0.6035]
SITUP [0.5139]
EnKCF [0.4998]

0 0.2 04 0.8 1 0

06
Overlap threshold

10 20 30
Distance threshold

40 50

(c) (@)

Figure 3: Success and Precision plots for TC128 [36] ((a) and (b)) and UAV 123 dataset [40] ((c) and (d)), with trackers
arranged in descending order of their performance. The legend of the precision plots contains the scores at a threshold of 20
pixels and the legend of the success plots contains Area-Under-the-Curve scores for each tracker
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Figure 4: Intermediate frames showing examples of successfully tracked frames (left) and failure cases (right) in different

sequences from the TC128 dataset [36]

proposed IGSSTRCEF tracker is second best in terms of pre-
cision and third best in terms of success.

4.2.3 Evaluation on VOT-2019 Dataset

The proposed IGSSTRCEF tracker is evaluated using the
VOT toolkit on VOT-2019 [27]. A comparison is shown
with the recent state of the art trackers: ASRCF [6], STRCF
[30], LDES [35], ARCF [21], BACF [23], CISRDCF [27],
ANT [27], LGT [27], FoT [27], MIL [27], KCF [27], Struck
[27], IVT [27] and, L1APG [27]. Table 1 shows the accu-
racy, robustness and EAO for the baseline experiments [26].
It is observed that IGSSTRCEF performs best in terms of ro-
bustness, and second best in terms of EAO and accuracy.
For the unsupervised experiments [26], Table 1 shows the
overlap AUC. It is observed that IGSSTRCEF performs best
in the overlap criterion.

4.2.4 Evaluation on VOT-2017 Dataset

The proposed tracker is evaluated using the VOT toolkit on
VOT-2017 [26]. A comparison is shown with recent track-
ers: ASRCF [6], STRCF [30], LDES [35], ARCF [21],

BACEF [23], ECO [8], CCOT [13], SRDCF [11], ANT [26],
BST [26], CGS [26], ATLAS [26], and GMD [26]. Table 2
shows the accuracy, robustness and EAO for baseline exper-
iments [26]. It is observed that IGSSTRCEF is third best in
terms of robustness and EAO. For the unsupervised exper-
iments, Table 2 shows the overlap AUC. It is observed that
the proposed tracker is third best in the overlap criterion.

4.2.5 Qualitative Evaluation

To demonstrate the performance qualitatively, we present
examples of success and failure for some tracking se-
quences of TC128 dataset [36]. The proposed IGSSTRCF
tracker is compared with ECO [8], ARCF [21], ASRCF
[6], CCOT [13], LDES [35], STRCF [30] and BACF [23].
Figure 4 (left) shows frames from the sequences soccer,
Skating?2, and Fish_ce2, where the IGSSTRCF tracks suc-
cessfully during background clutter, similar object pres-
ence, and multi-object presence, while most other track-
ers fail. Figure 4 (right) shows frames from the sequences
Charger_ce, skating_ce2, and MotorRolling, where most of
the trackers, including IGSSTRCEF, fail during scale change,
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Table 1: VOT toolkit report for VOT-2019 showing Accu-
racy (A), Robustness (R) and Expected Average Overlap
(EAO) for the baseline experiment and Overlap AUC for the
unsupervised experiment. The top three trackers are shown
in red, blue and green

Baseline Unsupervised
EAO A R AUC
IGSSTRCF | 0.1559 | 0.4730 | 39.0094 0.3286
ASRCF [6] 0.1451 | 0.4652 | 44.5818 0.3230
STRCF [30] | 0.1140 | 0.4520 70.02 0.2980
LDES [35] 0.1747 | 0.4882 | 50.2721 0.2940
ARCEF [21] 0.1351 | 0.4669 52.7181 0.2690
BACEF [23] 0.1162 | 0.4476 | 65.7094 0.1959
CISRDCF [27] | 0.1533 | 0.4147 48.9861 0.2417
ANT [27] 0.1509 | 0.4518 | 53.0936 0.2390
LGT [27] 0.1308 | 0.3960 | 54.8683 0.2062
FoT [27] 0.1290 | 0.3621 | 70.4328 0.1354
MIL [27] 0.1179 | 0.3847 | 73.6540 0.1664
KCF [27] 0.1103 | 0.4348 | 73.0953 0.2059
Struck [27] 0.0944 | 0.4103 | 96.3228 0.1743
IVT [27] 0.0869 | 0.3811 | 117.7786 0.1095
L1APG [27] | 0.0774 | 0.3901 | 147.7737 0.1224

object deformation, and in-plane-rotation. Further exam-
ples using sequences from the VOT-2019 [27] and TC128
dataset [36] arc included in the supplementary material.

4.2.6 Ablation Study

To demonstrate the contribution of each regularization com-
ponent of the proposed IGSSTRCEF, we remove the regu-
larization terms from the IGSSTRCF formulation one at a
time, and evaluate the performance. Table 3 shows a com-
parison of the complete IGSSTRCF formulation with for-
mulations without the regularizations. In Table 3, column 1,
“IGSSTRCEF - regularization term” denotes the IGSSTRCF
tracker without the stated regularization term. The com-
parison is shown on VOT-2019 [27] and VOT-2017 [26]
in terms of overlap score for baseline experiments, and on
TC128 [36] in terms of success plot AUC and precision
score at a threshold of 20 pixels. It is observed that the
proposed IGSSTRCF works best with the SSR, STR and CI
terms all included. An additional ablation study that demon-
strates the impact of SSR, STR and CI terms on the base-
lines [6, 23, 30] is included in the supplementary material.

5. Conclusions

In this work, we propose a novel importance guided
sparse spatio-temporal regularization based CF tracker. The
sparse spatial regularization learns the spatial weights by
modelling the sparse difference between the current spa-
tial weights and the reference spatial weights. The learned
spatial weights are used to penalize the filter coefficients
near the boundary region to prevent boundary effects. The
sparse temporal regularization models the sparse difference
between the current filter and the past reference filter. The
sparse difference term helps filter out irrelevant informa-

Table 2: VOT toolkit report for VOT-2017 showing Accu-
racy (A), Robustness (R) and Expected Average Overlap
(EAO) for the baseline experiment and Overlap AUC for the
unsupervised experiment. The top three trackers are shown
in red, blue and green

Baseline Unsupervised

A R EAO AUC

IGSSTRCF | 0.4761 | 26.2841 | 0.2040 0.3539
ASRCF [6] | 0.4654 | 30.9708 | 0.1851 0.3411
STRCEF [30] | 0.4510 | 61.3300 | 0.1180 0.3000
LDES [35] | 0.4929 | 39.6484 | 0.1875 0.3237
ARCF [21] | 0.4615 | 41.4174 | 0.1547 0.2824
BACF [23] | 0.4476 | 55.7769 | 0.1235 0.2083
ECO [7] 0.4762 | 17.6628 | 0.2809 0.4025
CCOT [13] | 0.4851 | 20.4138 | 0.2674 0.3909
SRDCF [11] | 0.4767 | 64.1136 | 0.1179 0.2445
ANT [26] | 0.4540 | 40.1593 | 0.1676 0.2770
BST [26] 0.2627 | 55.5033 | 0.1150 0.1458
CGS [26] 0.4979 | 53.3758 | 0.1406 0.3386
ATLAS [26] | 0.4835 | 37.4268 | 0.1969 0.3431
GMD [26] | 0.4422 | 54.7325 | 0.1295 0.2492

Table 3: Ablation analysis showing contribution of each
regularization component of the proposed IGSSTRCF
tracker in terms of Overlap Score (OP), Success (S) and
Precision (P). The best performance is shown in red

VOT-2019 | VOT-2017 TC128

O0S OoS S P
IGSSTRCF 0.155 0.204 57.25 | 77.71
IGSSTRCEF - SSR 0.152 0.195 56.84 | 77.35
IGSSTRCF - CI 0.127 0.150 55.85 | 76.04
IGSSTRCF - STR 0.151 0.178 55.78 | 76.78
IGSSTRCF - SSR - CI 0.152 0.196 56.35 | 76.51
IGSSTRCF - STR - CI 0.153 0.193 56.68 | 77.30
IGSSTRCF - STR - SSR 0.149 0.171 54.25 | 7274

tion from the previous filter, while learning the current fil-
ter. This prevents irrelevant appearance information from
persisting through further tracking steps. We also propose
to learn the adaptive importance weights for each feature
channel during training. This helps in suppressing the con-
tribution of adverse feature channels and enhancing the con-
tribution of useful feature channels. As a result of the pro-
posed regularizations, a more discriminative and robust CF
is trained, that achieves efficient object tracking during mul-
tiple challenges. We use ADMM to efficiently obtain an
optimal solution for the proposed formulation. The posi-
tive effects of the proposed formulation are demonstrated
on the TC128 [36], UAV123 [40], VOT-2019 [27] and VOT-
2017 [26] datasets. A comparative analysis with recent top
ranked trackers reveals that the proposed approach outper-
forms many state-of-the-art trackers.
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