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Figure 1: Class-agnostic object detection using object proposal methods (OPMs), conventional class-aware detectors, and

the proposed adversarially trained class-agnostic detectors. Green and magenta boxes indicate ground-truth and detection

outputs, respectively. OPMs generate regions of interest that could contain objects without precisely locating any object.

Class-aware detectors detect objects from a set of known object-types. The proposed class-agnostic detection aims to localize

all objects irrespective of their types including those of unknown classes. Results show that the proposed adversarially trained

class-agnostic models detect novel objects for which no annotations are available. Best viewed digitally and zoomed in.

Abstract

Object detection models perform well at localizing and

classifying objects that they are shown during training.

However, due to the difficulty and cost associated with cre-

ating and annotating detection datasets, trained models de-

tect a limited number of object types with unknown objects

treated as background content. This hinders the adoption

of conventional detectors in real-world applications like

large-scale object matching, visual grounding, visual rela-

tion prediction, obstacle detection (where it is more impor-

tant to determine the presence and location of objects than

to find specific types), etc. We propose class-agnostic object

detection as a new problem that focuses on detecting objects

irrespective of their object-classes. Specifically, the goal is

to predict bounding boxes for all objects in an image but not

their object-classes. The predicted boxes can then be con-

sumed by another system to perform application-specific

classification, retrieval, etc. We propose training and eval-

uation protocols for benchmarking class-agnostic detectors

to advance future research in this domain. Finally, we pro-

pose (1) baseline methods and (2) a new adversarial learn-

ing framework for class-agnostic detection that forces the

model to exclude class-specific information from features

used for predictions. Experimental results show that adver-

sarial learning improves class-agnostic detection efficacy.

1. Introduction

Human visual scene understanding relies on the ability to

detect and recognize objects in one’s field of view. This nat-

urally carries over to machine scene understanding through

computer vision techniques. Hence, the field of object de-

tection has garnered tremendous research interest [50] and

large advances have been made in improving detection sys-

tems, especially since the adoption of deep learning.

The object detection task is formulated as the prediction

of bounding boxes and classes for objects in a given image.
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This requires densely labeled data that contains annotations

for all objects in training images. However, creating such

datasets is extremely challenging and expensive. Therefore,

conventional object detection focuses instead on the re-

duced task of locating and recognizing “objects of interest”

corresponding to limited types of objects that are labeled in

the training data, with objects of unknown types treated as

background content. Notably, detection of unknown object-

types is explicitly penalized in the widely adopted mean av-

erage precision metric used for benchmarking. This hinders

the adoption of trained detectors in real-world applications

due to the added cost of retraining them for application-

specific object types. Furthermore, such detectors cannot be

used in applications like obstacle detection, where it is more

important to determine the location of all objects present in

the scene than to find specific kinds of objects.

In order to address the aforementioned limitations of

conventional class-aware detection, we propose class-

agnostic object detection as a new research task with the

goal of predicting bounding boxes for all objects present

in an image irrespective of their object-types. Intuitively,

this task additionally seeks to detect objects of unknown

types, which are not present or annotated in the training

data. This challenging yet high-reward goal of generaliza-

tion to unseen object types would benefit downstream appli-

cations (e.g., application-specific object classification, ob-

ject retrieval from large databases, etc.) that can consume

such class-agnostic detections.

Besides the problem formulation, we propose training

and evaluation protocols for class-agnostic detection with

generalization and downstream utility as primary goals.

Generalization is evaluated on PASCAL VOC [9], MS

COCO [24], and Open Images [20] in the form of recall

of unseen classes. Specifically, models trained on VOC

are evaluated on unseen classes of COCO and those trained

on COCO are tested on non-overlapping classes of Open

Images. Furthermore, the VOC dataset is split into seen

and unseen classes in order to measure recall of seen and

unseen classes within the same dataset. Utility of trained

detectors is evaluated as the accuracy of pretrained Ima-

geNet [36] classifiers on ObjectNet [2] images cropped us-

ing the bounding boxes predicted by the detectors.

We present a few baseline methods for class-agnostic

object detection – region proposals of two-stage detectors,

pretrained class-aware models used as-is or finetuned for

binary object versus not classification, and detection mod-

els trained from scratch for the said binary classification.

Finally, we propose a new adversarial training framework

that forces the detection model to exclude class-specific in-

formation from the features used for making predictions.

Experimental results show that our adversarial framework

improves class-agnostic detection efficacy for both Faster

R-CNN [35] (two-stage) and SSD [25] (one-stage).

The major contributions of this paper are:

• a novel class-agnostic object detection problem formu-

lation as a new research direction,
• training and evaluation protocols for benchmarking

and advancing research,
• a new adversarial learning framework for class-

agnostic detection that penalizes the model if object-

type is encoded in embeddings used for predictions.

2. Related Work

Zou et al. [50] provide a comprehensive survey of ad-

vances in object detection in the past 20 years. Some con-

ventional detection works [16, 21, 32, 42, 46] describe the

task as “generic” object detection but they use it to signify

their focus on common objects of known types, which is

distinct from our work on detecting objects of all types.

Two-stage object detectors like Faster R-CNN [35] em-

ploy a region proposal module that identifies a set of regions

in a given image that could contain objects, which are then

used by a downstream detector module to localize and iden-

tify objects. A number of works [5, 7, 12, 19, 29, 31, 39, 48]

have been proposed recently that aim to improve the quality

of such object proposals and reduce their number in order

to speed up the final detection task. A majority of proposal

methods are trained end-to-end with the detector module,

which biases them to objects of known types. Methods also

exist for generating [6, 28, 40, 49] or filtering [26, 27, 34]

object proposals based on edge-related features and object-

ness metrics. However, as defined, these proposals do not

correspond directly to final detections and must be fed to

a detector module to infer final detections. In contrast, the

proposed task of class-agnostic detection is aimed at pre-

dicting final bounding boxes for all objects in an image.

Two-stage methods for class-agnostic detection could em-

ploy these works to generate intermediate object proposals.

Some works [14, 45] focus on generating pixel-level

objectness scores in order to segment object regions out

of background content. These works produce objectness

heatmaps which could sometimes be used to detect individ-

ual objects if they do not overlap and are strikingly distinct.

A few works [8,13] have shown the efficacy of convolu-

tional neural networks like AlexNet [17] for localizing ob-

jects irrespective of their classes. In this work, we take this

idea further and formally define the task of class-agnostic

object detection along with training and evaluation proto-

cols for benchmarking current and future research.

Kuen et al. [18] show how weights from object recog-

nition networks can be transferred to detection models to

scale-up the number of object-types for detection. This line

of research is also related to few-shot [10, 15, 30, 41, 43, 44,

47] and zero-shot [1,22,33] object detection, which are tar-

geted towards detecting objects of novel types given a few

reference samples or descriptions, respectively.
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Upstream Module

One-stage Detector:

Backbone

Two-stage Detector:

Backbone + Region Proposal Network

+ ROI Feature Extractor

1: Bounding Box Regression

2: Object-or-not Classification

3: Adversarial Object-type Discriminator

Update Discriminator x 5

Update Other Modules

Loss = (3) Categorical Cross-entropy

Loss = (1) Binary Cross-entropy + (2) Smooth L1 – (3) ⍺ Entropy

Figure 2: Adversarial framework for class-agnostic object detection for both one- and two-stage models. The upstream

module with the backbone (e.g., VGG16, ResNet-50, etc.), Region Proposal Network (two-stage) and ROI feature extractor

(two-stage) remain unchanged, along with the box regressor. The conventional object-type classification is replaced with a

binary object-or-not classifier, and a new adversarial object-type discriminator is attached during training. The bottom part of

the figure shows the training procedure – iterating between five discriminator updates for each update to the other modules.

3. Class-agnostic Object Detection

In this section, we describe the proposed task of class-

agnostic object detection and contrast it with conventional

class-aware object detection. We then discuss a few intu-

itive baseline models for the proposed task.

3.1. From Class­aware to Class­agnostic Detection

The conventional formulation of object detection can be

described as the task of locating and classifying objects in

a given image. The goal of models developed to solve this

task is to predict bounding box coordinates and class labels

for objects present in the image. Given this formulation, a

plethora of models have been proposed that train on images

with object annotations. However, due to the difficulty and

cost associated with collecting and labeling large datasets,

annotations are typically collected for a limited number of

object categories. This has inadvertently reduced the origi-

nal formulation to the task of detecting “objects of interest”,

corresponding to object types that are annotated in training

datasets. Although reduced in form, the conventional for-

mulation remains a challenging problem, with direct appli-

cation in use-cases with a fixed set of known object types.

In this work, we propose a sibling task of class-agnostic

object detection that aims to detect all objects in a given

image irrespective of their object-types. More specifically,

the goal of this task is to predict bounding boxes for all

objects present in an image but not their category. Further-

more, given that most available training datasets do not con-

tain dense annotations for all kinds of objects, an additional

implicit goal for models developed for this task is to gen-

eralize to objects of unknown types, i.e., those for which

annotations are not available in the training dataset. This

is in direct contrast to conventional class-aware object de-

tection, which treats unknown objects as background con-

tent. As compared to conventional detectors, class-agnostic

models can be more easily adopted in complex real-life

applications like object retrieval from a large and diverse

database, recognition of application-specific object-types

through training a downstream object recognition model

(instead of retraining the full detection network), etc.

3.2. Baseline Models

We identify three intuitive and straightforward baseline

models for solving the class-agnostic detection task, se-

lected due to their ease of implementation and natural cu-

riosity about their performance. The baseline models are:

• region proposal network of a two-stage detector,

• class-aware detector trained for object-type classifica-

tion and bounding box regression,

• pretrained class-aware model finetuned end-to-end for

object-or-not binary classification instead of object-

type, along with bounding box regression,

• detection model trained from scratch for object-or-not

binary classification and bounding box regression.

4. Adversarial Learning Framework for

Class-agnostic Object Detection

4.1. General Framework

Conventional class-aware detection focuses on detecting

“objects of interest”, which inherently requires models to

be able to distinguish between types of objects in a closed

known set. Intuitively, models achieve this by encoding fea-

tures that are discriminative of object-types. However, for

class-agnostic detection and for models to be able to detect

previously unseen types of objects, detectors should encode

features that more effectively distinguish objects from back-

ground content and individual objects from other objects in

the image, without discriminating between object-types.

Naı̈vely training conventional object detectors for the bi-

nary classification task of object-or-not along with bound-

ing box regression is not sufficient to ensure that models fo-
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cus on class-agnostic features and more importantly, ignore

type-distinguishing features so that they can better general-

ize to unseen object-types. In order to overcome this prob-

lem, we propose to train class-agnostic object detectors in

an adversarial fashion such that models are penalized for

encoding features that contain object-type information.

We begin with observing a popular two-part pattern in

the model design of both one-stage and two-stage conven-

tional object detectors. The first upstream part of a detec-

tion model learns a set of convolutional features from en-

tire images (one-stage) or regions of interest (two-stage).

The second downstream part consumes these features and

passes them through classification and regression branches

for object-type and bounding box prediction, respectively.

This two-part setup allows for external control on the infor-

mation output by the first part and consumed by the second.

We propose to augment class-agnostic detectors with

adversarial discriminator branches that attempt to classify

object-types (annotated in the training data) from the fea-

tures output by the upstream part of detection networks,

and penalize the model training if they are successful. The

models are trained in an alternating manner such that the

discriminators are frozen when the rest of the model is up-

dated and vice versa. While updating the discriminators, we

use the standard categorical cross-entropy loss with object-

types used as prediction targets. On the other hand, while

training the rest of the model, we minimize (a) the cross-

entropy loss for object-or-not classification, (b) smooth L1

loss for bounding box regression, and (c) the negative en-

tropy of discriminator predictions. This entropy maximiza-

tion forces the upstream part of detection models to exclude

object-type information from the features it outputs. The

discriminator is updated five times for every update to the

rest of the model and the negative entropy is weighted with

a multiplier α (tuned on {0.1, 1}) in the overall objective.

Figure 2 summarizes the complete framework.

During test-time inference, the discriminators are de-

tached from the model, giving back the original network

with the standard layers and parameter-count. Thus, our

framework does not cause performance delays.

4.2. Model Instantiation

We demonstrate the applicability of the proposed adver-

sarial framework to both Faster R-CNN (FRCNN), a two-

stage detector, and SSD, a one-stage detector. We use the

publicly available MMDetection [4] framework for imple-

menting the models and running experiments. We train two

versions of the adversarial models – one is trained from

scratch and the other is finetuned from a pretrained base-

line class-aware model. Further details are as follows.

Faster R-CNN. The FRCNN model first generates re-

gions of interest in the input image, which is followed by ex-

tracting features from and making object-type and bounding

box predictions for each region. We create a class-agnostic

adversarial version of FRCNN by (1) replacing the multi-

class object-type classification layer with a binary object-

or-not layer, and (2) attaching an adversarial discriminator

on top of the feature extraction layer that provides inputs to

the classification and regression heads. Thus, during train-

ing, this feature layer serves three prediction heads instead

of the standard two. In our experiments, we use the standard

FRCNN model available in MMDetection, which includes a

ResNet-50 backbone and a Feature Pyramid Network [23].

SSD. An SSD model utilizes features from several layers

of its backbone network to detect objects of different scales,

corresponding to the depth-levels of the backbone layers.

Specifically, SSD models contain classification and regres-

sion layers for making predictions at each depth-level. In

order to create a class-agnostic adversarial version of the

SSD model, we (1) replace each object-type classification

layer with a binary object-or-not layer, and (2) attach an

adversarial discriminator at each depth-level where predic-

tions are made. Thus, during training, each prediction level

in the resulting model has three prediction heads instead of

the conventional two. We use the standard SSD-300 with

VGG-16 pretrained on ImageNet as the backbone.

5. Training and Evaluation Protocols

We propose two kinds of experiments for evaluating

class-agnostic detection, geared towards measuring (1) gen-

eralization to unseen object types, and (2) the downstream

utility of trained models. While there are several ways to

design experiments for (1) and (2), we propose first steps

with potential for refinement in future work.

5.1. Generalization to Unseen Object­types.

Class-agnostic detectors should, by definition, not be

limited to object types seen during training. Hence, it is im-

portant to evaluate their efficacy at identifying unseen types

of objects. We measure this performance as average recall

(AR; also known as detection rate [49]) at various number

(k ∈ {3, 5, 10, 20, 30, 100, 300, 1000}) of allowed bound-

ing box predictions, i.e., AR@k (IoU ≥ 0.5). The goal

here is to achieve high AR@k at all k levels. We design

two sets of generalization experiments based on this setup.

Experiment I. We split the VOC dataset into 17 seen

classes and three unseen classes. Seen classes in the VOC

07+12 training set are used for learning the models while

both seen and unseen classes in the VOC 07 validation

set are used for evaluation as AR@k of seen and unseen

classes. The harmonic mean of seen and unseen AR@k, for

each k, is reported as a measure of overall performance.

In order to select the three unseen classes, we compute

the confusion matrix1 of a 300-layer SSD model trained on

1https://github.com/kaanakan/object detection confusion matrix
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Figure 3: Generalization results for FRCNN models trained on the seen VOC dataset. The top row shows macro-level AR@k

for seen and unseen classes in VOC and their harmonic mean (AR-HM). FRCNN-agnostic-adv performs the best overall. The

second row shows micro-level results for the easy, medium, and hard unseen classes. FRCNN-agnostic-adv performs the best

on the hard and easy classes with recall drop for the medium class. The last row provides results of evaluation on the COCO

data of 60 unseen classes. FRCNN-agnostic-adv achieves the best AR@k for objects of all sizes.

the standard 20-class VOC 07+12 dataset, and use F1 scores

to determine easy, medium, and hard classes. Specifically,

the class with the highest F1 is the hardest for generaliza-

tion as it is the most distinguishable from the other classes,

making it the most difficult to generalize to if it were not

seen during training. Similarly, the class with the lowest

F1 is picked as the easy class. The medium class is the

one with the median F1. Thus, the unseen set comprises

cow (easy), boat (medium) and tvmonitor (hard) classes,

while the rest are considered seen. In addition to the macro

AR@k scores, micro AR@k are reported for each unseen

class. Besides the evaluation on VOC, the (VOC) models

are tested for generalization on the 60 non-VOC classes in

the COCO 2017 validation set using the same AR@k met-

ric. AR@1000 is further reported for small, medium, and

large sized objects belonging to the 60 classes.

Experiment II. In this experiment, models are trained

on the COCO 2017 training set and evaluated on non-

overlapping classes in the Open Images V6 test set. We

first normalize the class names in both COCO and Open

Images to find exact matches between classes in the two

datasets. We identify a few classes that have slightly differ-

ent names in the two datasets and normalize them manually.

We then build a semantic tree using the publicly available

Open Images class hierarchy and exclude all classes that

either match exactly with a COCO class or have a COCO

class as a predecessor or successor. The remaining classes

are used for testing. AR@k is used as the evaluation metric.

5.2. Downstream Utility

A major motivation for research in the domain of class-

agnostic object detection is the potential for widespread

downstream utilization of class agnostic bounding boxes for

extracting objects in images and using them for various vi-

sual reasoning tasks. In this work, we propose evaluation of

downtream utility in terms of object recognition on images

in the ObjectNet [2] dataset. Detection models are used to

predict M bounding boxes for each image, which are then
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Table 1: Generalization results for experiments I and II. AR@1000-Unseen shows results for unseen VOC classes,

AR@1000-COCO for unseen COCO classes, and AR@1000-OI for unseen Open Images classes. “Ovr”, “Med”, “Sml”,

and “Lrg” stand for overall, medium, small, and large, respectively. “-aw-” and “-ag-” in the model name indicate whether

the model is class-aware or -agnostic, “-ft-” tells whether the model was finetuned from the class-aware baseline, and “-

ad” represents models trained adversarially. FRCNN-aw-prop refers to the evaluation of the FRCNN-aw proposals from its

first stage Region Proposal Network. Class-agnostic models generalize better than class-aware models with those trained

adversarially from scratch performing the best overall.

I: Training on seen VOC II: Training on COCO

AR@1000-Unseen AR@1000-COCO AR@1000-OI

Model Ovr Easy Med Hard Ovr Sml Med Lrg Ovr Sml Med Lrg

FRCNN-aw-prop 0.374 0.388 0.383 0.355 0.107 0.006 0.071 0.375 0.153 0.005 0.037 0.329

FRCNN-aw 0.545 0.822 0.501 0.363 0.124 0.018 0.110 0.370 0.170 0.016 0.083 0.330

FRCNN-ft-ag 0.382 0.733 0.302 0.173 0.038 0.001 0.018 0.147 0.184 0.028 0.138 0.313

FRCNN-ag 0.596 0.814 0.550 0.464 0.136 0.024 0.131 0.380 0.182 0.028 0.125 0.318

FRCNN-ft-ag-ad 0.528 0.745 0.447 0.426 0.095 0.008 0.069 0.317 0.181 0.026 0.112 0.328

FRCNN-ag-ad 0.601 0.823 0.537 0.479 0.152 0.027 0.158 0.406 0.192 0.028 0.131 0.337

SSD-aw 0.663 0.831 0.594 0.588 0.156 0.019 0.194 0.391 0.199 0.013 0.145 0.350

SSD-ft-ag 0.671 0.819 0.668 0.555 0.177 0.040 0.238 0.366 0.188 0.020 0.168 0.301

SSD-ag 0.702 0.810 0.669 0.645 0.181 0.031 0.239 0.404 0.206 0.023 0.206 0.314

SSD-ft-ag-ad 0.683 0.809 0.651 0.612 0.155 0.028 0.197 0.354 0.194 0.018 0.181 0.308

SSD-ag-ad 0.722 0.833 0.689 0.660 0.196 0.036 0.252 0.443 0.210 0.024 0.211 0.319

use to crop the image into M versions. Pretrained2 Ima-

geNet classifiers are then used to predict the object class

from the cropped images. Here we use ResNet-152 [11],

MobileNet-v2 [37], and Inception-v3 [38] models.

Two metrics are used for evaluation – Accuracy@M

for M ∈ {1, 5, 10}, and Best-overlap (BO) accuracy. For

Accuracy@M , the classifier’s prediction on at least one of

the M crops needs to be correct for the image to be consid-

ered as successfully classified. BO-accuracy is calculated

using bounding boxes that have the highest intersection over

union (IoU) with the ground-truth [3] bounding boxes.

6. Results

6.1. Generalization to Unseen Object­types

Experiment I. We train the baseline models and the ad-

versarial models on the VOC seen set and evaluate them

on both the VOC set and the COCO unseen classes. Re-

sults of this experiment with FRCNN as the base model

are presented in Figure 3. Class-agnostic models outper-

form standard class-aware models in overall performance,

especially for unseen VOC classes. Breakdown of recall

for unseen classes reveals that the margin in recall becomes

larger as the difficulty of generalizability is increased, with

the largest performance gains on the hard unseen class. Re-

sults on the COCO unseen classes show that the adversarial

model performs the best overall and for objects of all sizes.

2https://pytorch.org/docs/stable/torchvision/models.html

Figure 4 summarizes the results with SSD as the base

model. The results show that the class-agnostic SSD mod-

els largely outperform the conventional class-aware SSD

model. Furthermore, the proposed adversarial model per-

forms the best overall with some reduction in average recall

for the VOC seen set. Breakdown of recall for the easy,

medium, and hard unseen classes shows that the adversarial

model performs the best across the board. Finally, results

on COCO show consistent improvements from adversarial

learning, especially for medium and large sized objects.

Hence, class-agnostic models perform better than class-

aware models in generalizing to objects of unseen types and

the proposed adversarial model performs the best overall.

Experiment II. In this experiment, the baseline and the

adversarial models are trained on the COCO dataset and

evaluated on the non-overlapping classes of the Open Im-

ages, as outlined in Section 5.1. Figure 5 summarizes the

results for both FRCNN and SSD models. In both cases, the

class-agnostic models generalize better than the class-aware

models overall, with the proposed class-agnostic models

trained from scratch achieving the best AR scores.

Table 1 presents AR@1000 generalization scores for ex-

periments I and II, showing that the adversarially trained

(from scratch) models perform the best in both settings.

We find that the recall of models that are finetuned from

the pretrained class-aware baselines are worse than those

that are trained from scratch. We attribute this to the dif-
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Figure 4: Generalization results for SSD models trained on the seen VOC dataset. The top row shows macro-level AR@k

for seen and unseen classes in VOC as well as their harmonic mean (AR-HM). SSD-agnostic-adv performs the best on AR-

Unseen and AR-HM, with a drop in AR-Seen, but the models that outperform SSD-agnostic-adv on AR-Seen do significantly

worse on AR-Unseen and AR-HM. The second row shows micro-level results for the easy, medium, and hard unseen classes.

SSD-agnostic-adv performs the best in all categories. The last row provides results of evaluation on the COCO data of 60

unseen classes. SSD-agnostic-adv achieves the best AR@k with a slight reduction for small-sized objects.

ficulty of unlearning discriminative features for object-type

classification and realigning to learn type-agnostic features,

which prevents the finetuned models from achieving the

same performance as those that are trained from scratch.

6.2. Downstream Object Recognition

We evaluate the object recognition performance for im-

ages cropped using bounding boxes predicted by the class-

aware and class-agnostic models trained for the generaliza-

tion experiments in Section 5.1. Table 2 summarizes the

results of these experiments. Results show that the adver-

sarially trained class-agnostic models perform better than

the baselines in general on both Accuracy@M and Best-

overlap accuracy (as described in Section 5.2), irrespective

of the ImageNet classifier used. These results correlate with

the generalization results presented in Section 6.1, indicat-

ing that detection models that generalize better to unseen

object-types have higher downstream utility.

7. Conclusion and Future Work

Conventional class-aware objection detection models

perform well at detecting “objects of interest” that belong to

known objects types seen during training. However, these

models do not generalize well to unseen object-types, lim-

iting their incorporation in real-world applications. In this

work, we have formulated a novel task of class-agnostic ob-

ject detection, where the goal is to detect objects of known

and unknown types irrespective of their category. Further-

more, we have presented training and evaluation protocols

for benchmarking models and advancing future research in

this direction. These include two sets of experiments – (1)

one for generalization to new object-types and (2) another

for downstream utility in terms of object recognition. Fi-

nally, we have presented a few intuitive baselines and pro-

posed a new adversarially trained model that penalizes the

objective if the learned representations encode object-type.
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Figure 5: Generalization results of (a) FRCNN and (b) SSD models trained on the COCO dataset and evaluated on the

non-overlapping classes in the Open Images dataset. Results show that class-agnostic models generalize better than the

class-aware models, with the SSD-agnostic-adv and FRCNN-agnostic-adv models achieving the best recall.

Table 2: Downstream ObjectNet recognition results. Images are cropped using boxes predicted by the detectors and pretrained

ImageNet models are used for classification from the cropped images. Averages of accuracies across classifiers are also

reported. BO-acc is the accuracy when the predicted box with the highest IoU with the ground-truth box is used. Accuracies

are also presented for top M proposals as Acc@M . Results for uncropped images and those cropped using ground-truth

boxes are provided for reference. “-aw-” and “-ag-” in the model name indicate whether the model is class-aware or -

agnostic; “-ad” represents models trained adversarially. Results of other baseline detectors are provided in the supplementary

material. Adversarially trained class-agnostic models achieve the best results.

Detectors trained on VOC Detectors trained on COCO

Classifier Detector BO-acc Acc@1 Acc@5 Acc@10 BO-acc Acc@1 Acc@5 Acc@10

ResNet-152
FRCNN-aw 0.235 0.108 0.255 0.318 0.111 0.011 0.014 0.014

FRCNN-ag-ad 0.293 0.132 0.297 0.366 0.304 0.131 0.288 0.352

MobileNet-v2
FRCNN-aw 0.153 0.057 0.177 0.226 0.063 0.009 0.011 0.011

FRCNN-ag-ad 0.198 0.070 0.177 0.248 0.202 0.085 0.198 0.253

Inception-v3
FRCNN-aw 0.194 0.072 0.223 0.288 0.094 0.011 0.013 0.014

FRCNN-ag-ad 0.249 0.086 0.224 0.310 0.258 0.106 0.255 0.320

Avg. for
FRCNN-aw 0.194 0.079 0.218 0.277 0.089 0.010 0.013 0.013

FRCNN-ag-ad 0.247 0.096 0.233 0.308 0.255 0.107 0.247 0.308

ResNet-152
SSD-aw 0.291 0.188 0.304 0.362 0.314 0.181 0.333 0.388

SSD-ag-ad 0.312 0.199 0.339 0.406 0.317 0.218 0.370 0.422

MobileNet-v2
SSD-aw 0.190 0.114 0.202 0.254 0.210 0.116 0.232 0.280

SSD-ag-ad 0.211 0.121 0.233 0.292 0.213 0.143 0.258 0.307

Inception-v3
SSD-aw 0.247 0.156 0.270 0.332 0.270 0.148 0.301 0.361

SSD-ag-ad 0.267 0.165 0.308 0.383 0.270 0.182 0.331 0.390

Avg. for
SSD-aw 0.243 0.153 0.259 0.316 0.265 0.148 0.289 0.343

SSD-ag-ad 0.263 0.162 0.293 0.360 0.267 0.181 0.320 0.373

Accuracy on full uncropped images 0.167

Accuracy on images cropped with ground-truth boxes (empirical upper bound of BO-Acc and Acc@1) 0.378

Results show that the proposed adversarial class-agnostic

model outperforms the baselines on both generalization and

downstream-utility experiments, for both one-stage (SSD)

and two-stage (Faster R-CNN) detectors.

This work serves to establish a new direction of research

in object detection. As such, the possibilities for future re-

search are endless, including but not limited to — (1) fur-

ther refinement of the problem formulation, (2) improved as

well as additional training and evaluation protocols, and (3)

novel methods for class-agnostic object detection.
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